УДК: 539.3

НЕСТАЦІОНАРНЕ ТЕМПЕРАТУРНЕ ПОЛЕ В ПІВСМУЗІ З ПОКРИТТЯМ ПРИ ТОРЦЬОВОМУ НАГРІВАННІ

Ольга ТУРЧИН

Національний лісотехнічний університет України, вул. Генерала Чупринки, 103 79057 Львів, Україна

З використанням інтегрального перетворення Лагерра та cos -перетворення Фур'є одержано розв'язок нестаціонарної задачі теплопровідності для композитної півсмуги, що нагрівається по бічній поверхні. Подано числовий аналіз температурного поля в симетричній півсмузі з покриттям при різних відношеннях теплофізичних характеристик покриття та основи.

Ключові слова: нестаціонарна теплопровідність, композитна півсмуга, перетворення Лагерра.

Практично всі елементи сучасної техніки, які залежно від призначення можуть зазнавати теплових чи силових навантажень різного типу, є неоднорідними за своїми властивостями. З одного боку, використання неоднорідності пов'язане з неможливістю задовольнити високі експлуатаційні вимоги, які тепер ставлять до матеріалів і конструкцій, лише за допомогою однорідних структур, а з іншого — з хімічними та фізичними процесами, що відбуваються під час їхнього виготовлення та експлуатації [4].

Основи теорії та методи розв'язування задач теплопровідності для тіл з різними тонкими неоднорідностями викладені у працях багатьох авторів, детальний огляд яких можна знайти, зокрема в [3]. Якщо опис неоднорідності з використанням математичних спрощень призводить до значних похибок, то використовують просторові формулювання. Цей підхід, як відомо [3, 7], ґрунтується на розгляді відповідних вихідних рівнянь для кожного елемента композитного тіла з подальшим узгодженням розв'язків через умови спряження елементів.

Мета нашої праці — розробити ефективну методику дослідження перехідних температурних полів у півбезмежних шаруватих середовищах при значній відмінності теплофізичних властивостей складових.

У зв'язку з цим розглянемо півсмугу $0 \le x < \infty$, $0 \le y \le H$, яка складається з основи $(h_1 \le y \le h_1 + h_2)$ та двох зовнішніх покрить товщиною h_1 і h_3 , $(h_1 + h_2 + h_3 = H)$ з відмінними від основи коефіцієнтами теплопровідності $\lambda_T^{(i)}$ та температуропровідності $a_T^{(i)}$. Починаючи з моменту часу t = 0, композитна півсмуга нагрівається по торцю x = 0 потоком тепла інтенсивності q(t), а на граничних поверхнях y = 0, y = H відбувається теплообмін за законом Ньютона з зовнішнім середовищем нульової температури.

[©] Турчин О., 2012

Уведемо в розгляд безрозмірні змінні та величини $\alpha = \mathbf{x} / \mathbf{H}$, $\gamma = \mathbf{y} / \mathbf{H}$, $\tau = \mathbf{a}_T^{(2)} \mathbf{t} / \mathbf{H}^2$, $\gamma_1 = \mathbf{h}_1 / \mathbf{H}$, $\gamma_2 = (\mathbf{h}_1 + \mathbf{h}_2) / \mathbf{H}$, $\mathcal{U}(\tau) = \mathbf{q}(\mathbf{H}^2 \tau / \mathbf{a}_T^{(2)})\mathbf{H} / \lambda_T^{(2)}$, $\mathbf{B}\mathbf{i}_i = \kappa_i \mathbf{H} / \lambda_T^{(i)}$, $\mathcal{U}_T^{(i)} = \mathbf{a}_T^{(2)} / \mathbf{a}_T^{(i)}$, $\mathcal{U}_T^{(i)} = \lambda_T^{(i)} / \lambda_T^{(2)}$, де κ_i – коефіцієнти тепловіддачі з поверхні $\mathbf{y} = \mathbf{0}$ ($\mathbf{i} = \mathbf{1}$) та з поверхні $\mathbf{y} = \mathbf{H}$ ($\mathbf{i} = \mathbf{3}$), $\mathbf{a}_T^{(2)}$ і $\lambda_T^{(2)}$ – теплофізичні характеристики основи.

Вважаючи, що між основою та покриттями виконуються умови ідеального теплового контакту, температурне поле $T^{(i)}(\alpha, \gamma, \tau)$ в основі (i = 2), верхньому (i = 1) та нижньому (i = 3) покритті визначимо з рівнянь нестаціонарної теплопровідності

$$\partial_{\alpha\alpha}^{2} \boldsymbol{T}^{(\boldsymbol{i})} + \partial_{\gamma\gamma}^{2} \boldsymbol{T}^{(\boldsymbol{i})} = \boldsymbol{a}_{T}^{(\boldsymbol{i})} \partial_{\tau} \boldsymbol{T}^{(\boldsymbol{i})}, \quad \boldsymbol{i} = \overline{1,3}; \qquad (1)$$

за нульових початкових умов

$$T^{(i)}(\alpha, \gamma, 0) = 0, \quad i = 1, 3$$
, (2)

крайових умов

$$\partial_{\gamma} T^{(1)} - B i_1 T^{(1)} = 0, \quad \gamma = 0; \quad \partial_{\gamma} T^{(3)} + B i_3 T^{(3)} = 0, \quad \gamma = 1$$
 (4)

та умов спряження основи та покрить

$$\boldsymbol{T}^{(i)} = \boldsymbol{T}^{(i+1)}; \quad \boldsymbol{\chi}_{\boldsymbol{T}}^{(i)} \partial_{\gamma} \boldsymbol{T}^{(i)} = \boldsymbol{\chi}_{\boldsymbol{T}}^{(i+1)} \partial_{\gamma} \boldsymbol{T}^{(i+1)}, \quad \gamma = \gamma_{i}, \quad \boldsymbol{i} = \overline{1, 2}.$$
(5)

До рівнянь (1), крайових умов (4) та умов спряження (5) застосуємо інтегральне перетворення Лагерра [2] за часовою змінною τ та косинус-перетворення Фур'є за змінною α [5]. У підсумку, врахувавши початкові умови (2) та умови на торці півсмуги (3), прийдемо до послідовності крайових задач

$$\partial_{\alpha\alpha}^{2} \bar{T}_{n}^{(i)} - (\xi^{2} + \lambda \mathbf{x}_{T}^{(i)}) \bar{T}_{n}^{(i)} = \lambda \mathbf{x}_{T}^{(i)} \sum_{m=0}^{n-1} \bar{T}_{m}^{(i)} - \mathbf{x}_{n}^{(i)}, n = 0, 1, 2, \mathbf{K}, i = 1, 2, 3, (6)$$

де
$$\overline{T}_{\mathbf{n}}^{(i)}(\xi,\gamma) = \int_{0}^{\infty} \left[\int_{0}^{\infty} \exp(-\lambda\tau) T^{(i)}(\alpha,\gamma,\tau) L_{\mathbf{n}}(\lambda\tau) d\tau \right] \cos(\xi\alpha) d\alpha$$
 – трансформанти

за Лагерром і Фур'є,
$$\boldsymbol{k}_{n}^{(i)} = \boldsymbol{k}_{n} / \boldsymbol{\lambda}_{T}^{(i)}$$
, $\boldsymbol{k}_{n} = \int_{0}^{\infty} \exp(-\lambda \tau) \boldsymbol{k}_{T}(\tau) \boldsymbol{L}_{n}(\lambda \tau) \boldsymbol{d} \tau$ –

трансформанта за Лагерром, $L_n(\lambda \tau)$ — поліноми Лагерра, λ — масштабний множник [6].

Загальний розв'язок послідовності (6) подамо у вигляді

$$\bar{T}_{n}^{(i)}(\xi,\gamma) = \sum_{j=0}^{n} \left[A_{n-j}^{(i)}(\xi) G_{j}^{(i)}(\xi,\gamma) + B_{n-j}^{(i)}(\xi) W_{j}^{(i)}(\xi,\gamma) \right] + Q_{n}^{(i)} , \qquad (7)$$

де $G_j^{(i)}(\xi,\gamma)$, $W_j^{(i)}(\xi,\gamma)$ — лінійно незалежні фундаментальні розв'язки однорідних послідовностей

$$d_{\gamma\gamma}^{2}G_{j}^{(i)} - (\xi^{2} + \lambda \mathbf{a}_{j})G_{j}^{(i)} = \lambda \mathbf{a}_{T}^{(i)} \sum_{m=0}^{j-1} G_{m}^{(i)};$$

$$d_{\gamma\gamma}^{2}W_{j}^{(i)} - (\xi^{2} + \lambda \mathbf{a}_{j})W_{j}^{(i)} = \lambda \mathbf{a}_{T}^{(i)} \sum_{m=0}^{j-1} W_{m}^{(i)},$$
(8)

а $Q_n^{(i)}$ — частковий розв'язок неоднорідної послідовності, яка, враховуючи, що $Q_n^{(i)}$ не залежить від змінної γ , набуває вигляду рекурентного рівняння

$$Q_{n}^{(i)} = \frac{1}{\xi^{2} + \lambda \mathbf{a}_{T}^{(i)}} \left[\mathbf{a}_{n}^{(i)} - \lambda \mathbf{a}_{T}^{(i)} \sum_{m=0}^{n-1} Q_{m}^{(i)} \right], \quad \mathbf{n} = 0, 1, 2, \mathbf{K}, \quad \mathbf{i} = 1, 2, 3, \quad (9)$$

розв'язок якого з використанням методу математичної індукції одержано у вигляді

$$Q_{n}^{(i)} = \frac{1}{\xi^{2} + \lambda g_{T}^{(i)}} \left\{ g_{n}^{(i)} - \frac{\lambda g_{T}^{(i)}}{\xi^{2} + \lambda g_{T}^{(i)}} \sum_{k=0}^{n-1} \left(\frac{\xi^{2}}{\xi^{2} + \lambda g_{T}^{(i)}} \right)^{n-1-k} g_{k}^{(i)} \right\}.$$
 (10)

Загальні розв'язки однорідних послідовностей (6) згідно з методом невизначених коефіцієнтів можна подати як

$$G_{j}^{(i)}(\xi,\gamma) = \exp\left(-\omega_{i}\gamma\right) \sum_{k=0}^{j} a_{j,k}^{(i)} \frac{(\omega_{i}\gamma)^{k}}{k!}, W_{j}^{(i)}(\xi,\gamma) = \exp\left(\omega_{i}\gamma\right) \sum_{k=0}^{j} a_{j,k}^{(i)} \frac{(-\omega_{i}\gamma)^{k}}{k!} , (11)$$

де введено позначення $\omega_{\pmb{i}}=\sqrt{\xi^2+\lambda_{\pmb{i}}^{\pmb{j}(\pmb{i})}}$.

Безпосередня підстановка розв'язків (11) у послідовності (12) призводить до рекурентних співвідношень на $\boldsymbol{a}_{j,k}^{(i)}$ [6]

$$a_{j,k+1}^{(i)} = 0.5 \left(a_{j,k+2}^{(i)} - \frac{\lambda a_{0}}{\omega_{i}^{2}} \sum_{m=k}^{j-1} a_{m,k}^{(i)} \right)$$
(12)

при довільних $a_{i,0}^{(i)}$.

Для знаходження невідомих $A_k^{(i)}(\xi)$ та $B_k^{(i)}(\xi)$, які входять до розв'язку (7), використаємо крайові умови (4) та умови спряження (5), які після застосування до них інтегральних перетворень Лагерра та Фур'є набудуть вигляду

$$d_{\gamma} \overline{T}_{n}^{(1)} - B i_{1} \overline{T}_{n}^{(1)} = 0, \quad \gamma = 0; \quad d_{\gamma} \overline{T}_{n}^{(3)} + B i_{3} \overline{T}_{n}^{(3)} = 0, \quad \gamma = 1$$
 (13)

$$\overline{T}_{n}^{(i)} = \overline{T}_{n}^{(i+1)}; \quad \overset{\text{(i)}}{T} d_{\gamma} \overline{T}_{n}^{(i)} = \overset{\text{(i)}}{T} d_{\gamma} \overline{T}_{n}^{(i+1)}, \quad \gamma = \gamma_{i}, \quad i = 1, 2, 3.$$
(14)

Приймемо в рекурентних співвідношеннях (12) $\boldsymbol{a}_{0,0}^{(j)}=1,\, \boldsymbol{a}_{j,0}^{(j)}=0,\, \boldsymbol{j}=1,2,\mathbf{K}$, тоді

$$G_0^{(i)}(\xi,\gamma) = \exp(-\omega_i\gamma), \ \boldsymbol{d}_{\gamma}G_0^{(i)}(\xi,\gamma) = -\omega_i \exp(-\omega_i\gamma),$$
$$W_0^{(i)}(\xi,\gamma) = \exp(\omega_i\gamma), \ \boldsymbol{d}_{\gamma}W_0^{(i)}(\xi,\gamma) = \omega_i \exp(\omega_i\gamma)$$
(15)

та розглянемо, враховуючи (7), першу умову (13)

$$\sum_{j=0}^{n} \left[A_{n-j}^{(1)}(\xi) \left(d_{\gamma} G_{j}^{(1)}(\xi, 0) - B i_{l} G_{j}^{(1)}(\xi, 0) \right) + B_{n-j}^{(1)}(\xi) \left(d_{\gamma} W_{j}^{(1)}(\xi, 0) - B i_{l} W_{j}^{(1)}(\xi, 0) \right) \right] + Q_{n}^{(1)} = 0$$

Залишимо в лівій частині цих співвідношень невідомі з індексом \boldsymbol{n} , а решту перенесемо в праву частину. Враховуючи подання (15), одержимо рівняння, яке пов'язує коефіцієнти $A_n^{(1)}(\xi)$ та $B_n^{(1)}(\xi)$ з коефіцієнтами, що мають індекси $\boldsymbol{k} = 1, 2, \mathbf{K}, \boldsymbol{n} - 1$ та відомими $\boldsymbol{Q}_n^{(1)}$.

$$\begin{aligned} \boldsymbol{A}_{\boldsymbol{n}}^{(1)}(\xi) \big(-\omega_{1} - \boldsymbol{B}\boldsymbol{i}_{1} \big) + \boldsymbol{B}_{\boldsymbol{n}}^{(1)}(\xi) \big(\omega_{1} - \boldsymbol{B}\boldsymbol{i}_{1} \big) &= -\sum_{\boldsymbol{j}=1}^{\boldsymbol{n}} \Big[\boldsymbol{A}_{\boldsymbol{n}-\boldsymbol{j}}^{(1)}(\xi) \Big(\boldsymbol{d}_{\gamma} \boldsymbol{G}_{\boldsymbol{j}}^{(1)}(\xi, 0) - \boldsymbol{B}\boldsymbol{i}_{1} \boldsymbol{G}_{\boldsymbol{j}}^{(1)}(\xi, 0) \Big) + \\ &+ \boldsymbol{B}_{\boldsymbol{n}-\boldsymbol{j}}^{(1)}(\xi) \Big(\boldsymbol{d}_{\gamma} \boldsymbol{W}_{\boldsymbol{j}}^{(1)}(\xi, 0) - \boldsymbol{B}\boldsymbol{i}_{1} \boldsymbol{W}_{\boldsymbol{j}}^{(1)}(\xi, 0) \Big) \Big] - \boldsymbol{Q}_{\boldsymbol{n}}^{(1)}. \end{aligned}$$

Провівши аналогічні викладення з другою крайовою умовою (13) та умовами спряження (14), отримаємо послідовність систем рівнянь, яку можна записати у матричному вигляді

(b _{1,1}	b _{1,2}	0	0	0	0)	$\left(\boldsymbol{A}_{\boldsymbol{n}}^{(1)} \right)$	$\left(\boldsymbol{c}_{\boldsymbol{n},1} \right)$		
b _{2,1}	b _{2,2}	b _{2,3}	b _{2,4}	0	0	$B_{n}^{(1)}$	<i>c</i> _{<i>n</i>,2}		
b _{3,1}	b _{3,2}	b _{3,3}	b _{3,4}	0	0	$A_{n}^{(2)}$	<i>c</i> _{<i>n</i>,3}	(1	٤١
0	0	b _{4,3}	b _{4,4}	$b_{4,5}$	b _{4,6}	$B_{n}^{(2)}$	$ = c_{n,4} $, (1	0)
0	0	b _{5,3}	b _{5,4}	b _{5,5}	b _{5,6}	$A_{n}^{(3)}$	c _{n,5}		
0	0	0	0	b _{6,5}	b _{6,6})	$B_n^{(3)}$	$\left \left(c_{n,6} \right) \right $		

де

$$\begin{split} \mathbf{b}_{1,1} &= -\omega_1 - \mathbf{Bi}_1; \ \mathbf{b}_{1,2} = \omega_1 - \mathbf{Bi}_1; \ \mathbf{b}_{6,5} = -\omega_3 + \mathbf{Bi}_3; \ \mathbf{b}_{6,6} = \omega_3 + \mathbf{Bi}_3; \\ \mathbf{b}_{2i,2i-1} &= \exp(-\omega_i\gamma_i); \ \mathbf{b}_{2i,2i} = \exp(\omega_i\gamma_i); \ \mathbf{b}_{2i,2i+1} = -\exp(-\omega_{i+1}\gamma_i); \\ \mathbf{b}_{2i,2i+2} &= -\exp(\omega_{i+1}\gamma_i); \ \mathbf{b}_{2i+1,2i-1} = -\overset{W}{T}^0 \omega_i \exp(-\omega_i\gamma_i); \ \mathbf{b}_{2i+1,2i} = \overset{W}{T}^0 \omega_i \exp(\omega_i\gamma_i), \\ \mathbf{b}_{2i+1,2i+1} &= \overset{W}{T}^{i+1} \omega_{i+1} \exp(-\omega_{i+1}\gamma_i); \ \mathbf{b}_{2i,2i+2} = \overset{W}{T}^{i+1} \omega_{i+1} \exp(-\omega_{i+1}\gamma_i), \ \mathbf{i} = 1, 2. \\ &\mathbf{c}_{n,1} &= -\sum_{j=1}^{n} \left[\mathbf{A}_{n-j}^{(1)}(\xi) \left(\mathbf{d}_{\gamma} \mathbf{G}_{j}^{(1)}(\xi, 0) - \mathbf{Bi}_{1} \mathbf{G}_{j}^{(0)}(\xi, 0) \right) + \\ &+ \mathbf{B}_{n-j}^{(1)}(\xi) \left(\mathbf{d}_{\gamma} \mathbf{W}_{j}^{(1)}(\xi, 0) - \mathbf{Bi}_{1} \mathbf{W}_{j}^{(1)}(\xi, 0) \right) \right] - \mathbf{Q}_{n}^{(1)}, \\ &\mathbf{c}_{n,6} &= -\sum_{j=1}^{n} \left[\mathbf{A}_{n-j}^{(3)}(\xi) \left(\mathbf{d}_{\gamma} \mathbf{G}_{j}^{(3)}(\xi, 1) + \mathbf{Bi}_{3} \mathbf{G}_{j}^{(3)}(\xi, 1) \right) + \\ &+ \mathbf{B}_{n-j}^{(3)}(\xi) \left(\mathbf{d}_{\gamma} \mathbf{W}_{j}^{(1)}(\xi, 0) - \mathbf{Bi}_{1} \mathbf{W}_{j}^{(1)}(\xi, 0) \right) \right] - \mathbf{Q}_{n}^{(1)}, \\ &\mathbf{c}_{2i,n} &= -\sum_{j=1}^{n} \left[\mathbf{A}_{n-j}^{(i)}(\xi) \mathbf{G}_{j}^{(i)}(\xi, \gamma_i) + \mathbf{Bi}_{3} \mathbf{W}_{j}^{(3)}(\xi, 1) \right] \right]; \\ &\mathbf{c}_{2i,n} &= -\sum_{j=1}^{n} \left[\mathbf{A}_{n-j}^{(i)}(\xi) \mathbf{G}_{j}^{(i+1)}(\xi, \gamma_i) + \mathbf{B}_{n-j}^{(i+1)}(\xi) \mathbf{W}_{j}^{(i+1)}(\xi, \gamma_i) \right] \right] + \\ &+ \sum_{j=1}^{n} \left[\mathbf{A}_{n-j}^{(i)}(\xi) \mathbf{G}_{j}^{(i)}(\xi, \gamma_i) + \mathbf{B}_{n-j}^{(i)}(\xi) \mathbf{M}_{j}^{(0)}(\xi, \gamma_i) \right] \right] + \\ &+ \sum_{j=1}^{n} \left[\mathbf{A}_{n-j}^{(i)}(\xi) \mathbf{G}_{j}^{(i+1)}(\xi, \gamma_i) + \mathbf{B}_{n-j}^{(i)}(\xi) \mathbf{M}_{j}^{(i+1)}(\xi, \gamma_i) \right] \right] + \\ &+ \sum_{j=1}^{n} \left[\mathbf{A}_{n-j}^{(i+1)}(\xi) \mathbf{G}_{j}^{(i+1)}(\xi, \gamma_i) + \mathbf{B}_{n-j}^{(i)}(\xi) \mathbf{M}_{j}^{(i+1)}(\xi, \gamma_i) \right] \right] + \\ &+ \sum_{j=1}^{n} \left[\mathbf{A}_{n-j}^{(i+1)}(\xi) \mathbf{G}_{j}^{(i+1)}(\xi, \gamma_i) + \mathbf{B}_{n-j}^{(i+1)}(\xi) \mathbf{M}_{j}^{(i+1)}(\xi, \gamma_i) \right] \right] + \\ &+ \sum_{j=1}^{n} \left[\mathbf{A}_{n-j}^{(i+1)}(\xi) \mathbf{M}_{j}^{(i+1)}(\xi, \gamma_i) + \mathbf{B}_{n-j}^{(i+1)}(\xi) \mathbf{M}_{j}^{(i+1)}(\xi, \gamma_i) \right] \right]$$

Визначивши всі $A_n^{(i)}(\xi)$ та $B_n^{(i)}(\xi)$ з систем (16), остаточний розв'язок задачі подамо у вигляді

$$\boldsymbol{T}^{(\boldsymbol{i})}(\alpha,\gamma,\tau) = \lambda \frac{2}{\pi} \sum_{\boldsymbol{n}=0}^{\infty} \boldsymbol{L}_{\boldsymbol{n}}(\lambda\tau) \int_{0}^{\infty} \overline{\boldsymbol{T}}_{\boldsymbol{n}}^{(\boldsymbol{i})}(\xi,\gamma) \cos(\xi\alpha) \boldsymbol{d}\xi \,.$$
(17)

За формулою (17) проводили розрахунок температурного поля в півсмузі у випадку, коли інтенсивність потоку тепла на торці задається виразом $\Psi(\tau) = q^* (1 - \exp(-\tau_0 \tau))$, де q^* — величина, що має розмірність температури, а τ_0 визначає час виходу теплового навантаження на стаціонарне значення. Тоді $\Psi_n = \Psi^* \left[\delta_{0n} / \lambda - (\tau_0)^n / (\lambda + \tau_0)^{n+1} \right]$, де δ_{0n} символ Кронекера.

Теплофізичні властивості матеріалів, які використовують на практиці як покриття та основи, на які їх наносять, можуть значно відрізнятись [7, 8]. Ми при числових розрахунках розглядали фізично та геометрично симетричну композитну півсмугу: $\lambda_T^{(1)} = \lambda_T^{(3)}, \boldsymbol{a}_T^{(1)} = \boldsymbol{a}_T^{(3)}, \quad \boldsymbol{h}_1 = \boldsymbol{h}_3$ та два варіанта відношення теплофізичних властивостей покрить та основи: $\lambda_T^{(1)} / \lambda_T^{(2)} = \boldsymbol{a}_T^{(1)} / \boldsymbol{a}_T^{(2)} = 0.5$ і $\lambda_T^{(1)} / \lambda_T^{(2)} = \boldsymbol{a}_T^{(1)} / \boldsymbol{a}_T^{(2)} = 0.1$, які дають змогу визначити характерні особливості трансформації температурного поля в градієнтних композитних плитах і визначити вплив зміни градієнтності їхніх властивостей на розподіл температур та теплових потоків [8].

На рис. 1 та 2 подані результати розрахунку залежності від часу τ безрозмірної температури $T^*(\alpha, \gamma, \tau) = T^{(i)}(\alpha, \gamma, \tau) / \mathcal{G}^*$ точок на боковій

поверхні півсмуги при **Ві**₁ = 10, **Ві**₃ = 1, $\tau_0 = 4$ для першого (рис. 1) і другого (рис. 2) варіантів відношення теплофізичних властивостей.

Як бачимо, зниження відносних теплопровідних властивостей покрить призводить до підвищення температури усіх точок поверхні нагрівання і до збільшення тривалості перехідного періоду. Крім того, якщо для другого варіанта співвідношення теплофізичних властивостей температура рівномірно зростає по товщині півсмуги (від поверхні з більш інтенсивним теплообміном до поверхні з менш інтенсивним теплообміном), то для першого варіанта температура граничної поверхні $\gamma = 1$ нижча від температури поверхні поділу матеріалів покриття та основи $\gamma = 0.9$.

На рис. 3 і 4 показано результати розрахунку безрозмірної температури торця півсмуги та поверхні $\alpha = 0.5$ в різні моменти часу при $\lambda_T^{(1)} / \lambda_T^{(2)} = \boldsymbol{a}_T^{(1)} / \boldsymbol{a}_T^{(2)} = 0.1$.

Як видно, процеси нагрівання поверхонь, розташованих безпосередньо під джерелами тепла і на деякій відстані від них, якісно і кількісно різні. Безпосередня близькість джерел тепла зумовлює найінтенсивніше підвищення температури в покриттях, з віддаленням від поверхні нагрівання температура в них різко знижується, а сам процес нагріву покриттів в глибині півсмуги відбувається за рахунок теплопередачі від основи плити.

Список використаної літератури

- 1. *Абрамовиц М.* Справочник по специальным функциям / М. Абрамовиц, И. Стиган М., 1979.
- Галазюк В. Метод поліномів Чебишева–Лагерра в змішаній задачі для лінійного диференціального рівняння другого порядку з постійними коефіцієнтами / В. Галазюк // Доп. АН УРСР. – 1981. – №1. – С. 3–7.
- 3. Коляно Ю.М. Методы теплопроводности и термоупругости неоднородного тела / Ю.М. Коляно – К.: Наук. думка, 1992.
- Лилиус К.Р. Функциональные градиентные материалы: развитие новых материаловедческих решений. / К.Р. Лилиус, М.М. Гасик // В кн.: Прогрессивные материалы и технологии. Т.2. –К., 2003. – С. 70-86.
- 5. Снеддон И. Преобразования Фурье / И. Снеддон. М., 1955.
- Турчин О. Нестаціонарне осесиметричне температурне поле в шаруватому півпросторі, зумовлене імпульсним нагрівом / О. Турчин, І. Турчин // Вісн. Львів. у-ту. Серія мех.-мат. – 2008. – Вип. 69. – С. 256–261.
- Nomura N. Thermo-mechanical modeling of functionally graded thermal barrier coatings / N. Nomura, M. Gasik, A. Kawasaki, R. Watanabe // Ceram. Trans. – Amer. Ceram. Soc. – USA. – 2001. – 114. – P. 223-229.
- 8. Tamarin Y. Protective coatings for turbine blades. / Y. Tamarin ASM International, USA. 2002.
- Yang X.-S. Modelling Heat Transfer of Carbon Nanotubes / X.-S. Yang // Modelling and Simulation in Materials Science and Engineering. – 2005. – Vol. 13. – P. 893 – 902.
- Yangjian X. Convective Heat Transfer Steady Heat Conduction and Thermal Stress in a Ceramic/FGM/Metal Composite EFBF Plate / X. Yangjian, T. Daihui, D. Haiyang // Journal of Software. – 2011. – Vol. 6., No 2. – P. 201–208
- Tanigawa Y. Transient Heat Conduction and Thermal Stress Problems of a Nonhomogeneous Plate with Temperature-Dependent Material Properties / Y. Tanigawa, T. Akai, R. Kawamura, and N. Oka // J. Thermal Stresses. – 1996. – Vol. 19., No.1. – P. 77–102.

НЕСТАЦИОНАРНОЕ ТЕМПЕРАТУРНОЕ ПОЛЕ В ПОЛУПОЛОСЕ С ПОКРЫТИЕМ ПРИ ТОРЦЕВОМ НАГРЕВЕ

Ольга ТУРЧИН

Национальный лесотехнический университет Украины, ул. Генерала Чупринки, 103 79057 Львов, Украина

С использованием интегрального преобразования Лагерра и преобразования Фурье получено решение нестационарной задачи теплопроводности для композитной полуполосы, нагреваемой по боковой поверхности. Приводится численный анализ температурного поля в симметричной полуполосе с покрытием при различных отношениях теплофизических характеристик покрытия и основания.

Ключевые слова: нестационарная теплопроводность, композитная полуполоса, преобразование Лагерра.

UNSTEADY TEMPERATURE FIELD IN HALF-STRIP WITH COATING

Olha TURCHYN

National Forestry University of Ukraine, General Chuprinka Str., 103 79057 Lviv, Ukraine

With using of Laguerre-Fourier integral transform we obtain a solution of the non-stationary problem of heat conduction for the composite half-strip. Half-strip is heated to a side surface. A numerical analysis of temperature field in a symmetric composite half-strip with different ratios of thermophysical properties of the coating and the base.

Key words: non-stationary problem of heat conduction, Laguerre-Fourier integral transformation, composite half-strip.

Стаття надійшла до редколегії 10.10.2011 Прийнята до друку 31.05.2012