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Let Nzg be the set N? with the partial order defined as the product of usual
order < on the set of positive integers N. We study the semigroup #0x (N2) of
monotone injective partial selfmaps of Ni having cofinite domain and image.
We describe properties of elements of the semigroup %0, (N2) as monotone
partial bijections of Ni and show that the group of units of @ﬁm(Ni) is
isomorphic to the cyclic group of order two. Also we describe the subsemi-
group of idempotents of P20 (N%) and the Green relations on 20 (N2). In
particular, we show that 2 = ¢ in 20, (N2).

Key words: semigroup of partial bijections, monotone partial map, idem-
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1. INTRODUCTION AND PRELIMINARIES

We shall follow the terminology of [1] and [9].

In this paper we shall denote the cardinality of the set A by |A|. We shall identify
all sets X with their cardinality | X|. By Zs we shall denote the cyclic group of order two.
Also, for infinite subsets A and B of an infinite set X we shall write AC*B if and only
if there exists a finite subset Ag of A such that A\ 4y C B.

An algebraic semigroup S is called inverse if for any element x € S there exists a
unique 27! € S such that zz~ 'z = 2 and 2 'zz~! = 27!, The element 2! is called
the inverse of v € S.

If S is a semigroup, then we shall denote the subset of idempotents in S by E(S).
If S is an inverse semigroup, then F(S) is closed under multiplication and we shall refer
to E(S) as a band (or the band of S). If the band E(S) is a non-empty subset of S, then
the semigroup operation on S determines the following partial order < on E(S): e < f
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if and only if ef = fe = e. This order is called the natural partial order on E(S). A
semilattice is a commutative semigroup of idempotents. A semilattice F is called linearly
ordered or a chain if its natural order is a linear order.

If S is a semigroup, then we shall denote the Green relations on S by %, £, 7, 2
and J (see [1, Section 2.1]):

aZb if and only if aS' = bS*;

a.Zb if and only if S'a = S'b;
a_Zbif and only if S'aS* = S'bS*;
D=L oR=X0Y,
H=ZLNX.

The %#-class (resp., £-, J€-, - or #-class) of the semigroup S which contains an
element a of S will be denoted by R, (resp., La, Hq, Dq or J,).

If a: X =Y is a partial map, then by dom o and ran o we denote the domain and
the range of «, respectively.

Let ., denote the set of all partial one-to-one transformations of an infinite set
X of cardinality A together with the following semigroup operation: z(af) = (za)p if
z € dom(af) = {y € dom« | ya € dom B}, for «, 8 € Zy. The semigroup %, is called the
symmetric inverse semigroup over the set X (see [1, Section 1.9]). The symmetric inverse
semigroup was introduced by Vagner [16] and it plays a major role in the semigroup
theory. An element « € Z), is called cofinite, if the sets A\ dom « and A\ ran « are finite.

Let (X, <) be a partially ordered set (a poset). A non-empty subset A of (X, <) is
called a chain if the induced partial order from (X, <) onto A is linear. For an arbitrary
x € X and non-empty A C X we denote

tr={yeX:z<y}, le={yeX:y<a}, TA4= UTaz and | A= Uiaz.
z€A z€A
We shall say that a partial map «: X — X is monotone if x < y implies (z)a < (y)a for
z,y € dom .
Let N be the set of positive integers with the usual linear order <. On the Cartesian
product N x N we define the product partial order, i.e.,

(z,m) < (4,n) if and only if (i<j) and (m < n).

Later the set N x N with this partial order will be denoted by Ni.

By &0, (Né) we denote the subsemigroup of injective partial monotone selfmaps
of Né with cofinite domains and images. Obviously, .@ﬁm(Ni) is a submonoid of the
semigroup %, and f_@ﬁw(Ni) is a countable semigroup.

Furthermore, we shall denote the identity of the semigroup @ﬁm(Ni) by I and the
group of units of P00, (NZ) by H(T).

It well known that each partial injective cofinite selfmap f of A induces a
homeomorphism f*: A\* — A\* of the remainder A* = S\ A of the Stone-Cech compacti-
fication of the discrete space A. Moreover, under some set theoretic axioms (like PFA or
OCA), each homeomorphism of w* is induced by some partial injective cofinite selfmap
of w, where w is a first infinite cardinal (see [10]-[15] and the corresponding sections
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in the book [17]). Thus, the inverse semigroup #5f of injective partial selfmaps of an
infinite cardinal A with cofinite domains and images admits a natural homomorphism
h: I — H#(\*) to the homeomorphism group 7 (\*) of A* and this homomorphism
is surjective under certain set theoretic assumptions.

In the paper [8] algebraic properties of the semigroup fff are studied. It is shown
that fff is a bisimple inverse semigroup and that for every non-empty chain L in (ﬂff)
there exists an inverse subsemigroup S of .#{f such that S is isomorphic to the bicyclic
semigroup and L C E(S5), described the Green relations on fff and proved that every
non-trivial congruence on fff is a group congruence. Also, the structure of the quotient
semigroup #1f /o, where o is the least group congruence on !, is described.

The semigroups .74 (N) and .#{ (Z) of injective isotone partial selfmaps with cofinite
domains and images of positive integers and integers, respectively, are studied in [6] and
[7]. It was proved that the semigroups .4 (N) and .#{ (Z) have similar properties to the
bicyclic semigroup: they are bisimple and every non-trivial homomorphic image JO/; (N)
and .#{(Z) is a group, and moreover the semigroup .#4 (N) has Z(+) as a maximal
group image and .#Z (Z) has Z(+) x Z(+), respectively.

In the paper [5] we studied the semigroup S0 (Z}, ) of monotone injective partial
selfmaps of the set of L, Xjex Z having cofinite domain and image, where L, Xjex Z
is the lexicographic product of n-elements chain and the set of integers with the usual
linear order. We described the Green relations on S0, (Z]., ), showed that the semigroup
IO (Z7,) is bisimple and established its projective congruences. Also, we proved that
IO (Z7,) is finitely generated, every automorphism of #0, (Z) is inner, and showed
that in the case n > 2 the semigroup 0, (Z},,) has non-inner automorphisms. In [5] we
proved that for every positive integer n the quotient semigroup SO0, (Z..)/o, where o
is a least group congruence on S0 (Z}.), is isomorphic to the direct power (Z(—G—))Q".
The structure of the sublattice of congruences on Y0, (Zi,,) which are contained in the
least group congruence is described in [4].

In this paper we study algebraic properties of the semigroup &0, (Né) We describe
properties of elements of the semigroup £0 (Ni) as monotone partial bijection of Ni
and show that the group of units of gzﬁoo(Ni) is isomorphic to the cyclic group of the
order two. Also, the subsemigroup of idempotents of ?ﬁm(Ni) and the Green relations

on D0, (N%) are described. In particular, we show that ¥ = ¢ in 20,,(N2).

2. PROPERTIES OF ELEMENTS OF THE SEMIGROUP PO, (NZ) AS MONOTONE PARTIAL
PERMUTATIONS

In this short section we describe properties of elements of the semigroup ?}’ﬁoo(Ni)
as monotone partial transformations of the poset Nzg.
For any n € N and an arbitrary a € 0,,(N%) we denote:

V" ={(n,j): j € N} H™ = {(j,n): j € N};
gomoz = V" Ndom Q; Vﬁula =V" Nran Qg

Hiom o = H" Ndom a; H. .. =H"Nrana.
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Remark 1. We observe that the definition of the semigroup @ﬁm(Ni) implies that for
any n € N and arbitrary a € 20, (N%) the sets Viom o> Vianas Hioma and Hp,,, are
infinite, and moreover all of these sets with the partial order induced from Né are order

isomorphic to (N, <).

Lemma 1. There exists no element a of the semigroup P0s(NZ) such that (m,n) <
(m,n)a for some (m,n) € dom a.

Proof. Suppose the contrary, i.e., that there exists an element « of the semigroup
PO (NZ) such that (m,n) < (m,n)a for some (m,n) € doma. We denote (m,n)a =
(i,4). Then our assumption implies that the family of subsets

R = {Vhunai b <ipU{HE, ik <}

has more elements than the family

9, = {v’;oma: k< m} U {Hﬁomaz k < n}

Then there exist A € ©,, and distinct By, B2 € R, such that the following conditions
hold:

(1) (p,q)a € Bj for infinitely many (p,q) € A; and

(#4) (s,t)a € By for infinitely many (s, t) € A.
We observe that A is a linearly ordered subset of the poset Né. Hence, the definition of
the semigroup #0, (N2 ) implies that the image (A)o must be a linearly ordered subset
of the poset Ni as well. This implies that one of the following conditions holds:

(a) there exist distinct elements VX! and V2
VEL N (A)a and VP2, N (A)a are infinite;

(b) there exist distinct elements H* and H" _ of the family %, such that the
sets H. N (A)a and H*2 N (A)a are infinite;

(¢) there exist distinct elements VFLand H®2  of the family R, such that the sets

ran & ran «
VEL N (A)a and H*2 N (A)a are infinite.

of the family R, such that the sets

Each of the above conditions contradicts the fact that (A)« is a linearly ordered subset
of the poset Ni. The obtained contradiction implies the statement of the lemma.

By w we denote the bijective transformation of N X N defined by the formula

(i,7)w = (J, 1), for any (4, j) € NxN. It is obvious that w is an element of the semigroup
POy (NZ) and wow = 1L

Lemma 2. There exists no element o of the semigroup ﬁﬁm(Ni) such that (n,m) <
(m,n)a for some (m,n) € domav.

Proof. Suppose the contrary. Then there exists an element « of the semigroup 20, (N%)
such that (n,m) < (m,n)a for some (m,n) € doma. Then we obtain that (m,n) <
(m,n)aw, which contradicts Lemma 1. The obtained contradiction implies the statement
of our lemma.
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For arbitrary positive integer [ we define a partial map of,: N> — N2 in the following
way:
dom(ad)) = N2\ {(1,1),...,(l,1)}, ran(ad,) = N? and
(G, if > 1;
(i, j)oy, = { (i,j—1), ifi<l
It it obvious that of, € P00, (N%) for any positive integer .

Lemma 3. For any element o of the semigroup P04, (Ni) the following assertions hold:
(1) either (Hioma) € HY or (H] aC V!

doma)
(2) either (Vigma)o C V' or (VA )a CH.
Proof. We shall show that assertion (1) holds. The proof of (2) is similar.

First we observe that (H}, . . )a C H' if and only if (H},,, . )aw C V'

Suppose the contrary: there exists an element « of the semigroup P04 (Né) such
that neither (H},,, ) C H' nor (HY,, ) C V' Then the definition of the semigroup
gzﬁoo(Ni), Lemma 1 and the above observation imply that without loss of generality
we may assume that (Hi,.,.)o € H' UV and there exists (k,1) € doma such that
(k,1)a = (i,j), 7 # 1 and 2 < i < k. Also, by the definition of of, € P05 (NZ) we get
that without loss of generality we may assume that j = 2, i.e., (k,1)a = (4,2). Then

there exist disjoint infinite subsets A and B of the set Vi, o U...U v’g;}m such that
1 k—1 1 1 k—1
AUB:VdomaU"‘UVdomaﬂ Hrana g (A)a and VranaU"'UVrana g (B)a

If ANV}, # @ then the definition of the semigroup P05 (NZ) and Lemma 1
imply that there exists (a,b) € B such that (a,b)a € V., ., and (¢, d) < (a,b) for some

ran
(¢,d) € A, which contradicts the definition of the partial order < of the poset Ni.
Assume that A C V3, U...UVE"L ~Then there exist infinite subsets 4; C A

and B; C B such that (A;)a = HL , \ {(1,1)} and (By)a = V., \ {(1,1)}. Hence
the definition of the poset Ni implies that at least one of the following conditions holds:

TAIN By # @ or [A;N1B) # @. If 1A N |By # @ then (1B1)a C [V},,, = V'
but V! N1 (Hiana \{(1,1)}) C vint (H1 \ {(1,1)}) = @, a contradiction. Similarly, if
LA, N1B; # @ then (JA;)a C [H., , = H' and we get a contradiction with

HU N (Viwa V(L DY) SH AT (VI {(LD)}) = 2.

The obtained contradictions imply the statement of the lemma.

Proposition 1. Let o be an arbitrary element of the semigroup @ﬁm(Ni). Then the
following assertions hold:
(1) (Hioma) € HY if and only if (Vi .)a C V', and moreover in this case the
sets H'\ (H, o) and V' \ (Vi o )a are finite;
(2) (Hioma) C V! if and only if (Vi .)a C H', and moreover in this case V'\
(Hiomo)a and HY\ (VA o are finite.

Proof. The first statements of assertions (1) and (2) follow from Lemma 3 and their
second parts follow from Lemma 1.
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Theorem 1. Let o be an arbitrary element of the semigroup @ﬁm(Ni) and n be an
arbitrary positive integer. Then the following assertions hold:

(1) if (Hi,.o)a CH then (HY, . . )aC*H™ and (V4. ,)aC*V", and moreover
(Hioma U UHS Yo CH'"U...UH" and (Vo U...UVE, )aCV U...uV™
(2) if (Hioma)a C V! then (Hi2)aC*V"™ and (V5o o)C*H™, and moreover
(Hioma U UHL L JaCVIUL.UV" and (Vigma U-- - UVioma)a CH UL UH™

Proof. (1) We shall prove this assertion by induction.

In the case when n = 1 our statement follows from Lemma 3 and Proposition 1.
Next we shall show that the step of induction holds.

We assume that our assertion holds for arbitrary o € P04 (Ni) and for all positive
integers n < k and we shall prove that then the assertion is true in the case when
n==k+1.

For an arbitrary element a of the semigroup ﬁﬁ’w(Né) we define a partial map
Q1] " N2 — N? in the following way:

(i,7)apks1) is defined if and only if (i,7j) € domanNf(k+1,k+1)
and (i,j)a €ranaNf(k+1,k+ 1), and moreover in this case we put
(ivj)a[k+1] = (iaj)av

i.e., the partial map apq): N2 — N? is the restriction of the partial map a: N? — N2
onto the set 1(k + 1,k + 1). Since the set T(k + 1,k + 1) with the partial induced from
Né is order isomorphic to Ni, the assumption of induction and Lemma 3 imply that
either (H*™'n dom(ap11)))agps1) € H* or (HF1 N dom(ap41)))apes1) € V! Then
the inclusion

‘L(H(lioma u...u Hgom(x) - J/(H(liolna U...u Hk U Hk""1 )

dom « dom «

implies that
(H*" ndom(apy1)))a = (H*' N dom(apesy))operr) € HM

Hence we have that (H5Tl YaC*H*™! because the set doma \ dom(avjg41)) N HE+L
is finite. Also, since (i,5) < (p,q) for all (i,7) € doma \ dom(ap4q1)) N H* and
(p,q) € dom(a[kH])ﬂHkH, the definition of the semigroup ,@ﬁw(Ni), the assumption of

induction and the inclusion (H**! Ndom(ap41)))a C H**! imply the requested inclusion

(Hioma U...UHE UHAML Yo CH'U...UHFUHF

dom «

Again using indiction and Proposition 1 we get that the condition (H},,,,)a C H'
implies that (HJ,,, ,)aC*H" and (Vi o U...UVL . )a C VIU...UV" for every positive
integer n.

(2) If (Hioma) € V! then (H3, .. )aw C H'. Then assertion (1) and the equality
aww = « imply assertion (2).

The following theorem describes the structure of elements of the semigroup
f@ﬁm(Ni) as monotone partial permutations of the poset Ni.
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Theorem 2. Let o be an arbitrary element of the semigroup ﬂﬁm(Ni). Then the
following assertions hold:
(1) #f (Hioma) CH' then
(i1) (iy4)a < (i,4) for each (i,j) € doma; and
(7i1) there exists a smallest positive integer ny such that (i,7)a = (i,5) for each
(i,7) € dom & N e, 710);
(2) if (Hioma)o € V' then
(i2) (4,7)a < (4, ) for each (i,j) € doma; and
(ii2) there exists a smallest positive integer ny such that (i,j)a = (4,4) for each
(1,4) € doma N (ng, na).

Proof. (1) Fix an arbitrary element « of the semigroup 0, (Ni) such that (H éoma)a C
H!. Suppose to the contrary that there exists (i,j) € dom « such that (i,5)a = (k,1) &
(7,7). Then Lemma 1, Theorem 1(1) and the definition of the partial order of the poset
NZ imply that k > i and [ < j. Now, by the definition of the semigroup 20 (NZ) we
get that there exists a positive integer m < ¢ such that

(Vioma U... UV Do g VIU...uVv™,

which contradicts Theorem 1(1). The obtained contradiction implies the requested
inequality (¢,7)a < (i,7) and this completes the proof of ().

Next we shall prove (i7). Fix an arbitrary element « of the semigroup Wﬁm(Ni)
such that (H}, . .)a € H'. Suppose to the contrary that for any positive integer n there
exists (4, ) € domaNf(n,n) such that (i, ) # (i, 7). We put Naoma = |N? \ dom or| + 1
and

Maom o = max{{i: (i,7) ¢ doma},{j: (i,7) ¢ doma}}+ 1.

The definition of the semigroup 0, (Ni) implies that the positive integers Ngom o and
Mdom o are well defined. Put np = max {Ngom o, Mdom « }- Then our assumption implies
that there exists (¢,7) € dom aN1(ng,no) such that (4, j)a = (ia,Ja) 7# (i,7). By (4), we
have that (ia,ja) < (4,7). We consider the case when i, < i. In the case when j, < j
the proof is similar. Assume that ¢ < j. By Theorem 1 the partial bijection o maps
the set S; = {(n,m): n,m < ¢ — 1} into itself. Also, by the definition of the semigroup
PO (NZ) the partial bijection a maps the set {(i,1),...,(i,i)} into S; as well. Then
our construction implies that

|S; \ doma| = |N2\doma| = Ngoma — 1 and {(i,1),..., (%9} = Ndom o>

a contradiction. In the case when j < ¢ we get a contradiction in a similar way. This
completes the proof of existence of such a positive integer n,, for any o € @ﬁm(Ni).
The existence of such minimal positive integer n, follows from the fact that the set of
all positive integers with the usual order < is well-ordered.

(2) T (Hioma)e € V' then (Hi . .)ow C H', and hence (1) and the equality
aww = o imply our assertion.

Theorem 2 implies the following corollary:

Corollary 1. ’NQ \rana| < ‘NQ \ dom «| for an arbitrary o € POy (NZ).
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For an arbitrary non-empty subset A of N x N and any element (i,j) € N x N we
denote A = {(i,j) € Nx N: (j,i) € A} and (4,5) = (j,1).

Proposition 2. Let o be an arbitrary element of the semigroup ngfoo(Né), Then the
following assertions hold:
(1) dom(wa) = dom(waw) = dom « and dom(aw) = dom «;
(74) ran(wa) =rana and ran(waw) = ran(aw) = Tan a;
(i4i) « is an idempotent if and only if so is waw.

Proof. Ttems (i) and (ii) follow from the definition of the composition of partial maps.
(7i1) Suppose that « is an idempotent of the semigroup Qﬁm(Ni). By items (7) and
(79) we have that dom(waw) = doma = Tfana = ran(waw). Then (j,))waw =
(i,7))aw = (i,j)w = (j,i) for an arbitrary (i,j) € doma, and hence waw €
E(20,(NZ)). The converse statement follows from the equality ww = I.

The following statement, follows from the definition of the semigroup 20, (N2 ) and
Lemma 3.

Proposition 3. Let « and B be arbitrary elements of the semigroup ,@ﬁw(l\%), Then
(Hiom(am)aB € H' if and only if (Hiom(sa))Ba € H,

3. ALGEBRAIC PROPERTIES OF THE SEMIGROUP @ﬁm(Ni)
Theorems 1 and 2 imply the following

Proposition 4. The group of units H(I) of the semigroup PO (N%) is isomorphic to
Zs.

Proposition 5. Let o be an element of the semigroup @ﬁ;@(Ni), Then o € H(D) if and
only if dom o = N2,

Proof. The implication (=) is trivial. The implication (<) follows from Theorems 1, 2
and Corollary 1.

Proposition 6. An element o of @ﬁw(Ni) is an idempotent if and only if o is an
identity partial self-map of Nz< with the cofinite domain.

Proof. The implication (<) is trivial.

(=) Let an element a be an idempotent of the semigroup 0, (NZ). Then for
every r € dom a we have that (z)aa = (z)a and hence we get that dom o? = dom « and
rana? = rana. Also since « is a partial bijective self-map of Né we conclude that the
previous equalities imply that dom o = ran «. Fix an arbitrary * € dom « and suppose
that (z)a = y. Then (z)a = (z)aa = (y)a = y. Since « is a partial bijective self-map
of Nz< we have that the equality (y)a = y implies that the full preimage of y under the
partial map « is equal to y. Similarly the equality (z)a = y implies that the full preimage
of y under the partial map « is equal to . Thus we get that z = y and our implication
holds.
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Remark 2. The proof of Proposition 6 implies that the statement of the proposition
holds for any semigroup of partial bijections, but in the general case of a semigroup of
transformations this statement is not true.

The following theorem describes the subset of idempotents of the semigroup

PO, (N2).

Theorem 3. For an element o of the semigroup @ﬁw(Ni) the following conditions are
equivalent:
(1) « is an idempotent of @ﬁm(Ni),'
(#7) doma =rana and there exists a positive integer n > 1 such that (n,1) € doma
and (n,1)a € HY;
(7i1) dom« = ran« and there exists a positive integer m > 1 such that (1,m) € dom «
and (1,m)a € V.

Proof. Implications (i) = (i) and (¢) = (4i7) follow from Proposition 6.

We shall prove implication (i) = (¢) by induction in two steps. The proof of impli-
cation (4i1) = (4) is similar.

First we remark that if (1,1) € dom « then since (1, 1) < (¢, §) for any (¢, j) € dom ¢,

the definition of the semigroup P20, (N \) implies that (1,1)a = (1 1).

Now, condition (ii) and Lemma 3 imply that (H},.,,)a C H'. Since the set H}, ...,
with the induced order from the poset Né is order isomorphic to the set of all posi-
tive integers with the usual linear order, without loss of generality we may assume
that HY, ., = {z}:i1=1,2,3,...} and 2} < arjl in HY, ., if and only if i < j. Si-
nce (Hi,o)a Q H', Theorem 2(1) implies that (z1,1)a < (21,1), and by the equali-
ty Hi,..., = HL. . we get that (z!,1)a = (z},1). Suppose that we have shown that
(z},D)a = (x},1) for every positive integer [ < %y, where ¢y is some positive integer
> 2. Then the equality H} .., = HL.. and Theorem 2(1) imply that (z1,,)a =
(z1,,1), because (zf,,1)a < (zf,,1) and (Hjo, o) € H'. Therefore, we have proved
that (23, 1)a = (zf, 1) for every (zx,1) € doma.

Now, we shall show that the equality (p,¢)a = (p, q) for all positive integers g < kg
and all positive integers p such that (p,q) € dom«, where ko is some positive integer
> 2, implies that (p,ko)a = (p, ko) for all (p,ko) € doma. Since the set HE
th the induced order from the poset Ni is order isomorphic to the set of all positive

integers with the usual linear order, without loss of generality we may assume that
Hggma = {xko 1=1,2,3,. } and xf” < xf" in Hiigma if and only if ¢ < j. Then the
assumption of induction and Theorem 1(1) imply that (Hggma)oz C* H* . Theorem 2(1)
implies that (:(;1 Jko)a < (259, ko), and by the equality HY = HF = we get that
(x]f", ko)a = (:r1 , ko). Suppose that we showed that (:Ll Jko)a = (azl , ko) for every posi-

Wi-

tive integer | < sg, where s¢ is a some positive integer > 2. Then the equality Hgoma =
H  and Theorem 2(1) imply that (z* z¥0 ko) = (2%, ko), because (x%0, ko)or < (xk0, ko)
and (H% Yo C H*. Therefore, we have proved that (z}° ko) = (2§, ko) for every
(z}0, ko) € dom av.,

The proof of implication (i7) = (¢) is complete.

80’

Proposition 6 implies the following proposition.
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Proposition 7. The subset of idempotents E(@ﬁm(Ni)) of the semigroup @ﬁoo(Ni)
is a commutative submonoid of Wﬁm(Ni) and moreover E(@ﬁm(Ni)) is isomorphic
to the free semilattice with unit (9*(1\12)7 U) over the set N?> under the mapping ()b =
N2\ dome.

Later we shall need the following technical lemma.

Lemma 4. Let a be an element of the semigroup @ﬁo@(Nzg). Then the following asserti-
ons hold:

(i) a=~ya for some vy € ﬂﬁ(x,(Ni) if and only if the restriction ¥|domo: doma —

N? is an identity partial map;
(i1) o= ary for some~y € PO (NZ) if and only if the restriction y|rano: rana — N?
is an identity partial map
Proof. (i) The implication (<) is trivial.

(=) Suppose that a = ya for some v € PO, (NZ). Then we have that doma C
dom~ and dom « C ran+. Since v: N2 — N? is a partial bijection, the above arguments
imply that (¢,7)y = (4,4) for each (i,j) € dom . Indeed, if (¢,5)y = (m,n) # (4, 7) for
some (i,j) € dom « then since a: N> — N? is a partial bijection we have that either

(i,j)a = (i,j)ya = (m,n)a # (i,j)a,  if (m,n) € doma,

or (m,n)a is undefined. This completes the proof of the implication.
The proof of (i¢) is similar to that of (7).

The following theorem describes the Green relations ., Z, 7 and 2 on the semi-
group Y0, (N%).

Theorem 4. Let a and 3 be elements of the semigroup @ﬁm(Ni). Then the following
assertions hold:
(1) «ZB if and only if either o = 8 or a = wp;
(13) aZB if and only if either a = 8 or a = fw;
(#i1) oS if and only if either o = B or o = wf = fw;
(iv) a2p if and only if o« = pBv for some p,v € H(D).
Proof. (i) The implication (<) is trivial.
(=) Suppose that a8 in the semigroup F0(NZ). Then there exist 7,5 €
@ﬁw(Ni) such that @ = v8 and 8 = da. The last equalities imply that ran o = ran .
By Lemma 3 only one of the following cases holds:
(7’1) (H(lioma)a Cc Hl and (H(llomﬂ)ﬁ - Hl;
(i2) (Haoma)o ©H' and (Haom 5)8 S V'
(23) (Hclloma)a - Vl and (Hcllomﬁ)ﬁ - Hl;
(7’4) (H(lioma)a - Vl and (H(liom/?)ﬂ c Vl'
Suppose that case (i1) holds. Then the equalities & = y8 and 8 = d« imply that
(Htllorn'y)’y C Hl and (H(llomé)5 c H17 (1)
and moreover we have that « = vda and § = §v5. Hence by Lemma 4 we have that
the restrictions (76)|domo: doma — N? and (67)|qom s: dom 3 — N? are identity parti-
al maps. Then by condition (1) we obtain that the restrictions 7|qoma«: doma — N2
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and d|gomg: domp — N2 are also identity partial maps. Indeed, other wise there exi-
sts (i,j) € doma such that either (i,5)y & (4,5) or (¢,7)8 % (4,7), which contradicts
Theorem 2(1). Thus, the above arguments imply that in case (i1) we have that a = 8.

Suppose that case (iz) holds. Then we have that « = 78 = 718 = y(ww)8 =
(yw)(wph) and wf = (wd)a. Hence we get that o.?(wf), (Hiyma)a € H' and
(H(liom(wﬁ))wﬁ C H'. Then we apply case (i1) for elements o and wf and obtain that
a=wpf.

In case (i3) the proof of the equality o = wf is similar to case (iz).

Suppose that case (i4) holds. Then the equalities « = v8 and 8 = d« imply that
aw = y(fw) and fw = d(aw), which implies that (aw).Z(Bw). Since for the elements
aw and fw of the semigroup ﬁﬁm(Ni) case (i1) holds, aw = fw and hence a =
aww = fww = §, which completes the proof of (7).

The proof of assertion (i¢) is dual to that of (7).

Asgsertion (#ii) follows from (4) (i%).

(iv) Suppose that a2 in 20, (NZ). Then there exists v € P04, (NZ) such that
af~ and 7Z%3. By Proposition 4 the group of units H(I) of the semigroup 0 (Ni)
has two distinct elements I and w. By (4), (i), there exist pu, v € H(I) such that o = py
and v = v and hence a = pfv. Converse, suppose that o = pufv for some p, v € H (D).
Then by (%), (i7), we have that a.Z(fv) and SZ(Bv), and hence aZ0.

Theorem 4 implies Corollary 2 which gives the inner characterization of the Green
relations &, Z, 7 and 2 on the semigroup ﬁﬁm(Ni) as partial permutations of the
poset NZ.

Corollary 2. (i) Every Z-class of P05 (NZ) contains two distinct elements.
(i1) Every Z-class of 20 (N%) contains two distinct elements.
(i4i) Every €-class of @ﬁm(Ni) contains at most two distinct elements.
(iv) The s -class of POy (NZ) which contains an element a consists of two distinct

elements if and only if doma = doma, rana = Tana and ((i,4))o = (i,§)a for
each (i,7) € dom«, and the S -class of a is a singleton in the other case.
(v) The H-class of ?ﬁm(Ni) which contains an idempotent € consists of two disti-
nct elements if and only if dome = dome.
(vi) The H-class of PO (NZ) which contains an idempotent ¢ is a singleton if and
only if dome # dome.
(vii) Every 2-class of @ﬁw(Né) contains either two or four distinct elements.
(viit) A D-class of @ﬁw(Né) has two distinct elements if and only if it contains only
one J-class.
(iz) A D-class of ﬁﬁm(Né) has two distinct elements if and only if it contains a
non-singleton € -class.
() A D-class of @ﬁm(Ni) has four distinct elements if and only every its 7 -class
is singleton.
(zi) A D-class of POx(NZ) has four distinct elements if and only it contains a
singleton € -class.
(zti) The D-class of POx (Ni) which contains an idempotent € consists of two distinct
elements if and only if dome = dome.
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(ziii) The PD-class of ﬂﬁm(Ni) which contains an idempotent € consists of four disti-

net elements if and only if dome # dome.

Proof. Statements (), (#4) and (ii9) are trivial and they follow from the equality ww =1
and the corresponding statements of Theorem 4.

(iv) By (i) and (ii) we have that the J#-class of 90, (N%Z) which contains an
element a contains at most two distinct elements.

(=) Assume that .7’ in P05, (NZ) and o # . By Theorem 4(iii), f = aw = wa.
Then by the definition of @ we get that dom 3 = doma = dom« and ran3 = rana =
rana. If (i,7) € doma and (4, j)a = (m,n) then

(nam) = (man)w = (L,_])OMD = (Za])ﬁ = (i7j)wa = (_]J)Ck
This completes the proof of the implication.

The converse implication is trivial, and the last statement of item (iv) follows from
the above part of its proof.

(v) If dome = dome then eww = we # e. Conversely, suppose that ew = we # ¢.
Since domw = ranw = N X N and dome = rane, the equality ew = we implies that
dom(ew) = dome = rane = ran(we), and hence the definition of the element w € H (I)
implies that dome = dome.

Statement (vi) follows from items (i43), (v).

(vii) Theorem 4(iv) and (i), (#) imply that every P-class of the semigroup
e@ﬁm(Ni) contains at most four and at least two distinct elements. Suppose to the
contrary that there exists a Z-class D, in ,@ﬁw(Ni) which contains three distinct
elements such that o« € D, for some element « of the semigroup @ﬁm(Ni). By
Theorem 4(iv), wa, aw,waw € D,. Since wy # v # ~vw for any v € @ﬁw(Ni),
we have that wa = aw or @ = waw. If wa = aw then the definition of the
element w of @ﬁw(Ni) implies that & = wwa = waw. Similarly, if « = waw then
wa = wwaw = aw. This completes the proof of the statement.

(viii) (=) Assume that a Z-class of P0,(NZ) has two distinct elements and it
contains «. Then the proof of item (vii) implies that wa = aw and o = waw. By
Theorem 4(iv) we have that D, = H,.

Implication (<) is trivial.

(iz) Tmplication (=) follows form item (wviiz).

(<) Assume that there exists a Z-class of gzﬁoo(Ni) which contains a non-singleton
H-class H, of Qﬁm(Ni) for some « € ﬁﬁm(Ni). By Theorem 4(iii) we have that
H, = {a,aw} and a # aw = wa. Then the last equality implies that o = waw. Hence
by Theorem 4(iv), D, = H,, which complete the proof of the implication.

Statement (z) follows from (viii), (ix).

(i) By Theorem 2.3 of [1] any two #-classes of an arbitrary Z-class are of the
same cardinality. Now, we apply statement ().

Statement (zii) follows from (viii), (v).

Items (x) and (vi) imply statement (zii7).

We need the following three lemmas.

Lemma 5. Let o, 3 and v be elements of the semigroup (@ﬁm(Ni) such that o = Bary.
Then the following statements hold:
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(i) if (H(liomﬁ)ﬁ C H' then the restrictions Bliaoma: doma — N x N and
Ylrana: Tana — N x N are identity partial maps;

(i) if (Héomﬁ)ﬁ C V! then (i,7)8 = (j,i) for each (i,j) € doma and (m,n)y =
(n,m) for each (m,n) € ran«; and moreover in this case we have that doma =

doma, rana =Tana and (j,1)a = (i, )« for any (i,7) € doma, i.e., @ = waw.

Proof. (i) Assume that the inclusion (HY,,, g)B C H! holds. Then one of the following
cases holds:

(1) (Hioma)r C HY;

(2) (Hioma)o C V.

If case (1) holds then the equality a = Say and Lemma 3 imply that (H éom,y)'y C H.
By Theorem 2(1), (4,7)8 < (i,4) for any (i,7) € dom S and (m,n)y < (m,n) for any
(m,n) € dom~. Suppose that (i,7)8 < (4, ) for some (i,j) € dom a. Then we have that

(i, j)oe = (i, ) Bory < (i, jlory < (i, f)av,

which contradicts the equality o = Bary. The obtained contradiction implies that the
restriction Slgoma: doma — N x N is an identity partial map. This and the equality
a = PBary imply that the restriction |rana: rana — N x N is an identity partial map
too.

Suppose that case (2) holds. Then we have that (H},,,,)aw C H'. Now, the equality
a = Pary and the definition of the element w the semigroup 0 (Ni) imply that

aw = Payw = f(aw)(wyw).

Then we apply case (1). This completes the proof of (7).

(i) Assume that the inclusion (Hi,, 3)8 C V' holds. Then the equality o = Bary
implies that o = BBayy and the inclusion (Hj,y, )8 € V' implies that (Homss))88 C
H'. Now, by (i), the restrictions (88)|doma: doma — N x N and (79)|rana: rana —
N x N are identity partial maps. Since (Hjoy )8 € V', Theorem 2(2) implies that
(1,5)8 < (j,i) for any (i,7j) € domc. Suppose that (i,5)8 < (j,4) for some (i,j) €
dom «. Again, by Theorem 2(2) we get that (j,4)8 < (4,7) and hence we have that
(i,5) = (4,5)88 < (4,1)8 < (i,7), a contradiction. The obtained contradiction implies
that (4,7)8 = (j,4) for each (,j) € dom . Next, the inclusion (Hcliom,@)ﬁ C V! and the
equality o = Bay imply that (H éomﬂ/)'y C V'. Then the similar arguments as in the above
part of the proof imply that (m,n)y = (n,m) for each (m,n) € rana.

Now, the property that (i,7)8 = (j,4) for each (7,j) € dom« and (m,n)y = (n,m)
for each (m,n) € rana, and the equality o = fay imply that doma = doma and
ran ¢ = Tan a. Fix an arbitrary (i,7) € dom a. Put (m,n) = (i, 7)a. Then the above part
of the proof of this item implies that (m,n) = (i,j)a = (i,7)Bay = (j, i)y and hence
(n,m) = (m, )@ = (j, )arm = (3, ).

Lemma 6. Let o and 3 be elements of the semigroup f@ﬁm(Ni) and A be a cofinite
subset of N x N. If the restriction (af)|a: A —= N x N is an identity partial map then
one of the following conditions holds:
(i) the restrictions ala: A =~ Nx N and B|a: A = N x N are identity partial maps;
(ii) (i,§)a = (4,4) for all (i,7) € A and (m,n)B = (n,m) for all (m,n) € A.
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Proof. By Lemma 3 we have that either (H),, ,)a € H' or (Hi,,,.)a € V'. Suppose
that the inclusion (H},,, ) € H' holds. Then the definition of the semigroup 20, (Ni)

implies that (H(liomﬂ)ﬁ C H'. By Theorem 2(1) we have that
(i, ) < (i, )

for any (i,j) € doma and (m,n) < (m,n) for any (m,n) € dom . Suppose that
(i,j)a < (1,7) for some (i,75) € A. Then we have that

(i:3) = (1. 3)aB < (i.)8 < (i.3),
which contradicts the assumption that the restriction (af8)|a: A = N x N is an identity
partial map. Hence the restriction a|4: A — N x N is an identity partial map. Similar
arguments imply that the restriction 8|4: A = N x N is also an identity partial map.
Thus, in the case when (H3, . )a C H', item (i) holds.

Suppose that the inclusion (H}, ., ,)a € V' holds. By the definition of the semigroup
PO, (NZ) we have that

(Hiom )8 € V', 0 = (0@)(@B), (Hiom(aw))o@ C H'
and
(Hcliom(wﬁ))wﬂ c Hl-
Then the previous part of the proof implies that the restrictions (aw)|a: A = N x N
and (wf)|a: A = N x N are identity partial maps. Since (aw)w = « and w(wp) = B,
the inclusion (H3,,, ) € V! implies that (i) holds.

Lemma 7. Let « and B be elements of the semigroup @ﬁm(Ni) and A be a cofinite
subset of Nx N. If (i,j)aB = (j, i) for all (i,j) € A, then one of the following conditions
holds:
(i) the restriction ala: A —= N x N is an identity partial map and (m,n)B = (n,m)
for all (m,n) € A;
(i1) (i,5)a = (4,4) for all (i,j) € A and Blx: A — N x N is an identity partial map.

Proof. The assumption of the lemma implies that the restriction a(8w)|a: — N x N is
an identity partial map. Hence by Lemma 6 only one of the following conditions holds:
(1) the restrictions as: A = N x N and (Bw)|a: A — N x N are identity partial
maps; -
(2) (i,4)a = (4,1) for all (i,5) € A and (m,n)Bw = (n,m) for all (m,n) € A.
Since (fw)w = B, the above arguments imply the statement of the lemma.

Elementary calculations and the definition of the semigroup z@ﬁw(Ni) imply the
following proposition.

Proposition 8. Let o and 5 be elements of the semigroup f@@,o(Ni). Then the following
assertions hold:

(i) if the restriction Blrana: rana — N X N is an identity partial map then of =
al = a;

i) if the restriction Blgoma: doma — N x N is an identity partial map then Sa =

i) if the restriction 3 d N x N i identity partial then B
o =«
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(#2) if (m,n)B = (n,m) for all (m,n) € ran« then af = aw;
() if (m,n)B = (n,m) for all (m,n) € doma then fa = wa.

Theorem 5. 7 = ¢ in P0,(N%).

Proof. The inclusion 2 C ¢ is trivial.

Fix any «a,8 € @@,@(Ni) such that «_# 3. Then there exist 7Ya,da,78,95 €
PO (NZ) such that o = 7,80, and 5 = ygads (see [2] or [3, Section IL.1]). Hence we
have that

o = Y,780030, and [ = v3vaBda03.
Suppose that
(Héom(%%))va’yﬁ < H'.
By Proposition 3,
(Hfliom(v/sva))’757a CH.
Lemma 5(7) implies that the restrictions
(Ya¥8)|ldoma: doma = N XN,  (030a)|rana: rana — N x N,

(v8Ya)|domg: dom B =N x N and (6408)|ranpg: ranf — N x N
are identity partial maps. Then by Lemma 6 and Proposition 8 there exist wy,ws € H(I)
such that yga = wia, adg = aws, 7.0 = w1 and Bd, = Bws. This implies that
o = 'Yozﬁ(sa = w1 80a = wiPuws and 8= ’Yﬁ()é(s/j = wlaég = w1Qws,
and hence by Theorem 4 we get that aZ8.
Suppose that
1 1
(Hdom('ya'yﬁ))’yoé’}/ﬂ cV.
Then by Proposition 3 and Lemma 3 we have that

(Hcliom('yfg'ya))’YB'yoz - Vl'

Now, as in the above part of the proof the statement of the theorem follows from
Lemma, 5(i¢), Lemma 7 and Proposition 8.
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Hexait N 2< — muoxuHa N? 3 4aCTKOBUM HOPSIKOM, BU3HAUEHIM SK JOGYTOK
3BUYAMHOTO JIHINHOTO OPAAKY < HAa MHOXKWHI HATypasbHux udnces N. Busue-
HO HamiBrpyny 0. (Ni) MOHOTOHHUX 1H’€KTUBHMX YaCTKOBUX IE€PETBOPEHD
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YJaCTKOBO BIIOPAIKOBAHOI MHOXKWHU NZ, SIKi MAIOTh KOCKIHYIeHH] 00/1aCTi BU3HA-
wenHd Ta 3HaveHHd. OUUCYEMO BIACTUBOCTI e1eMeHTiB HamBrpymu F0 (Ni)
K MOHOTOHHHWX YAaCTKOBHUX OI€KIIl YaCTKOBO BITOPSITKOBAHOI MHOXKWHHI Ni i
J0BOJMMO, WO I'Pyla OJMHUIL HamiBrpyuu PO (Nzg) i3oMopdHa HMKIYHIT
rpymi Apyroro nopaaky. Takox OnrCyeMO HigHAMBIPYIY iIEMIIOTEHTIB HaIIB-
rpymn Y0 (N2) Ta simmomenna I'pina P20 (NZ). Bokpema, n0BeaeHo, mo
2=798 ,@ﬁm(Ni).

Karowo6i caosa: HAIBrpyna YacTKOBUX OI€KIIil, MOHOTOHHE YaCTKOBE
BiJI0OpaXKeHHs, 11eMII0TeHT, BigHomenas [ pina.



