УДК 539.377

ОПТИМІЗАЦІЯ ЛОКАЛЬНОГО ПОЛЯ ТЕМПЕРАТУРНОЇ ВИТРИМКИ ОСЕСИМЕТРИЧНОЇ ОБОЛОНКИ З ТИТАНОВОГО СПЛАВУ З ВРАХУВАННЯМ ПОЛІМОРФНИХ ПЕРЕТВОРЕНЬ

Ігор ЧУПИК

Інститут прикладних проблем механіки та математики ім. Я.С. Підстригача НАН України, вул. Наукова, 3б 79060 Львів, Україна

На підставі методу скінченних елементів і методу Хука-Джівса розроблено числову методику оптимізації локального поля температурної витримки осесиметричної оболонки, яка виготовлена з титанового сплаву. Враховано явище поліморфного перетворення при зміні температури.

Ключові слова: оптимізація, термомеханічні процеси, фазові перетворення, залишкові напруження.

Завдяки поєднанню цінних властивостей титану: висока міцність, корозійна стійкість, зварюваність тощо вироби з титанових сплавів активно використовують у різних галузях народного господарства. Для їхнього виготовлення часто застосовують технології локального нагрівання, внаслідок чого у матеріалі відбуваються поліморфні (фазові) перетворення і, відповідно, змінюється фазовий склад, що спричиняє появу залишкових напружень. Зміна фазового складу додатково впливає на напружений стан конструкцій і може поглинати частину їхнього міцнісного ресурсу. Тому для побудови раціональних режимів термообробки виробів з титанових сплавів треба враховувати фазові перетворення, які відбуваються в ньому зі зміною температури.

Оптимізацію напруженого стану при локальній термообробці можна проводити вибором теплового режиму та оптимізацією поля підігріву локальної зони. У [7] показано, що при застосуванні неоптимального поля підігріву ефективність локальної термообробки незначна. Математична теорія оптимального локального нагрівання викладена у [1, 5–7, 9, 15–17]. Ця теорія побудована для матеріалів і режимів нагрівання без урахування структурних перетворень у матеріалі. Питанням дослідження фазового складу титанових сплавів присвячені праці [7, 9]. Переважна більшість цих праць – експериментальні. У цьому разі система рівнянь для визначення напружено-деформованого стану тіла з урахуванням фазових поліморфних перетворень є нелінійною і аналітичні методи її розв'язку не розроблені [3].

Наша мета – розглянути задачу оптимізації локального температурного поля витримки (локального нагрівання), який часто використовують в інженерній практиці при відпалюванні, для тонкостінної титанової оболонки обертання, де враховано, що в матеріалі трапляються фазові перетворення при нагріві, а після охолодження фіксується неоднорідний фазовий склад. Рівні напружень, які виникають від

© Чупик I., 2012

нагрівання і фазових змін, повинні бути мінімальними. Приймається також, що локальне температурне поле під час термообробки не спричиняє пластичних деформацій (причиною виникнення залишкових напружень вважаємо лише нерівномірний розподіл фаз, який усталюється в оболонці після її охолодження). Зазначимо, що розглядувані структурні напруження залишкові в тому розумінні, що вони існують в тілі без зовнішніх термомеханічних навантажень і в багатьох випадках тривалість існування таких напружень збігається з часом експлуатації виробу [18–20].

Формулювання задачі. Розглянемо вільну від силового навантаження скінченну осесиметричну оболонку з a - b титанового сплаву, яка займає область WO E^3 евклідового простору з неперервною за Ліпшицем поверхнею G, за умов локального кільцевого осесиметричного температурного поля, схему якого зображено на рис. 1 $(r, j, z - циліндричні координати, t_0$ температура навколишнього середовища, t_1 максимальна температура в центрі зони локального поля температурної витримки, r_0, r_1 внутрішній і зовнішній радіус оболонки, z_0 півширина локальної зони поля температурної витримки, z_1 півдовжина оболонки).

Рис. 1

У відомих працях з оптимізації поля витримки задачу розв'язують за припущення, що після припинення нагрівання у матеріалі оболонки не відбувається ніяких структурних змін [7]. За наявності структурних перетворень локальне поле підігріву, з одного боку, створює умови для релаксації попередньо наведених у тілі залишкових напружень, а з іншого – само може бути причиною їхнього виникнення, особливо за умов швидкого некерованого охолодження після завершення операції локального відпалювання. Ми приймаємо, що після завершення локального поля витримки у тілі фіксується деякий просторово неоднорідний нерівноважний фазовий склад, який є причиною виникнення залишкових (структурних) напружень. У цьому разі формулюється задача знаходження такого розподілу фаз в оболонці, за якого відповідні йому напруження є мінімальними. За знайденим оптимальним розподілом фаз на підставі емпірично визначених залежностей (рис. 2, крива 2) знаходимо температурне поле, яке формує цей фазовий склад.

Приймаємо, що в зоні локального поля температурної витримки температура змінюється вздовж твірної циліндра і є однорідною за товщиною оболонки [7]

$$t = \frac{Mt_1 (1 - 3z^2 + 2|z^3|), |z| J z_0,}{Ht_0, |z| > z_0.}$$
(1)

Формулюється задача оптимізації локального температурного поля витримки для оболонки обертання з урахуванням фазових перетворень, за якого в оболонці виникають мінімальні залишкові (структурні) напруження.

У рівноважному стані при кімнатній температурі t_0 структура a - b титанових сплавів складається з a - фази (з гексагональною щільноупакованою 'раткою) і b - фази (з об'ємноцентрованою кубічною 'раткою). Під час нагрівання тіла з титанового сплаву від кімнатної температури t_0 до температури початку фазових перетворень t_{f0} у ньому не відбувається фазових перетворень, а за нагрівання від температури початку фазових перетворень t_{f1} відбуваються фазові перетворення, а саме, a - фаза поступово переходить у b - фазу. При досягненні температури завершення фазових перетворень t_{f1} кількість b - фази у такому тілі становить 100 % (a - фаза повністю переходить у b - фази). Різниця питомих об'ємів a і b фаз (питомий об'єм a - фази більший від b - фази) суттєво впливає на розподіл і величину тимчасових напружень під час термообробки та залишкових (структурних) напружень, які зумовлені неоднорідним розподілом фаз після завершення термообробки [8].

Задачу оптимізації локального температурного поля витримки формулюємо за два етапи. На першому – визначаємо тимчасовий (під час температурної витримки) і залишковий (після охолодження) напружений стан оболонки обертання. Для цього записуємо співвідношення, які окреслюють процес деформування оболонки у квазіусталеному формулюванні за припущення, що на етапі температурної витримки у кожній точці у кожний момент часу усталюється рівноважний фазовий склад, а після охолодження в оболонці фіксується неоднорідний розподіл фаз. На другому етапі знаходимо оптимальне температурне поле (методом Джівса-Хука), яке зумовлює мінімальні залишкові напруження.

Під час формулювання задачі першого етапу приймаємо, що відсотковий вміст *b* - фази у титановому сплаві оболонки при нагріванні визначається функцією повноти фазових перетворень [8]

$$\mathbf{x}(t) = \begin{bmatrix} \mathbf{x}_{0}, & t < t_{f0} \\ \mathbf{x}_{1} - \mathbf{x}_{0} \\ \mathbf{t}_{f1} - t_{f0} \\ \mathbf{x}_{1}, & t \ \mathbf{i} \ t_{f1} \end{bmatrix} + \frac{\mathbf{x}_{0} t_{f1} - \mathbf{x}_{1} t_{f0}}{t_{f1} - t_{f0}}, \quad t_{f0} \ \mathbf{J} \ t < t_{f1} \ , \tag{2}$$

де x_0 – відсотковий вміст b - фази у титановому сплаві у температурному діапазоні $t < t_{f0}$; x_1 – стовідсотковий вміст b - фази у титановому сплаві у температурному діапазоні t і t_{f1} .

Під час нагрівання сумарна зміна об'єму титанового сплаву оболонки складається з двох частин – теплової de^t і структурної de^x

$$de^{(T)} = de^t + de^x \,. \tag{3}$$

Тут $de^t = 3a_t dt$, $de^x = 3b_x dx$, a_t – лінійний коефіцієнт теплового розширення; b_x – лінійний коефіцієнт структурної дилатації (дилатація, що зумовлена зміною питомого об'єму матеріалу при поліморфному перетворенні). У загальному випадку коефіцієнти a_t і b_x є функціями температури. При постійній за товщиною температурі коефіцієнт b_x можна прийняти константою і визначити зі співвідношення

$$b_{x} = (V_{1} - V_{0}) / V_{0}, \qquad (4)$$

де V_0 – питомий об'єм сплаву при температурі t_{f0} ; V_1 питомий об'єм сплаву при температурі t_{f1} .

Зауважимо, що в діапазоні температур фазового перетворення титанового сплаву температурна компонента зміни об'єму de^t зі зростанням температури збільшується, а структурна de^x – зменшується [8].

Якщо дуже повільне (стаціонарне) нагрівання, то в кожній точці матеріалу усталюється фазовий склад, який залежить від температури у цій точці. Повну відносну зміну об'єму у цьому випадку можна визначити з рівняння [8]

$$e^{(T)} = 3_{\mathrm{T}}^{t_{1}} a_{t}^{*}(t) dt , \qquad (5)$$

де $a_t^*(t)$ – узагальнений лінійний коефіцієнт теплового розширення, який враховує температурну та структурну дилатацію у титановій оболонці при нагріванні [23]

$$a_{t}^{*}(t) = \begin{cases} a_{t_{f_{0}}}, & t < t_{f_{0}} \\ (a_{t_{f_{0}}} + a_{t_{f_{1}}}) / 2 + b_{x} dx / dt, & t_{f_{0}} J t < t_{f_{1}}. \end{cases}$$
(6)
$$a_{t_{f_{1}}}, & t i t_{f_{1}} \end{cases}$$

Тут $a_{t_{f0}}$ і $a_{t_{f1}}$ – лінійні коефіцієнти теплового розширення у температурних діапазонах $t < t_{f0}$ та t і t_{f1} , відповідно.

Після охолодження в оболонці фіксується неоднорідний фазовий розподіл, який створює деякий залишковий напружений стан. Залишковий відсотковий вміст *b* - фази у титановому сплаві оболонки після охолодження описуємо формулою [8]

$$\mathbf{x}(t) = \begin{bmatrix} \mathbf{x}_{0}, & t < t_{f0} \\ \mathbf{x}_{res_{1}} - \mathbf{x}_{0} \\ t_{f1} - t_{f0} \\ \mathbf{x}_{res_{1}}, & t \neq t_{f1} \\ \mathbf{x}_{res_{1}}, & t \neq t_{f1} \end{bmatrix} t + \frac{\mathbf{x}_{0} t_{f1} - \mathbf{x}_{res_{1}} t_{f0}}{t_{f1} - t_{f0}}, \quad t_{f0} \mathbf{J} \ t < t_{f1}, \tag{7}$$

де x_{res_1} – залишковий відсотковий вміст b - фази у титановому сплаві при температурі завершення фазових перетворень t_{f1} . У цьому випадку зміну об'єму визначають так [8]:

$$e^{(X)} = 3 \prod_{x_0}^{x_{rest_1}} b_x \, dx \, . \tag{8}$$

Тут x_{rest_1} – залишковий відсотковий вміст *b* - фази у титановому сплаві, який відповідає максимальній температурі локального поля температурної витримки t_1 .

З урахуванням виписаних вище положень для визначення тимчасового і залишкового напружено-деформованого стану осесиметричної титанової оболонки використовуємо математичне формулювання статичної задачі теорії пружності у вигляді варіаційного принципу Лагранжа в зручній для чисельної реалізації матрично-векторній формі [11, 14, 25, 26]. З цією метою введемо вектори переміщень $\{u\} = (u_r, u_z)^T$, деформацій $\{e\} = (e_r, e_j, e_z, 2e_{rz})^T$ та напружень $\{s\} = (s_r, s_i, s_z, s_{rz})^T$. Тоді запишемо співвідношення Коші

$$\{e\} = [B] \{u\};$$
(9)

рівняння рівноваги

$$[B]^{T} \{s\} = 0; (10)$$

рівняння стану

$$\{s\} = [D](\{e\} - \{e^{(V)}\}) ; \qquad (11)$$

і крайові умови

$$[A]^{T} \{s\} = 0, \text{ при } (r = r_{1}, z \text{ O}[z_{0}, z_{1}]), (r \text{ O}[r_{0}, r_{1}], z = z_{1}),$$
(12)

де *V* = *T*, X – індекси для тимчасових (температурних) і залишкових (структурних) деформацій відповідно [2],

$$[B] = \begin{array}{cccc} \overset{\breve{\mathbf{H}}}{\underset{\mathbf{K}}{\mathbf{K}}} & \frac{1}{r} & 0 & \frac{\P}{\P z} \overset{T}{\underset{\mathbf{b}}{\mathbf{b}}} \\ \overset{\breve{\mathbf{K}}}{\underset{\mathbf{I}}{\mathbf{K}}} & 0 & 0 & \frac{\P}{\P z} & \frac{\P}{\mathfrak{b}} \\ \overset{\breve{\mathbf{K}}}{\underset{\mathbf{I}}{\mathbf{K}}} & 0 & 0 & \frac{\P}{\P z} & \frac{\P}{\P r} \overset{\breve{\mathbf{b}}}{\underset{\mathbf{b}}{\mathbf{b}}} \end{array}$$
(13)

матриця геометричних співвідношень;

$$[D] = \frac{E}{(1+n)(1-2n)} \begin{bmatrix} M & -n & n & n & n & \frac{11}{5} \\ K & n & n & 1-n & n & \frac{5}{5} \\ K & 0 & 0 & 0 & (1-2n)/2 \\ K & n & 1-n & n & 0 & \frac{5}{5} \end{bmatrix}$$
(14)

матриця пружних сталих;

$$[A] = \overset{\breve{h}_{r}}{\underset{K}{K}} \begin{array}{cccc} 0 & 0 & n_{z} \overset{T}{\underset{L}{\Sigma}} \\ \overset{K}{\underset{K}{M}} & 0 & n_{z} & n_{r} \overset{L}{\underset{M}{\Sigma}} \end{array},$$
(15)

матриця напрямних косинусів, записані з урахуванням осьової симетрії задачі.

Згідно з варіаційним принципом Лагранжа [14] переміщення, які відповідають стану рівноваги, визначають з умови мінімуму функціонала

$$L(u) = p_{\mathbf{T}} \{u\}^{T} [B]^{T} [D] [B] \{u\} r dr - 2p_{\mathbf{T}} [B]^{T} [D] \{e^{(V)}\} r dr , \qquad (16)$$

на множині

$$W_{2} = \left\{ \left\{ u \right\} = \left\{ u_{r}, u_{z} \right\}^{T}; (u_{r} = 0, r = 0, z \text{ O}[z_{0}, z_{1}]), (u_{z} = 0, r \text{ O}[r_{0}, r_{1}], z = 0) \right\}. (17)$$

За відомими переміщеннями деформації та напруження в кожній точці оболонки визначаємо за співвідношеннями (9) та (11).

У разі визначення оптимального за напруженнями осесиметричного поля температурної витримки титанової оболонки обертання у діапазоні температур фазового переходу матеріалу за критерій оптимізації приймаємо мінімум функціонала енергії залишкових пружних деформацій оболонки [7]

$$F = \frac{1}{2E} \prod_{W} \left(s_z^2 + s_j^2 - 2ns_z s_j \right) dW.$$
(18)

Приймаємо, що залишкові напруження, що утворюються в оболонці після охолодження, визначаються неоднорідним фазовим розподілом. Тому ми оптимізуємо фазовий розподіл в оболонці, а потім визначаємо з (7) температурне поле, що зумовлює цей фазовий розподіл. Так формулюється задача про визначення оптимального фазового розподілу у матеріалі, що відповідає локальному однорідному за товщиною поля температурної витримки. Задачу розв'язують з такими граничними умовами:

$$x(\pm z_0) = x_{f0}, \quad x(0) = x_{rest1}, \frac{dx(\pm z_0)}{dz} = 0.$$
 (19)

Оптимальний фазовий розподіл є розв'язком задачі про визначення екстремуму функціонала пружної енергії (18), що задовольняє умови (19).

Методика розв'язування. В основу методики покладено підхід, який ґрунтується на використанні методу скінченних елементів для апроксимації шуканих розв'язків за просторовими змінними [25].

На першому етапі внаслідок використання стандартної процедури методу скінчених елементів задачу визначення тимчасового та залишкового напруженого стану (9)–(12) зводимо до системи лінійних алгебричних рівнянь

$$\underbrace{\mathsf{M}}_{\mathsf{H}} \underbrace{\mathsf{M}}_{\mathsf{h}} \underbrace{\mathsf{M}}_{h} \underbrace{\mathsf{M}}_{$$

стосовно значень переміщень $\{u_h\}$ у вузлах скінчено-елементного поділу області, де матриця реакцій $\stackrel{\text{W}}{\text{л}} \stackrel{\text{U}}{\text{ь}}$ і вектор навантаження $\{b\}$ визначають шляхом підсумовування відповідних матричних характеристик

$$\overset{\mathbf{H}}{\mathbf{H}} \overset{(e)}{\overset{\mathbf{H}}{\mathbf{H}}} = \underset{\mathbf{W}^{(e)}}{\mathbf{T}} \overset{\mathbf{H}}{\overset{\mathbf{H}}{\mathbf{H}}} \overset{\mathbf{T}}{\overset{\mathbf{H}}{\mathbf{H}}} \overset{\mathbf{T}}{\overset{\mathbf{H}}{\mathbf{H}}} \overset{\mathbf{T}}{\overset{\mathbf{H}}{\mathbf{H}}} \overset{\mathbf{H}}{\overset{\mathbf{H}}{\mathbf{H}}} \overset{\mathbf{H}}{\overset{\mathbf{H}}}} \overset{\mathbf{H}}{\overset{\mathbf{H}}}} \overset{\mathbf{H}}{\overset{\mathbf{H}}}} \overset{\mathbf{H}}{\overset{\mathbf{H}}}} \overset{\mathbf{$$

$$\left\{b^{(e)}\right\} = \prod_{\mathbf{W}^{(e)}} \mathsf{W} \underset{\mathsf{h} \mathsf{L} \mathsf{I}}{\mathsf{W}} \underset{\mathsf{h} \mathsf{L} \mathsf{I}}{\mathsf{H}} \underset{\mathsf{H}}{\mathsf{H}} \underset{\mathsf{I}}{\mathsf{H}} \underset{\mathsf{h} \mathsf{I}}{\mathsf{H}} \underset{\mathsf{H}}{\mathsf{H}} \underset{\mathsf{h} \mathsf{I}}{\mathsf{H}} \mathsf{H} \underset{\mathsf{h} \mathsf{I}}{\mathsf{H}} \mathsf{H} \mathsf{H} \mathsf{W}$$
(22)

окремих скінченних елементів, де $\overset{W}{II}$ — матриці функцій форми; $w_2^{(e)}$ — область скінченого елемента.

На підставі запропонованої методики створено відповідне програмне забезпечення та розв'язано конкретні задачі.

Числові дослідження. Як приклад розглянемо вільну від силового навантаження циліндричну оболонку з титанового сплаву ВТ - 23 за дії локального кільцевого осесиметричного поля температурної витримки. Максимальна температура t_1 у центрі зони температурної витримки становить 720°С, температура навколишнього середовища t_0 - 20°С. Цей сплав має такий хімічний склад: Al - 5,4%, Mo - 1,9%, V - 4.7%, Cr - 1,2%, Fe - 0,5%, Ti - 86,3%. У рівноважному стані при температурі t_0 = 20°С сплав містить 80% a - фази (гексагональна щільноупакована 'ратка) і 20% b - фази (об'ємноцентрована кубічна 'ратка). Як показано в [8, 9], різниця питомих об'ємів між a і b фазами є приблизно 2,5%, що значно впливає на розподіл і величину тимчасових і залишкових напружень.

Числові дослідження проводили для параметрів [21] $r_0 = 0,024$ м; $r_1 = 0,025$ м; $z_0 = 0,028$ м; $z_1 = 0,05$ м; $c = 0,523^{\circ}$ Дж/(К моль); $r = 4540^{\circ}$ кг/м³; $t_{f0} = 520^{\circ}$ С, $t_{f1} = 920^{\circ}$ С, $t_1 = 720^{\circ}$ С, E = 106 МПа; n = 0,3, $a_{t_{f0}} = 0,8$ ЧІ0⁻⁵°1/С, $a_{t_{f1}} = 0,8$ ЧІ0⁻⁵°1/С; $b_x = -0,013$; $x_{rest_1} = 38\%$; $x_{res_1} = 60\%$.

На рис. 2 зображено графік лінеаризованої функції повноти фазових перетворень x(t) при рівномірному нагріванні (крива 1) і експериментально визначена залежність відносного вмісту залишкової b - фази в матеріалі після охолодження (крива 2). На рис. З зображено залежність узагальненого лінійного коефіцієнта теплового розширення від температури, який враховує структурну та температурну дилатацію у титановій оболонці при нагріванні.

На рис. 4 зображено початковий розподіл температури в оболонці (крива 1) і розподіл температури, який відповідає оптимальному розподілу фаз (крива 2).

На рис. 5 показано залишковий розподіл *b* - фази, який відповідає початковому розподілу температури в оболонці (крива 1) і оптимальний залишковий розподіл *b* - фази після охолодження (крива 2), відповідно.

На рис. 6 зображено розподіл тимчасових осьових напружень, який відповідає початковому розподілу температури в оболонці і залишкових осьових напружень після охолодження (крива 2).

На рис. 7 показано розподіл оптимальних тимчасових осьових напружень під час температурної витримки (крива 1) і оптимальних залишкових осьових напружень після охолодження (крива 2).

Задачу оптимізації розв'язували методом Хука-Джівса [28]. Залишковий фазовий розподіл, який зображений на рис. 5, крива 1, був прийнятий за початкове наближення для визначення оптимального, який спричиняє мінімальні залишкові напруження. Мінімізація функціонала (21) відбувалася шляхом варіювання залишкового фазового розподілу. Мінімізацію проводили доти, доки його n -те наближення не відрізнялося більше ніж на 1 % від попереднього.

При оптимізації функціонала (21) за залишковими напруженнями початкове значення функціонала було визначено за допомогою залишкового фазового розподілу (рис. 5, крива 1), який виник після температурної витримки температурним полем (рис. 4, крива 1). Оптимальний залишковий фазовий розподіл (рис. 5, крива 2) було визначено методом Хука-Джівса. Залишкові осьові напруження на зовнішній поверхні оболонки (криві 2 на рис. 7) відповідають цьому оптимальному фазовому розподіл, був визначений за допомогою залежності x = x(t), яка зображена на рис. 2, крива 2. Знайдене тут температурне поле мінімізує залишкові напруження у циліндрі, які з'явилися після цього режиму температурної витримки.

Висновки. Розроблено методику розв'язання задач визначення й оптимізації фазового складу та залишкового структурного напруженого стану титанових сплавів за умов локального поля температурної витримки на підставі методу скінчених елементів.

У рамках запропонованої методики виконали розрахунок і оптимізацію тимчасових і залишкових (структурних) напружень в осесиметричній оболонці за умов локального поля температурної витримки.

Список використаної літератури

- Бурак Я.И. О применении методов вариационного исчисления к решению задач об оптимальном нагреве тонких оболочек / Я.И. Бурак, Э.И. Григолюк, Я.С. Подстригач. В кн.: Тр. VII Всесоюз. конф. по теории оболочек и пластин. – М.: Наука, 1970. – С. 100–108.
- Беленов Ф.С. Кинетика закалки и определение временных закалочных напряжений / Ф.С. Беленов // Журнал технической физики. – Т. 22, Вып. 1. – 1952. – С. 111–120.
- 3. Василик А.В.. Теплові розрахунки при зварюванні / А.В. Василик, Я.А. Дрогомирецький, Я.А. Криль. – Івано-Франківськ: Факел, 2004.
- 4. Гачкевич О.Р. Математичне моделювання і аналіз термомеханічної поведінки твердих тіл в умовах фазових перетворень / О.Р. Гачкевич, В.І. Асташкін // Прикладні проблеми механіки і математики. Львів, 2003. №1. С. 68–72.
- 5. Григолюк Э.И. Об одной экстремальной задаче термоупругости для бесконечной цилиндрической оболочки / Э.И. Григолюк, Я.И. Бурак, Я.С. Подстригач. Докл. АН СССР. 1967. 174, №3. С. 534–537.
- *Григолюк* Э.И. Постановка и решение некоторых вариационных задач термоупругости тонких оболочек применительно к выбору оптимальных режимов местной термообработки / Э.И. Григолюк, Я.И. Бурак, Я.С. Подстригач. – Журн. прикл. механики и тех. физики. – 1968. – №4. – С. 47– 54.
- 7. Григолюк Э.И. Оптимизация нагрева оболочек и пластин / Э.И. Григолюк, Я.С. Подстригач, Я.И. Бурак. – К: Наук. думка, 1979.

- Ильин А.А. Объемные изменения, происходящие в (α-β) титановых сплавах при полиморфном превращении / А.А. Ильин, М.Ю. Коллеров, В.В. Засыпкин, В.И. Майстров // Металловедение и термическая обработка. – 1986. – №1. – С. 52–55.
- 9. *Ильин А.А.* Механизм и кинетика фазовых и структурных превращений в титановых сплавах / А.А. Ильин. М.: Наука, 1994.
- Зайффарт П. Расчетные модели для оценки механических свойств металла ЗТВ при сварке низколегиронанных сталей / П. Зайффарт, О.Г. Касаткин // Микроструктура и свойства. – 2002. – № 2. – С. 103–106.
- 11. Зенкевич О. Конечные элементы и аппроксимация / О. Зенкевич, К. Морган. М.: Мир, 1986.
- 12. Коваленко А.Д. Основы термоупругости / А.Д. Коваленко. К: Наук. думка, 1970.
- Ломакин В.А. Статистические задачи механики твердых деформируемых тел / В.А. Ломакин. – М.: Наука, 1970.
- 14. Метод конечных элементов в механике твердых тел. / Под ред. Сахарова А.С., Альтенбаха И. К.: Вища школа, 1982.
- 15. *Підстригач Я.С.* Основи теорії оптимальних режимів локальної термообробки зварних швів / Я.С. Підстригач // Вісн. АН УРСР 1969. №5. С. 37–43.
- Подстригач Я.С. О влиянии профиля температурного поля на релаксацию остаточных напряжений при локальном нагреве кольцевых сварных швов / Я.С. Подстригач, З.И. Горячева, Я.И. Бурак, Л.П. Беседина, Л.А. Козакова, В.А. Каныгин // Физ.-хим. механика материалов. 1970. №1. С. 42–45.
- 17. Подстригач Я.С. Термоупругость тел неоднородной структуры / Я.С. Подстригач, В.А. Ломакин, Ю.М. Коляно. М.: Наука, 1984.
- Прохоров Н.Н. Физические процессы в металлах при сварке / Н.Н. Прохоров. Т.П. Внутренние напряжения, деформации и фазовые превращения. – М.: Металлургия, 1976.
- 19. *Рыкалин Н.Н.* Тепловые процессы при сварке плавлением / Н.Н. Рыкалин, Н.Н. Рыкалин, А.И. Пугин. М.: Профиздат, 1959.
- 20. *Рыкалин Н.Н.* Тепловые основы сваривания / Н.Н. Рыкалин. М.: Из-во АН СССР, 1947. Ч. 1.
- 21. Таблицы физических величин. / Под ред. И.К. Кикоина. М.: Атомиздат, 1976.
- Monkawa M. Analyses of structural and stress changes during quenching and lowtemperature-temping of steels / M. Monkawa, S. Nagaki and T. Inine // The Journal of Society Material Science, Japan, 1980, Vol. 29. N 327. P. 1173–1179.

- 23. *Budz S.* Optimization of local heating for a spherical shell made of titanium alloy BT-23 / S. Budz, W. Astashkin, I. Budz and I. Chupyk. Archives of mechanics, Warszawa, 1998, Vol. 50. N 1. P. 113–126.
- 24. *Hachkevych A*. A mathematical simulation of high temperature induction heating of electroconductive solids / A. Hachkevych, B. Drobenko, T. Kournyts'kyi // International Journal of Heat and Mass Transfer, 50 (2007). P. 616–624.
- 25. Zienkiewicz O.C. Finite Element Method: V. 1. The Basis. / O.C. Zienkiewicz, R.L. Taylor. London: Butterworth Heinemann, 2000.
- Zienkiewicz O.C. A unified set of single step algorithm. Part 1: General formulation and applications / O.C. Zienkiewicz, W.L. Wood, N.W. Nine // Int. J. Numer. Meth. Eng. – 1984. 20. – P. 1529–1552.
- 27. Коваль Ю.Н. Деформационные и релаксационные явления при превращениях мартенситного типа / Ю.Н. Коваль, В.А. Лободюк. К.: Наук. думка, 2010.
- 28. *Химмельблау*. Прикладное нелинейное программирование / Химмельблау. М.: Мир, 1975.

ОПТИМИЗАЦИЯ ЛОКАЛЬНОГО ПОЛЯ ТЕМПЕРАТУРНОЙ ВЫДЕРЖКИ ОСЕСИММЕТРИЧНОЙ ОБОЛОЧКИ ИЗ ТИТАНОВОГО СПЛАВА С УЧЕТОМ ПОЛИМОРФНЫХ ПРЕВРАЩЕНИЙ

Игорь ЧУПИК

Институт прикладных проблем механики и математики им. Я.С Подстригача НАН Украины, vл. Havчная, 36 79060 Львов, Украина

На основании метода конечных элементов и метода Хука-Дживса разработано числовую методику оптимизации локального поля температурной выдержки осесимметричной оболочки, которая изготовлена из титанового сплава. Учтено явление полиморфного превращения при изменении температуры.

Ключевые слова: оптимизация, термомеханические процессы, фазовые превращения, остаточные напряжения.

OPTIMIZATION OF LOKAL TEMPERATURE CURING FOR AXIS-SYMMETRIC SHELLS MADE FROM TITANIUM ALLOY TAKING INTO ACCOUNT POLIMORPHIC TRANSITION

Ihor CHUPYK

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, Naukova Str., 3b 79060 Lviv, Ukraine

Numerical optimization method of local temperature curing for axis-symmetric shells made of titanium alloy based on finite element and Huke-Jives method is developed. The phenomena of polymorphic transition during temperature changing is taken into account.

Key words: optimization, thermo-mechanical processes, phase transitions, residual stresses.

Стаття надійшла до редколегії 22.02.2012 Прийнята до друку 31.05.2012