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The notion of invariant measure is defined for the idempotent measures
(Maslov measures) in the ultrametric setting. We prove that the ultrametric
space of the idempotent measures on a complete ultrametric space is also
complete and use this fact to prove the existence of the invariant idempotent
measure for the IFSs. We also discuss the case of the upper-semicontinuous
capacities, of the max-min measures, and also of idempotent measures on
metric spaces.
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1. Introduction. The invariant probability measures for the iterated function
systems (IFS) were first defined by Hutchinson [5]. They found various applications in
mathematics, quantum mechanics, image processing etc.

A Maslov measure (an idempotent measure) is a measure m on X defined as follows:
m(A) = sup,ec 4 ¥(x), where 1): X — R is a function. The notion of idempotent measure
belongs to the so-called Idempotent Mathematics, i.e., a part of mathematics in which the
usual arithmetical operations are replaced by idempotent ones (like © @ y = max{x, y}).
The informal Correspondence principle asserts that to every meaningful and interesting
notion of ordinary mathematics there corresponds a meaningful and interesting notion
of the Idempotent Mathematics.

Recall that a metric d on a set X is called an ultrametric (a non-Archimedean
metric) if it satisfies the following strong triangle inequality:

d(z,y) < max{d(z,z),d(z,y)}, =,y,2z€X.

The aim of this note is to define a counterpart of the invariant measures [5] for the
idempotent measures and for the ultrametric spaces. We prove the existence of the invari-
ant idempotent measures and consider an example of such a measure on an ultrametric
Cantor set. Since the idempotent measures are special examples of non-additive measures,
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we discuss a possibility to define invariant objects in another classes of measures. Actually,
we focus on the class of the upper semi-continuous capacities and the max-min measures
in the ultrametric setting. We also discuss some metrizations of the idempotent measures
for all metric spaces.

2. Idempotent measures. By exp X we denote the set of all nonempty compact
subsets in a topological space X. If X is a metric space, we endow exp X with the
Hausdorff metric.

Denote by C(X) the set of continuous functions on a compact Hausdorff space X.
Given ¢ € R, we denote by cx € C(X) the constant function which takes the value ¢ on
X. Let ¢ ® ¢ denote the function cx + ¢ and let ¢ @ 1 denote the function max{¢p, 1}.
Also, ® and @ mean the addition and max in the set of reals R respectively.

Definition 1. Let X be a compact Hausdorff space. A functional p: C(X) — R is called
an idempotent measure if it satisfies the following properties:

1) plex) =c¢;
2) wc® ) =co pu(p);
3) ule @) = p(p) ® ).

By I(X) we denote the set of all idempotent measures on X. The following is an
example of an idempotent measure. Let z1,...,2, € X and let aq,...,a, € [—00,0] be
such that &7, a; = 0; then define p = &} o; ©® §,, € I(X) as follows:

u(p) = &L © (i),

Every continuous map f: X — Y of compact Hausdorff spaces induces a map
I(f): I(X) — I(Y) by the formula I(f)(1)(¢) = p(pf). We obtain a functor acting
from the category of compact Hausdorff spaces and a known procedure by Chigogidze
[4] allows us to extend this functor onto the category of Tychonov spaces and continuous
maps. We keep the notation I for this extension. Note that there is a natural definition
of support for the functor I.

Thus, for a Tychonov space X, the set I(X) consists of the idempotent measures
on X with compact supports.

Given an ultrametric space (X, d), for every r > 0, we denote by F,.(X) the set of
real-valued functions on X which are constant onto the balls of radius r. We endow I(X)
with the following metric d:

d(p,v) =inf{r >0 | p(p)=v(p) for all p € F,.}
(see [1] for details).

Theorem 1. Let (X,d) be a complete ultrametric space. Then 1(X) is also a complete
ultrametric space.

Proof. Let (u;) be a Cauchy sequence in the space I(X). Then (A; = supp(u)) is a
Cauchy sequence in the space exp X (see [1]) and there exists the limit A = lim;_, o A;.
Without loss of generality, one may assume that X = AU J:2; A;.

Let p € C(X). We are going to show that (u;(¢)) is a Cauchy sequence. Let € > 0.
Since the function ¢ is uniformly continuous, there exists 6 > 0 such that |p(z) — p(y)| <
§, whenever d(z,y) < . Then there exists N € N such that d(yu;, p1;) < 0 for all i,j > N.
Denote by Ds = {Bs(xx)} the decomposition of X into the balls of radius 6. Then
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© = @rpr, where | Bs(xr) = ¢|Bs(xk) and ¢k |(X \ Bs(xg)) = ¢k, for small enough cy.
Then

[1i(p) = 15 (P)| = | Sk pilr) — Breps(pr)| = |pi(Brpr) — 1 (Brepr)| < 0

as ai < i < ap + 6, for some constant ag.
Thus, the sequence (u;(¢)) is a Cauchy sequence and we denote its limit by u(y). We
are going to show that p: C'(X) — R is an element of I(X). Note first that p(cx) = cx.
Note also that

pleo @) = lim pi(p @) = lim pi(p) @ lim pi(y) = plp) @ u(e).

Therefore, p € 1(X).

In order to show that pu = lim; ,oc p; let € > 0. Since (p;) is a Cauchy sequence,
there is N € N such that, for every i,j > N, u;(p) = p;(¢), for every ¢ € F.. Then
w(p) = pi(p), for every ¢ € F. and i > N.

Thus, I(X) is complete.

2.1. IF'Ss and invariant idempotent measures. Recall that amap f: X — Y of metric
spaces (X, d) and (Y, p) is called a contraction if there is A € (0,1) (called a contraction
coefficient) such that o(f(x), f(y)) < Ad(z,y), for all z,y € X.

Let X be a complete ultrametric space and fi, ..., f,: X — X a family of contracti-
ons (we call it an iterated function system (IFS)). Let also a = @&, a;®0; € I({1,...,n}),
where a; < 0,7 =1,...,n, and & ;a; = 0. Define the map ®: I(X) — I(X) as follows:
D(u) = dr 0 © I(fi)(1). Note that, clearly, ®(u) € I(X).

Proposition 1. The map ® is a contraction.

Proof. Let A € (0,1) be a contraction coefficient for the IFS fi,..., f, (e.g., the maximal
of the contraction coefficients for f;, i =1,...,n).

Given p,v € I(X) with d(u,v) < ¢, we obtain d(I(f)(u), I(f)(v)) < Ac. Then, for
any z € X, we have

I(f) (1) (Bxa(2)) = I(fi)(V)(Bxa(z)), i=1,...,n.
Therefore @, 0; ©I(f;)(1) = P10, ©I(f;)(v) and we conclude that ® is a contraction.

Since the metric space (I(X),d) is complete, there exists a unique fixed point of the
map ®. We call this fixed point the invariant idempotent measure of the ISF f1,..., f,
and a € I({1,...,n}).

2.2. Example. Let C' = 2“ be the Cantor set. We consider the following metric d on
C:

d((x;), (y:)) = inf{1/k | x; =y, for all i < k}.

Clearly, d is an ultrametric on C. In the sequel, we identify every (z1,...,x,) € 2"
with (z1,...,2,,0,0,...) € 2¥ =C.

Consider the IFS f1, fo: X — X defined by

fl(xl,xg,...) = (O,l‘l,xg,...), fg(xl,l‘g,...) = (1,1‘1,372,...).

Let a=006 @ (1) ® 6 € I({1,2}).
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Consider 19 = 0® d(0,0,...) € I(C). Then, for every natural n, we obtain

2 () = €D {— (z) © () | () 2" C zw}.

Then the unique fixed point of the map ® is

u_@{(zxi) 08w Yo <oo}.

Indeed, it is enough to verify that d(®(ug),u) < 1/n. Note that Fi/m consists of the
functions which are constant on the sets of the form

Koy ={Wi)i21 | ys =z forevery i =1,...,n},

where (21,...,2,) € 2". Let ¢ € Fy/,. Let B C X be an open ball of radius 1/n. Then
there exists (z1,...,2,) € 2" C 2% = C such that B = By /,,((21,...,2,)). Then, clearly,
for any m > n,

™ (o) () = EP {cp(:z:l, Ty — Zx €2" C 2w} ,

whence d(®"(p0), ™ (uo)) < 1/n for all m > n.

T

Pic. 1. Visualization of the measure ®"(jg).

In the picture, the measure ®™ (1) is visualized as follows. First, we represent C' as
the middle-third Cantor set. Actually, we plot the graph of the (partial) function y; — 2%
in order to represent i = ®a; © Jy, .

2.3. Remark. A metric in the spaces of idempotent measures of compact metric
spaces is defined in [§8]. One can formulate the problem of existence of invariant
idempotent measures for this metric.

3. Discussion. Here we discuss a possibility to extend the results of the previous
section onto another classes of non-additive measures as well as onto the case of metric
(not necessarily ultrametric) spaces.

3.1. Capacities. We first consider the case of the upper-semicontinuous capacities.
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An upper-semicontinuous capacity of a compact Hausdorff space X is a function ¢
defined on the closed subsets of X and satisfying the properties:
1) c(0) =0, c(X) =1
2) ¢(A) < ¢(B), whenever A C B;
3) if ¢(A4) < a, then there is a neighborhood U of A such that ¢(B) < a, for every
BcCU.

The set of all upper-semicontinuous capacities on X is denoted by M (X). It is known
(see, e.g., [3]) that M is a functor on the category of compact Hausdorff spaces. Similarly
as above, one can define the ultrametric space of upper-semicontinuous capacities with
compact supports on an ultrametric space X.

There are metrizations of the space M (X) which are counterparts of the Hutchinson
and Prohorov metric respectively. In [6], an ultrametrization of M (X), for an ultrametric
X, is defined. Given an ultrametric space (X, d), for every r > 0, we denote by F,.(X)
the set of real-valued functions on X which are constant onto the balls of radius r. We
endow M(X) with the following metric d:

d(cr,c9) =inf ¢r >0 | /wdclz/wd@ for all p € F; 5,
X X

where [ « pdc is the Choquet integral defined as follows:

o 0
)[gadc = O/C(gp > t)dt + / (c(p > t) — 1)dt,

— 00

where (¢ > t) stands for the set {z € X | p(x) > t}.

However, one cannot proceed as in the previous section in order to define the
invariant measure, because the obtained ultrametric space (M (X), J), in general, is not
complete (see [6] for an example).

In |6], the following ultrametric on M (X) is considered:

d(c1,¢3) = max{d(c1, c2), du(supp(c1),supp(ca))}.
Clearly, the map (supp: M (X) — exp X is nonexpanding. In [6], it is proved that the

ultrametric space (M(X),d) is complete if so is (X,d). However, this construction does
not satisfy the following property: if f: X — Y is a nonexpanding map of ultrametric
spaces, then so is the map M (f): M(X) — M(Y).

Indeed, consider a set X = {x,y, z, w} endowed with the metric d:
d(z,y) =d(y,z) =d(z,2) =1, d(z,w)=d(y,w)=d(z,w) =2.

Clearly, d is an ultrametric. Let Y = {x,y,w} be endowed with the subspace metric.
Denote by f: X — Y a retraction sending z to . The map f is nonexpanding.
Let ¢1,co: {0} Uexp X — [0,1] be defined as follows:

c1(A) = {17 i AN {r,y w2 2 c2(A) = {

0, otherwise,

1, if|An{z,z,w}| >2,
0, otherwise.

)
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Then M(f)(c1)(A) equals 1, whenever |A| > 2 and 0 otherwise. It is easy to see that
supp(M (f)(ez2)) = {x}. This implies

d(cr,c2) =1, d(M(f)(c1), M(f)(c2)) =2

and therefore the map M(f) is not nonexpanding.

We see that the reason of lack of the non-expanding property is connected with the
property of preservation of preimages. One can speculate whether a kind of the Open Set
Condition can repair the situation. We leave this as an open problem.

3.2. Maz-min measures. The results of this note can be extended on the case of
the so-called max-min measures on ultrametric spaces (see [7]). Every max-min measure
of finite support is of the form @&} ;o; ® d,,, where ® stand for the min operation,
a; € [—oo,00], foralli =1,...,n, and & ;a; = co. In [7], the max-min measures on the
complete ultrametric spaces are defined as the elements of the completion of the space
of the max-min measures of finite supports with respect to the ultrametric which is a
counterpart of that used above for the idempotent measures.

3.3. Idempotent measures on metric spaces. Let (X,d) be a compact metric space.
By I(X) we denote the set of all idempotent measures of compact support on X.

By LIP,, = LIP,,(X,d) we denote the set of Lipschitz functions with the Lipschitz
constant < n from C(X).

Fix n € N. For every p,v € I(X), let

dn(p,v) = sup{|u(p) —v(p)| | ¢ € LIP,}.

It is proved in [8] that the function d,, is a continuous pseudometric on I(X). We
let d,, = (1/n)d,. In |8], the following metric was defined on the set I(X):

oo 7

d(uy) =y B, M)

=1

One can also show that the following is a metric on I(X):

duv) = @ L) (2)

91
i=1
One can easily prove the following fact for the metric d.

Proposition 2. Let ay,...,a, € (—00,0] be such that &F_;o; = 0. Let p;,v; € I(X),
i=1,...,n, be such that d(p;,v;) < K, for alli=1,...,n. Then the map

(,Ul,..-,,un) H@CM@/.MI I(X)n%I(X)

i=1
(we consider the maz-metric on the product) is nonexpanding.

Now, in order to prove that the map ® defined as above for an IFS is a contraction,
we have to show that the functor I preserver the class of contractions, i.e. that I(f) is
a contraction, whenever so is f. However, this is not the case, as the following example
demonstrates.

Let X = {a,b} with d(a,b) = K > 0. Let

=006, Ba®d, v=005,PL0d4 c I(X).
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Without loss of generality, one may assume that ¢(a) = 0 for all Lipschitz functions .
Then, if a,3 > —K, then d(u,v) = |a — f], i.e., d(u,v) does not depend on K. This
easily implies that the map I(f), where f the identity map of (X,d) onto (X, g) with
o(a,b) = K/2 is not a contraction.

We conclude that the map @ is not a contraction and one should apply methods
other than Banach’s contracting principle in order to examine the question of existence
and uniqueness of invariant measure.
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Ha imemnorentanx mip (mip Macnosa) o3maseno monarTs iHBapianTHOL
Mipm 17151 iTepoBaHol cucTeMu GYHKIHH Ha yIbTpaMeTPUIHOMY TTpocTopi. JoBo-
JUMO, IO YIbTPAMETPUYHUN IPOCTIP 1IEMIOTEHTHUX Mip HA IOBHOMY YJIbTDa-
METPUIHOMY IIPOCTOPI € TAKOXK IMOBHUM i BUKOPHUCTOBYEMO Tieil (dakT mis mo-
BeJeHHS iICHYBaHHS iIHBAPIaHTHOI iTEMIIOTEHTHOI MipH A1 ITEPOBAHUX CUCTEM
dyukiit. Takoxk 00roBOPIOETHCS BUIIAI0K HAIIBHEIIEPEPBHUX 3TOPU €MHOCTEI.

Karwosi crosa: imeMmoTeHTHA Mipa, Mipa MaciaoBa, yabTpaMeTpIIHUN
POCTIp.
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g mpemmoTenTHBIX Mep (Mep Mac/ioBa) OrmpeIesIeHo TOHATHE MHBAPAAHT-
HOI MepBhI /I NTEPOBAHHON cUCTEMBI (DYHKITUN HA YIBTPAMETPUIECKOM IIPO-
crpancrse. /{oka3aHo, 9TO yIbTPAMETPUIECKOE IIPOCTPAHCTBO UAEMIIOTEHTHBIX
Mep Ha TTOJTHOM Y/IHTPAMETPUYECKOM MTPOCTPAHCTBE TOJTHO W STOT (PAKT UCIIOJIH-
30BaH /14 JOKA3aTeJIbCTBA CYyIeCTBOBAHUA NHBAPUAHTHON HIEMIIOTEHTHON Me-
PBL /1T UTEePUPOBAHHON cucTteMbl GyHKImI. Takke paccMaTpUBAETCS CIIydail
TIOJTYHETIPEPBIBHOM CBEPTKN €MKOCTEH.

Karouesvie crosa: MOEeMIOTEHTHAd Mepa, Mepa MacaoBa, yabTpaMeTpudec-
KO€e IIPOCTPAHCTBO.



