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1. Introduction. The notion of Gromov-Hausdor� distance (see, e.g., [1]) �nds
numerous applications in di�erent areas of mathematics as well as in the �eld of computer
graphics and computational geometry. Using this notion, one can naturally de�ne the so
called Gromov-Hausdor� hyperspace of any metric space. Some questions concerning this
hyperspace are formulated in [2].

The fuzzy Gromov-Hausdor� space is �rst considered in [7]. Remark that the notion
of fuzzy metric space traces back to the notions of probabilistic metric space. Nowadays,
this notion is widely investigated and �nds numerous applications in di�erent areas of
mathematics.

The following problem is a natural modi�cation of problems concerning the Gromov-
Hausdor� spaces: describe the topology of the fuzzy Gromov-Hausdor� space (see the
de�nition below) of the unit segment I. An answer to the corresponding for problem the
Gromov-Hausdor� space is announced in [9]. The main result states that the mentioned
fuzzy Gromov-Hausdor� space is homeomorphic to the Hilbert cube.

We also formulate some open questions. Note that the most problems that concern
the fuzzy Gromov-Hausdor� space are open.

2. Preliminaries.

2.1. Fuzzy metric spaces. We start with the de�nition of fuzzy metric spaces (see,
e.g., [5]). A continuous t-norm is a continuous map (x, y) 7→ x ∗ y : [0, 1] × [0, 1] → [0, 1]
which satis�es the following properties:

(1) (x ∗ y) ∗ z = x ∗ (y ∗ z);
(2) x ∗ y = y ∗ x;
(3) x ∗ 1 = x;
(4) if x ≤ x′ and y ≤ y′, then x ∗ y ≤ x′ ∗ y′.

c⃝ Ñàâ÷åíêî Î., 2011
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In other words, a continuous t-norm is a continuous Abelian monoid with unit 1
and with the monotonic operation. The following are examples of continuous t-norms:

(1) x ∗ y = min{x, y};
(2) x ∗ y = max{0, x + y − 1} ( Lukasiewicz t-norm).

In this paper we use the notion of fuzzy metric space de�ned in [5].

De�nition 1. A fuzzy metric space is a triple (X,M, ∗), where X is a nonempty set, ∗
is a continuous t-norm and M is a fuzzy set of X ×X × (0,∞) (i.e. M is a map from
X ×X × (0,∞) to [0, 1]) satisfying the following properties:

(i) M(x, y, t) > 0;
(ii) M(x, y, t) = 1 if and only if x = y;
(iii) M(x, y, t) = M(y, x, t);
(iv) M(x, y, s) ∗M(y, z, t) ≤ M(x, z, s + t);
(v) the function M(x, y,−) : (0,∞) → [0, 1) is continuous.

Note that every metric d on a set X generated the fuzzy metric Md on X by the
formula:

Md(x, y, t) =
t

d(x, y) + t
.

In a fuzzy metric space (X,M, ∗), we say that the set

BM (x, r, t) = {y ∈ X | M(x, y, t) > 1 − r}, x ∈ X, r ∈ (0, 1), t ∈ (0,∞),

is the open ball of radius r > 0 centered at x for t. It is proved in [5] that the family of
all open balls is a base of a topology on X; this topology is denoted by τM .

If we speak on a fuzzy (pseudo)metric on a topological space, we always assume
that this metric is compatible with the topology of this space.

2.2. Hausdor� and Gromov-Hausdor� metric. Let expX denote the hyperspace of
X, i.e. the set of all nonempty compact subsets of X. This space is endowed with the
Vietoris topology, i.e. the topology whose base consists of the sets of the form

⟨U1, . . . , Un⟩ = {A ∈ expX | A ⊂ ∪n
i=1Ai, A ∩ Ui ̸= ∅, i = 1, . . . , n}.

If (X, d) is a metric space, then the Vietoris topology is generated by the Hausdor�
metric dH :

dH(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)}

(see, e.g., [4]).
Let (Xi, di), i = 1, 2, be compact metric spaces. The Gromov-Hausdor� distance

between these spaces is the number

dGH((X1, d1), (X2, d2)) = inf{dH(f1(X1), f2(X2))

| fi : Xi → (Y, d) is an isometric embedding}.

Given a metric space (X, d), we denote by expGH(X) the space of nonempty closed
subsets in X endowed with the Gromov-Hausdor� metric.

Note that in the sequel we identify the isometric compact metric spaces and therefore
the Gromov-Hausdor� distance is the distance between the classes of equivalence of
compact metric spaces up to isometry.
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2.3. Fuzzy Hausdor� and fuzzy Gromov-Hausdor� metric. For every a ∈ X i t > 0,
let

M(a,B, t) = sup{M(a, b, t) | b ∈ B}
(see. [10, De�nition 2.4]).

Following [10] de�ne the function MH : expX × expX → (0,∞) by the formula:

MH(A,B, t) = min

{
inf
a∈A

M(a,B, t), inf
b∈B

M(A, b, t)

}
for every A,B ∈ expX i t > 0. The pair (MH , ∗) is a fuzzy metric on the space expX
(see [10, theorem 1]). This metric is called the fuzzy Hausdor� metric and is also known
to generate the Vietoris topology on expX.

Let (Xi,Mi, ∗), i = 1, 2, be fuzzy metric spaces. The number

MGH((X1,M1, ∗), (X2,M2, ∗), t) = sup{MH(F1(X1), F2(X2), t) |
Fi : Xi → Z is an isometric embedding into a fuzzy metric space Z}

is called the fuzzy Gromov-Hausdor� distance between (X1,M1, ∗) and (X2,M2, ∗) at t.
Remark that the number MGH((X1,M1, ∗), (X2,M2, ∗), t) is well de�ned, because

for any two fuzzy metric spaces there exists a fuzzy metric space that contains their
isometric copies. Namely, the bouquet of these spaces can serve as an example (see [11]).

By FMGH(X,M, ∗) we denote the family of compact subspaces of a fuzzy metric
space (X,M, ∗) endowed with the fuzzy Gromov-Hausdor� metric.

Proposition 1. Let (Xi, di)
∞
i=1 be a sequence of compact metric spaces converging to

(X, d) with respect to the Gromov-Hausdor� metric. Then the sequence (Xi,Mdi , ∗)∞i=1

converges to (X,Md, ∗) with respect to the topology generated by the fuzzy Gromov-
Hausdor� metric.

Proof. Let t ∈ (0,∞) and r ∈ (0, 1). There exists N ∈ N such that, for every
n > N , we have dGH((Xn, dn), (X, d)) < t

1−r + t. Without loss of generality, one

may assume that there exists a metric space (Z, ϱ) containing both Xn and X
such that dGH((Xn, dn), (X, d)) = ϱH(Xn, X). Simple calculations demonstrate that
(Mϱ)H(Xn, X) > 1 − r, and therefore MGH((Xn,Mdn , ∗), (X,Md, ∗), t) > 1 − r.

Corollary 1. For any compact fuzzy metric space (X,M, ∗), the space FMGH(X,M, ∗)
is compact.

We are going to show that the obtained space is Hausdor�. Indeed, otherwise, there
exist fuzzy metric spaces (Y,Mϱ, ∗), (Y ′,Mϱ′ , ∗) and (Xi,Mi, ∗) such that there exists a
fuzzy metric space (Zi, Ni, ∗), i ∈ N, containing these spaces and satisfying the property:
NiH(Y,Xi, 1/i) > 1 − (1/i), NiH(Y ′, Xi, 1/i) > 1 − (1/i). Now, let a, b ∈ Y . There exist
ai, bi ∈ Xi and a′i, b

′
i ∈ X ′ such that

Ni(a, ai, 1/i) > 1 − (1/i), Ni(ai, a
′
i, 1/i) > 1 − (1/i),

Ni(b, bi, 1/i) > 1 − (1/i), Ni(bi, b
′
i, 1/i) > 1 − (1/i).

Then, for every t > 0,

(1 − (1/i)) ∗Mϱ′(a′, b′, t) ∗ (1 − (1/i)) ≤ Mϱ(a, b, t + (2/i)).
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Since X ′ is compact, without loss of generality, one may assume that the sequences
(a′i), (b

′
i) converge to a′ and b′ respectively. Then passing to the limit we obtain that

Mϱ′(a′, b′, t) ≤ Mϱ(a, b, t) and similarly Mϱ′(a′, b′, t) ≥ Mϱ(a, b, t). One can easily prove
that a′ and b′ do not depend on the chosen sequences (ai) and (bi) and thus the map
a 7→ a′ is well-de�ned. Actually, this map isometrically embeds Y into Y ′.

One can similarly prove that there exists an isometric embedding of Y ′ into Y . Since
Y and Y ′ are compact, we conclude that they are isometric, i.e. they represent the same
isometry class.

We have therefore proven the following statement.

Proposition 2. For every compact metrizable space X, the spaces expGH(X, d) and
FMGH(X,Md, ∗) are homeomorphic.

2.4. Hilbert cube. By AR we denote the class of absolute retracts in the class of
metrizable spaces.

We say that a compact metric space (X, d) satis�es the disjoint approximation
property (DAP) if, for every ε > 0, there exist maps f, g : X → X such that d(f, 1X) < ε,
d(g, 1X) < ε and f(X) ∩ g(X) = ∅.

The Hilbert cube Q = [0, 1]ω can be characterized as follows.

Theorem 1 (Toru�nczyk's characterization theorem). A compact metrizable space X is
homeomorphic to the Hilbert cube if X is an AR space and satis�es the DAP.

3. Main result. The aim of this note is to prove the following theorem. Here d is
the standard metric on the unit segment I = [0, 1].

Theorem 2. The space FMGH(I,Md, ∗) is homeomorphic to the Hilbert cube.

Proof. Consider the circle S1 = {e2πit | t ∈ [0, 1]}. The group Spin(2) naturally acts on
this space and also on its hyperspace expS1. Recall that the group Spin(2) is the double
cover of SO(2) and there exists an exact sequence

1 → Z/2 → Spin(2) → SO(2) → 1.

Let I be embedded into S1 as a segment lying in a half-circle. Without loss of
generality, one may assume that the invariant metric on S1 extends the standard metric
d on I. Therefore, expGH(I) is naturally embedded into (expS1)/Spin(2). In turn,
(expS1)/Spin(2) = ((expS1)/S1)/(Z/2). We will identify expGH(I) with the subspaces
in the mentioned orbit spaces.

First, we will show that expGH(I) is an absolute retract. Let J ⊃ I be an open
interval containing I in S1. We assume that J lies in a half-circle. Denote by U the
subset in (expS1)/S1 consisting of the orbits with an element in J . Clearly, U is and
open contractible subset in (expS1)/S1 and therefore an absolute retract. One can de�ne
an equivariant retraction r of U onto (expS1)/S1 by the condition: r(A) is a homothetic

copy of A with the coe�cient equal to min{diam(A),1}
diam(A) . Next, a retraction of (exp I)/S1

onto expGH(I) ⊂ (expS1)/Spin(2) is given by the following construction: the image of
the orbit containing A is A ∪A′, where A′ is a symmetric copy of A with respect to the
center of the minimal segment containing A. This proves that expGH(I) is an absolute
retract.
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Next, we are going to show that the space FMGH(I,Md, ∗) satis�es the DAP.
Given ε > 0, de�ne f(A) as the closed ε/2-neighborhood of A (symmetrically truncated,
if necessary, so that its length does not exceed 1). Further, de�ne g(A) as the union of
two endpoints of f(A) and the homothetic copy of f(A) with respect to its center of
symmetry. If the scale factor of the homothety is close enough to 1, we are done. This
proves the DAP and completes the proof of the theorem.

4. Remarks and open problems. Note �rst that the result of the previous
section can be extended over another fuzzy Gromov-Hausdor� spaces. In particular, a
counterpart of Theorem 2 holds for the spaces de�ned as follows.

Let ∗ = min. Given k,m > 0 and n ≥ 1, de�ne the fuzzy metric Mi, i = 1, 2, on I
as follows:

M1(x, y, t) =
ktn

ktn + |x− y|
, M2(x, y, t) = e−

|x−y|
tn

(see [7]).
The following question remains open. Describe the topology of the fuzzy Gromov-

Hausdor� space of the n-dimensional cube In, n ≥ 2.
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