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1. Introduction. Optimal control of determined systems governed by partial di-

fferential equations (PDEs) is currently of much interest [1, 4, 6, 7, 17, 18, 19, 20, 21, 22,
25, 26, 27, 29, 30, 31]. Optimal control problems for PDEs are most completely studied
for the case in which the control functions occur either on the right-hand sides of the
state equations, or the boundary or initial conditions (see for example, [14], [27], [31]). So
far, problems in which control functions occur in the coefficients of the state equations
are less studied (see for example, [1], [4], [26], [29], [30]). A simple model example of such
type problem is the following (see [4]).

Consider the problem of allocating resources to maximize the net benefit in the
conservation of the single species while the cost of the resource allocation is minimized.
In this case a state of controlled system for given control v € U := L*(Q x (0,T)) is
defined by a weak solution y = y(v) = y(z,t;v), (z,t) € Q x (0,T), from the space
L2(0,T; HY(Q)) N L3(Q x (0, 7)) N C ([0, T); L3(£2)), of the following problem:

y—Ay+y?P—vy=0 in Qx(0,7),

=0, =yo € L3(Q), y>=>0 ae. onQx(0,7).
] - Y|, = Yo ), v a.e. on (0,7)

Here €2 is a bounded domain in R™ with piecewise smooth boundary I'; 7" > 0. The
objective is to balance the two features of maximizing the population and minimizing
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the cost of the control, representing the resources. Therefore the cost functional has the
form

J(v) ::/0 /Q [y(z, t;v) — plv(z, t)[?] dedt Vv € U,

where y is the population density of a species, v is the resource function, and p > 0 is
given constant. An optimal control problem is to find a function u € Uy := {v elU
0<v<M aeinQx(0,7)} (here M = const > 0 is given) such that
J(u) = sup J(v).
veUy

This problem is nonlinear, since the dependence between the state and the control
is nonlinear.

Various generalizations of this problem were investigated in many papers, including
[1], [4], [6], [7], [17]-[20], [21], [25], [26], [29], [30] where the state of controlled system is
described by the initial-boundary value problems for parabolic equations.

In [1], [26], [29], [30] the state of controlled system is described by linear parabolic
equations and systems, while in [1] and [26] control functions appears as coefficients
at lower derivatives, and in [29], [30] the control functions are coefficients at higher
derivatives. In [26] the existence and uniqueness of optimal control in the case of final
observation was shown and a necessary optimality condition in the form of the generalized
rule of Lagrange multipliers was obtained. In paper [1] authors proved the existence of at
least one optimal control for system governed by a system of general parabolic equations
with degenerate discontinuous parabolicity coefficienti. In papers [29], [30] the authors
consider cost function in general form, and as special case it includes different kinds of
specific practical optimization problems.

In papers [4], [17]-[20], [21], [25] authors investigate optimal control of systems
governed by nonlinear PDEs. In particular, in [4] the problem of allocating resources
to maximize the net benefit in the conservation of a single species is studied. The
population model is an equation with density dependent growth and spatial-temporal
resource control coefficient. Numerical simulations illustrate several cases with Dirichlet
and Neumann boundary conditions. In [18] the optimal control problem is converted to
an optimization problem which is solved using a penalty function technique. Paper [21]
presents analytical and numerical solutions of an optimal control problem for quasilinear
parabolic equations. In [22] the authors consider the optimal control of a degenerate
parabolic equation governing a diffusive population with logistic growth terms. In paper
[25] optimal control for semilinear parabolic equations without Cesari-type conditions is
investigated.

In this paper, we study an optimal control problem for systems whose states are
described by problems without initial conditions or, other words, Fourier problems for
parabolic equations. The model example of considered optimal control problem is a
problem which differs from the previous one (see beginning of this section) by the followi-
ng facts: the initial moment is —oo and, correspondly, the state equation and control
functions are considered in the domain © x (—oo,T'), a boundary condition is given on
the surface ¥ = 092 x (—o00,T'), while the initial condition is replaced by the condition

im ly G 6] zz@) =0
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The problem without initial conditions for evolution equations describes processes
that started a long time ago and initial conditions do not affect on them in the actual
time moment. Such problem were investigated in the works of many mathematicians (see
[5, 12, 28] and bibliography there).

As we know among works devoted to the optimal control problems for PDEs, only
in papers [6], [7] the state of controlled system is described by the solution of Fourier
problem for parabolic equations. In the current paper, unlike the above two, we consider
optimal control problem in case when the control functions occur in the coefficients of
the state equations. The main result of this paper is existence of the solution of this
problem.

The outline of this paper is as follows. In Section 2, we give notations, definitions
of function spaces and auxiliary results. In Section 3, we formulate the optimal control
problem. In Section 4, we prove existence and uniqueness of the solutions for the state
equations. Furthermore, we obtain estimates for the weak solutions of the state equations.
Finally, the existence of the optimal control is presented in Section 5.

2. Preliminaries. Let n be a natural number, R” be the linear space of ordered
collections = = (x1,...,z,) of real numbers with the norm |z| == (|z1|> +... +|z.[?)V/2
Suppose that €2 is a bounded domain in R™ with piecewise smooth boundary I'. Set
S:=(-00,0],Q: =0 x5, X:=T x5, Q:=Q x {t} for each ¢t € R.

For any measurable set G C R™, where m = n or m = n + 1, and arbitrary
q € [1,00] we denote by L(G) standard Lebesgue space with norm || - ||Le(e). Under
Ll (Q), where ¢ € [1,00], we mean the linear space of measurable functions on @Q such
that their restrictions to any bounded measurable set Q' C @ belong to the space LI(Q’).

Let X be an arbitrary Banach space with the norm || - | x, ¢ € [1,00]. Denote by
L .(S; X) the linear space of measurable functions defined on S with values in X, whose
restrictions to any segment [a,b] C S belong to the space L4(a,b; X).

Let v € R,q € [1,00) and let X be as above. Put by definition

L(8:X) 1= {1 € Lipe(8:) | [ 2 5(0) | < o).
s
This space is a Banach space with respect to the norm

s = ([ e hriar) ™

S

If X is a Hilbert space with the scalar product (-,-)x then the space L2(S; X) is also a
Hilbert space with the scalar product

(F.9)13(5:x) = / e (F(1), g(t))x dt.

S

Denote by C!(I), where I C R is an interval, the linear space of continuously
differentiable functions on I with compact supports ( if I = (1,t2), then we will write
Cl(t1,t2) instead of C}((t1,t2))). Under C(I;X), where I C R is an interval and X
is an arbitrary Banach space, we mean the linear space of continuous functions defined
on I with values in X. If I is a bounded closed interval then C(I; X) is Banach space



Mykola BOKALO, Andrii TSEBENKO
42 ISSN 2078-3744. Bicuuk JIpBiB. yn-ty. Cepis mex.-mar. 2016. Bumyck 81

with a norm ||z||c(,x) = max lz(t)||x . In case when I is an open interval we say that
€
Zm — 2z in C(I; X) if for each 71,75 € I (11 < 72) we have ||z—2m | () ,ra:x) — 0.
m—o0 m—oo
Let HY(Q) = {v € La(Q) | vs; € L2(Q) (i = 1,n)} be a Sobolev space, whi-
ch is a Hilbert space with respect to the scalar product (v, w)g1(q) := i {VUVU} +
Q

vw} dz and the corresponding norm ||v]|g1(q) = ([ {|Vv|? +|v]?} dz) 1/2, where Vv :=
)

2. Under H}(2) we mean the closure in H'(Q) of the

n
(Vg V2, )s [VOU? = Y |vg,
i—1

7
space C2°(2) consisting of infinitely differentiable functions on €2 with compact supports.
Denote
[ |Vv|]?dz

K := inf (L 1
veEH(Q), v#0 f |U|2dI ( )
Q

1/2
Taking into account inequality (1), we define a norm [|v[| g1 (o) = (|VU\2 dm) on H}(Q),

which is equivalent to the standard norm on H*().
It is well known that the constant K is finite and coincides with the first eigenvalue
of the following eigenvalue problem:

—Av=Av, wlga =0. (2)
From (1) it clearly follows the Friedrichs inequality
/\Vv|2dx > K/ lv|*dz Vv e HJ(Q). (3)
Q Q
Let ¢ > 1 be a real number and ¢ := %, that is, % + % = 1. We denote

VQ) = H}(Q) N LYQ).
It is well known that
(V)" == H'(Q) + L7 ().

Also we denote [ zdz := [ z(z,t)dz for each z € L, (S; L*(Q)) and for a.e. t € S.
Q o)

Proposition 1. (Aubin theorem, see [2] and [3, p. 393]). If ¢ > 1,7 > 1 are any real
K
numbers, t1,t2 € R (t1 < t2), W, L, B are any Banach spaces such that W C L © B (here

K
C means compact embedding and ¢ means continuous embedding), then

{w € L(ty,t; W) | w’' € L (t1,t2;B)} - (L‘I(tl,tg;ﬁ) N C([tl,tz];B)),

that is, if sequence {wp,}men is bounded in the space Li(t1,t2; W) and sequence

{w!,}men is bounded in the space L"(t1,t2;B), then there exists a subsequence

{Wm, }jen C {wm}men and function w € LI(t1,t2; L)NC([t1, t2]; B) such that wy,, — w
: j—o0

strongly in Li(t1,to; L) and in C([t1, t2]; B).
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3. Formulation of the main problem and results. Let U be a closed li-
near subspace of L>(Q), for example, U := L>®(Q) or U := {u € L™(Q) | v(z,t) =
0 for a.e. (z,t) € Q\ Qi 0}, where t* < 0 is arbitrary fixed. Assume that U is the space

of controls and for given M = const > 0 the set Uy := {v ceU ’ 0<v<M aein Q}

be the set of admissible controls.
We assume that the state of the investigated evolutionary system for a given control
v € Uy is described by a weak solution of problem

n

ye = D (@i (@)ye)a; + @yl 2y —v(a, )y = f(2,1), (2.t) €Q, (4)

ij=1

yly, =0, (5)

: — At
Jim ey 1)llze @) =0, (6)

where A € R is given.
Before defining the weak solution of problem (4)-(6), we make some assumptions:

(A): a;; € L*°(2) (i,j = 1,n), there exists u =const> 0 such that
S oa(@)&€ = > |&|* for ae. z € Q and for all £ € R", and
k=1

ij=1
M — uK > 0;

(C): c € L>®(Q), c(z) = co = const > 0 for a.e. (z,t) € Q;

(F): f € Lo (S5 L2 (Q));

(P): p>2.

Denote p’ = p%? ie., % + 1% =1.

Definition 1. The function y € L7 (S; H} () N LY (S; LP(Q)) N C(S; L*(Q)) is called
a weak solution of problem (4)—(6) if its derivative y; belongs to L7 (S;L?(S2)), and the

following integral equality holds

/ {W/J + Zn: iz, a, + (clylP 2y — Uy)z/)} dx

Q, i,j=1

= /fz/J dz  for a.e. t € S and for all ¢ € VP(Q). (7)

O

A weak solution y of problem (4)-(6) will be denoted by y, or y(v), or y(z,t),
(z,1) € Q, or y(z, t;v), (z,1) € Q.

Remark 1. Research methodology of problems similar to problem (4)—(6) is quite well
developed, in particular, in papers of one of the authors [9]-[11],[12]. But exactly the
same problem as considered here, more precisely, Fourier problem for semilinear parabolic
equation in bounded spatial variables domains, is not investigated in literature. Moreover,
estimates of the weak solution are important for us. So, for a complete presentation of the
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material, in Section 3 we give full proof of existence and uniqueness of the weak solution
of problem (4)—(6) (for a given v € Us) and its estimates.

Hereafter we assume that A > 0 and the cost functional has the form

J(v) = // [ly(z, t;v)| — p(z, t)|v]* ] dadt, veU, (8)
Q

where p € L1(Q) is given.

Remark 2. If A > 0 and (6) hold, then functional J is well defined. Indeed, (6) implies
that [|y(-,t)||r2() < CeM Vt € S, where C = const > 0 . Hence, Cauchy-Schwarz

inequality yields [[|y(z,t)|dzdt = [dt [|y(z,t)|dz < (mes, Q)2 [|ly(-,t)|r2q)dt
Q s Q S
< C(mes,Q)/? JeMdt < oco. Hence, the first term of functional J is well defined. As
s

well p € L1(Q), v € L*>(Q), so the second term of functional J is also well defined.

We consider the following optimal control problem: find a control v € Uy such
that

J(u) = Usg[? J(v). (9)

We briefly call this problem (9), and its solutions will be called optimal controls.

The main result of this paper is the following theorem.

Theorem 1. Let conditions (A), (C), (P), A> M — uK hold and
f e LX(S; L*(Q)). (10)
Then problem (9) has a solution.

Remark 3. In real processes function y describes the density of population. In this cases
the additional condition y > 0 is required. This condition is satisfied if f > 0 (see Lemma
2).

4. Well-posedness of the problem without initial conditions (Fourier
problem) for nonlinear parabolic equations.

Lemma 1. If conditions (A), (C), (F), (P) and A > M — uK hold, then problem (4)—(6)
has at most one weak solution.

Proof. Assume the opposite. Let y1, y2 be two weak solutions of problem (4)—(6). Substi-
tuting them one by one into integral identity (7) and subtracting the obtained equalities,
for the difference z = y; — yo we obtain

" n
/ {Zﬂ/’ + Y iz, + P — [ye P Pye)d

Q i,j=1

—vzw] dr =0 for every ¢ € VP(Q) and for a.e. t € S. (11)
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From (6) it follows the following condition

6_2/\t/|2|2 dr -0 as t— —oo. (12)
Qy

Taking in (11) ¥(-) = z(-, t), we get

n

/ {ztz + Z 522, 2x; (13)

o, ij—1
ey P2y — |yelP2y2) (y1 — y2) — v|z|2} dr =0 and for ae. t€S.

Let us take arbitrary numbers 71,75 € S (11 < 72). Multiplying identity (13) by 2e~2*,
integrating from 71 to 7o and using the integration-by-parts formula, we obtain

To
t=T1o n
-2 2 —2)Xt
e t/|z(337t)| dx‘t:n +2//e 1‘{ E AijZa; Za;
Q

0 =1
el P2y — a7 22) (1 — 12) + (= v)|2f?] dadt = 0.

Thus, taking into account that ¢ > 0, (|s1|P~2s1 —|s2|P2s2)(s1 —82) = 0Vs1, 2 € R,
and using (A) and (3), we obtain

67)‘72/\2(1:,7'2)|2dx - 67)\71/|Z(I,7’1)|2d56
Q Q

+ 2// e M\ + uK — M)|2|* dedt < 0. (14)
T1Q

Since A > M — pK, from (14) we obtain

672)\72/|Z($,T2)|2d$<672)\T1/|Z(1},T1)|2dx. (15)
Q Q

In (15) we fix 7 and pass to the limit as 71 — —oo. According to condition (12) we
obtain the equality e=2*2[ |z(z,72)|? dz = 0. Since 72 € S is an arbitrary number, we
Q

have z(z,t) = 0 for a. e. (x,t) € Q, that is, y1(z,t) = ya(z,t) = 0 for a. e. (z,t) € Q.
The resulting contradiction proves our statement. U

Remark 4. In case M — uK < 0, there is no need to require additional condition on
solutions behavior on infinity (like condition (6)) to insure uniqueness of solution of
problem (4)—(6) (see [13]).

Lemma 2. Let conditions (A), (C), (F), (P), f =20 and X > M — puK are satisfied.
Then the weak solution of problem (4)—(6) is nonnegative.



Mykola BOKALO, Andrii TSEBENKO
46 ISSN 2078-3744. Bicuuk JIpBiB. yn-ty. Cepis mex.-mar. 2016. Bumyck 81

i <
Proof. We denote y™ (. t) :={ %’(x’t)’ li‘ZEZZii;S

der integral identity (7). In this identity for a.e. t € S we take ¢(-) =y~ (-, t). Then

J{6 0+ 3 a1, + el ol o

Q4 i,j=1

for a.e (x,t) € Q. Let us consi-

= /fy* dr forae. tes. (16)

Multiplying identity (16) by e~ 2, integrating from 7y to 7 (71,7 € S arbitrary
numbers, 71 < 72) and using the integration-by-parts formula, we obtain

_2)\7'2/|y [I,' T ‘ d{E—f —2)\7'1/|y 1. 7_1 | dx—f—A// —2)\t|y ‘2d(£dt

71 Q
/ [ ™Y @i ), +cly P = oly™ ] dadt = / fyme™™ dudt. (17)

0 i,j=1 71 Q

Since f > 0 and condition (A) hold, we obtain

1 oo [ 1 oo [
¢ 22 2/\y (x,72)|2dx—§e 22 1/|y (z,71)] dx
Q

Q

TL

+// e M (N + uK — M)y~ |*] dzdt <0
71 2

Since A > M — pK, then from previous inequality we obtain

/ (2, m) 2 d < e / ly~ (2, m)|? de. (18)

We pass to the limit when 71 — —o0 in (18). Taking into account that 7o € S is arbitrary
in (18) we have e =2 2 |y~ (z, 72)|* dz < 0, we conclude that |y~ (z,t)|r2(q) = 0 for a.e.
Q

t € S, what yields that y~ (z,t) =0 a.e. in Q. O

Theorem 2. Suppose that conditions (A), (C), (P), (10) and A\ > M — uK hold. Then
problem (4)—(6) has a unique weak solution y, and y € L3(S; H}(Q)) N LY (S; LP()),
yr € L3(S; L?(2)). Moreover, the following estimates hold:

t

e My D7) < O /B*QASI\f(wS)H%zm) ds, t €5, (19)
”yHL2 S;HE(€2)) + ||yt||L2 S;L2(Q)) + Hy”LP(S iLr(Q)) X C2||fHL2 S;L2(9Q))’ (20)

where C1,Cy are positive constants depending on M, K, u and \ only.
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Proof of Theorem 2. First, for each m € N we define @, := Q x (—=m,0], &, := T x
(=m, 0], fr(-,t) := f(-,t), if —m <t <0, and f,(-,t) :=0, if t < —m.
Consider the problem of finding a function y,, satisfying (in some sense) the equation

n

Ym,t — Z (aij (-r)ym,wi)a;j + C(m)|ym|p72ym - 1}(.13, t)ym = fm($,t), (x,t) € Q'rru (21)
i,j=1

boundary condition

=0, (22)
and initial condition
Ym(x,—m) =0, x €. (23)

A weak solution of problem (21)—(23) is a function y,, € L?*(—m,0; H}(Q)) N
LP(—m,0; LP(2)) N C([—m, 0]; L%()), whose derivative y,,; € L*(—m,0; L3(Q)), and
which satisfies condition (23) and the following integral identity

/{ym,tw + Z aijymwiwwj + (C|ym|p_2ym - Uym)w} dz

&, ij=1
= /fmz/J dzdt for a.e. t € [-m,0] and for all ¥ € VP(Q) . (24)
Q

Lemma 3. Let conditions (A), (C), (F) and (P) hold. Then problem (21)—(23) has
unique weak solution y,,. Moreover, for any A > M — uK this solution satisfies following
estimates:

t
3*2/\t/|ym\2dz’ <Gy / /672’\3\f(x,s)|2 dzds, te€[-m,0], (25)
Q —-m Q
J[ &2 [1Tunl? 4 lnal? + ] dede < Co [ [ 21,2 (26)
Qum @m

where C1,Cy are positive constants depending on M, K, and A only.

The proof of Lemma 3 is given later in this section.

For every m € N we extend y,, by zero for the entire set ) and keep the
same notation y,, for this extension. Note that for each m € N, the function y,,
belongs to L2(S; HL(Q)) N LP(S; LP(Q)) N C(S; L3(Q)), its derivative y,; belongs to
L?(—m,0; L(£2)), and y,, satisfies integral identity (7) with f,, substituted for f, i.e.,

/{ym,tw + Z aiijiz/}mj + (Clym|p_2ym - Uym)w} dx = /fmw dx
Q H,j=1 Q.
for a.e. t € S and for all ¢ € VP(Q). (27)
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Thus, ¥, is a weak solution of problem (4)—(6) with f,, substituted for f, and according
to Lemma 3 and condition (10), for y,, we obtain estimates

t

e lym (- D)lI72 () < Cr / e f(sll7ayds, tES,  (28)

2 2 2
||ymHL§(S;H(§(Q)) + ||ym,t||L§(s;L2(Q)) + ||ym||i§(s;m(g)) < C2||f||L§(s;L2(Q))- (29)

According to Proposition 1 and the compactness of the embedding HE () C L?(€),
estimate (29), we obtain that there exist a subsequence of the sequence {y,, } (still denoted
by {ym} for simplicity) and the function y € L3 (S; H}(€2)) N LY (S; LP(Q2)) NC(S; L*(2))
such that y; € L3(S; L*(2)) and

Yym — y  weaklyin L3(S; Hy (), (30)
Ymit —> Yt weakly in L3 (S; L*(Q2)), (31)
Ym — Y weakly in L% (S; LP(Q)), (32)
ym — y in C(S;L%(Q)), (33)

Ym —> Y ae in Q, (34)
[ymlP 2y — [yl weakly in L5 (Q). (35)

From (35) we obtain
// |ym P 2ymp dadt — // cly|P 2y drdt Vip € VP(Q), Vo € C}(—0o0,0).
Q Q

(36)
Let us show that the function y is a weak solution of problem (4)—(6). To do this,
we multiply identity (24) by arbitrary ¢ € C}(—00,0) and integrate over t € S

// {y7n,,t7;[}<p +
Q
Y EVP(Q), ¢ C{—00,0). (37)

Now we let m — oo in identity (37), taking into account (30), (31), (36) and the definition
of the function f,,. From the obtained integral identity, taking into account Du Bois-
Reymond lemma, we get identity (7). Next, taking into account (33), we let m — +o0 in
(28). From the resulting inequality and condition (10), we obtain condition (6). Hence,
we have proven that y is a weak solution of problem (4)—(6). And from estimate (29) and
convergence (30)—(32) we obtain estimate (20). Estimate (19) easily follows from (28)
and (33). O

ij=1

> it a0+ (Clyml? 2 — v} dodt = [[ fodadt,
Q

Proof of Lemma 3. We fix arbitrary m € N and, for simplicity, for the weak solution y,,
of problem (21)—(23) we use notation z.

To prove our statement we use Galerkin’s method. Let {w;|l € N} be a linear
independent set of functions from VP(Q), which is complete in VP(Q2), that is, the set of
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all its finite linear combinations is dense in VP(Q). According to Galerkin’s method, for
every 7 € N we put

z(zt) =Y errt)wn(z), (2,t) € Qm,
k=1

where ¢, 1, ..., ¢, are absolutely continuous functions, which are solutions of the Cauchy
problem for the system of ordinary differential equations

n
-2
/Zr,th dr + /{ g QijZr Wiz, + C|Zr\p Zrwp — vzrwl} dx

Q4 Qy 1,j=1
= /fwl de, te[-m,0], I=1,r, (38)
Qy
cri(—m)=0, l=1,r. (39)
The linear independence of functions wi,...,w, yields that the matrix (b )} ,—; is

positive-definite, where b}, ; = [, wrw; dz (k,I = T,7). Thus the system of ordinary
differential equations (38) can be transformed to the normal form. Hence, according to
the theorems of existence and extension of the solution to this problem (see [16]), there

exists the global solution ¢, 1, ... .., ¢, of problem (38), (39), defined on [—m, ¢ >, where
t € (—m,0], ”>" means either ”)” or 7. Later we will show that [-m,t >= [-m,0].
Multiply the equation of system (38) with number [ € {1,...,7} by e ?*¢,; and
sum over [ € {1,...,r}. Integrating the obtained equality over t € [-m, 7| C [-m,t >,
we have
T T n
//e‘”tzr,tzr dxdt + / /6_2/\t[ Z Qij2r,z; Zrz;
—-m Q -m Q =1
+c|zp|P — v|zr|2] dzdt = / /efw‘tfzr dzdt. (40)
-m Q

From (40), using (39), Cauchy inequality and the integration-by-parts formula, we obtain

1 T
5/672AT|Z7,(I,T)|2 dx + A / /(372)‘t\,7,'r|2 dxdt
Q

—-m Q
+ / /6_2>\t|: Z Qij2r,a; 2re; + Cl2p P — v|zr|2} dxdt (41)
“m Q ij=1
T 1 T -
<3 / /e_2>‘t|zT|2dxdt+ — / /6_2’\t|f\2d:ﬂdt, T € [—m,t >,
2 261
—m —-m Q

where €; > 0 is arbitrary number.
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Since v(z,t) < M for a.e. (z,t) € Q, using (3) and condition (A), from (41), we
have

1 T
i/eszT\z,.(x,T)F de+ (A= M+ pK(1 —e2) — %1) / /672)\t|2’7«|2 dzdt
Q —m
r 1 r _
+ / /e‘”t [e211| V2, |* + ol [P] ddt < %0 / /6_2’\t|f|2d9(;dt7 TE[-m,t>.
1
—m Q —m

(42)

Since A\ > M — uK then one can easily choose €1 > 0 and €5 > 0 such that
A= M+ pK(1 —e2) — 5 > 0 (for example, e = %7}“>0and51:%>0).
This implies the followmg inequality

/672/\T|ZT(I,T)|2 dz + Cs / /e*QAt[\VzAQ + |2 |? + |2 [P] dadt (43)
Q -m Q

<Oy / /e_”‘t\ﬂ2 dxdt, 7€ [-m,t >,

—m Q

where positive constants C3, Cy do not depend on m and r.
From (43) we get the following estimates

72)‘7/|z z,7)|* dr < C // R F12dadt, T € [-m,t >, (44)

—m
/ / Va2 + |22 + |2 [7] dadt < 02/ / TP dedt, 7 € [-m, T > . (45)
e —m Q

Estimate (44) yields that the sequence { ess sup ||zr(-,t)H%2(Q)} is bounded by a
te[—m,t>
constant, which is independent on ¢. This yields that [—m,t >= [—m, 0].
Multiply the equation of system (38) with number I € {1,...,7} by 6_2’\’50’“(15) and

sum over | € {1,...,r}. Integrating the obtained equality over t € [—m, 0], we obtain
// 2272, +f? d;l:dt+// 72” Z Qij 2, Zr,m; 8
Qm Qm nI=t
+elze P2 22 s — vzrzr’t} dzdt = // e‘zxtfzr,t dzxdt. (46)

From (46), using (39) and the integration-by-parts formula and the fact that in our case

_ 1
‘Zr|p 227"27",1& = I;(|Zr‘p)t7
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we obtain

1 n
//672”|zm|2 dzdt + 5/ z ij2rz;(7,0)2p 2, (7,0) dv

m

+)\// —2xt Z Qij2r s 2y dadt + = /c(a: |z (2,0) P da

i,j=1

// —2)\tC|ZT‘p dadt — // ”tfzrtdﬂﬁdt-f' // Y02y 2p 4 dadt. 47

Using conditions (A), (C) and Cauchy inequality from (47) we obtain

// T dxdt+)\u// TN 2, |? dadt

Q777

2>\
0 // 2N P dadt < —// —2M £12 dadt
M
// e Mz ? da dt+ 61 62 // M2 dadt. (48)

Q m

From (48), using (45) and taking e, > 0 and &2 > 0 such that 1 — < — 22 > 0, we get
the following estimate

// e M) 2,1 dxdt < Cs // e M| f|? dxdt, (49)

where constant C's > 0 is independent on m and 7.

Estimates (44), (45), (49) yield that sequence {z,}°2; is bounded in the spaces
L2(—m,0; H} (), L>®(—m,0;L3(Q?)) and LP(—m,0; LP (Q)), and z,.; is bounded in
L?(—m,0; L?(£2)). Consequently, taking into account Proposition 1, we obtain exi-
stence of the subsequence of {z.}°%, and the function z € L2(—m,0; H}(Q2)) N
L% (—m,0; L2(Q2)) N LP(—m, 0; LP())) such that z; € L?(—m,0; L%(Q)) and

ok weakly in  L*(—m, 0; Hy(Q)), (50)

Zrp 2 2 weakly in  L%(—m, 0; L*(Q)), (51)

Z =2 weakly in  LP(—m, 0; L?(Q)), (52)

Zr 22 strongly in  L*(Q), and in C([-m,0]; L*(2)), (53)
Zr 2z ae in Q, (54)

|2, P22, havd 12|P7%2  weakly in LZ;\/(Q). (55)
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From (54), (55), similar to the convergence (36), we have convergence

// |z P22 1h dadt v // c|z|P~221p dadt. (56)

Let vy, ..., (k € N) are any real numbers and ¢ € C!(—m,0) is arbitrary function. For

every j € {1,...,k} we multiply the equation of system (38) with number j € {1,...,r}

by v;, summarizing obtained equations and pass to the limit as » — oo, denoting ¢ =
k

> v jw; and integrating resulting equality over ¢t € [—m, 0], we get
Jj=1

// zp drdt + //{ Z Qij2g; Vo, +C|z|p_2z¢ — vzw}godxdt
Qm Qm ihj:l

:/ fip dzdt Yo € CH—m,0). (57)
Qm

Since the set {riwi + ... + vpwy | k€ N,uvy,...,v; € R} is dense in VP(€2), then (57) yields
the equality

// zpthp dadt + //{ Z Qij2e, Vs, + 2P 220 — v2) b dadt

3,j=1

= / fip dzdt, ¢ € VP(Q), @€ CH—m,0). (58)
Q’VTL
Using Du Bois-Reymond lemma we obtain identity (24). Thus, we have shown that

problem (21)—(23) has a solution z = y,,,. From (44), (45) and (49), taking into account
(50) — (53), we obtain that function y,, satisfies estimates (25), (26). O

5. Proof of the main result.

Proof of Theorem 3. Ezxistence of the solution. Since the cost functional J is bounded
above, there exists a maximizing sequence {vy} in Ug: J(vg) T sup J(v). The sequence
0 pelUy
{v} is bounded in the space L*°(Q), that is
0 < wvg(z,t) < M forae. (z,t)€qQ. (59)

Since for each k € N the function yi := y(vr) (k € N) is a weak solution of problem
(4)—(6) for v = vy, then the following identity holds:

// Yt + Z i Yk o Yy 0 + (clynlP 2 yp — vkyk)W} dxdt

1,0=1

_ // fgdedt, e VP(Q), ¢ € Cl(—o0,0). (60)
Q
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According to Theorem 2 we have the estimates
t

e Mlyr ()72 @) < O /E’QASIIJ”(»S)H%zm) ds, t €5, (61)
2 2 2
Hyk||L§(S;H3(Q)) + Hyk.,tHLi(s;H(Q)) + ||yk||i§(S;LP(Q)) < 02Hf||L§(s;Lp(Q))~ (62)

Taking into account estimate (62) for arbitrary 71,72 € S (11 < 72) we obtain

T2
[ el de < G, (63)
T1

where Cg > 0 is a constant which depends on 7 and 79, but does not depend on k.
Since p € L*(Q), using (59), we get that sequence {/pv}72; is bounded in L*(Q).

Since VP(Q) © H(Q)C LX(Q) (see [23] c. 245), then VP(Q)C L(Q). According to
Theorem 1 with W = VP(Q), £ = L*(Q), B = L*Q), ¢ = 2, r = 2, estimates
(59), (62), (63) yield that there exists a subsequence of the sequence {vg,yx} (still
denoted by {vi,yx}) and functions u € Uy, ¢ € L*(Q), y € L3(S; H3(Q))NLE(S; LP(Q)),
yr € L3(S;L?()) such that

vk Uk -weakly in  L™°(Q), (64)
— 00
Yk Y weakly in L3 (S; HL(Q)), (65)
—00
Yk =2 Y weakly in L% (S; LP(Q)), (66)
— 00
Yk Y in  C(S; L*()), and strongly in L7 .(S; L*(9)), (67)
—00
yr — y ae.on @, (68)
k—o0
Yet >y weakly in L3(S; L2 () (69)
—00
il — lol weakdy in L3(S: L2(9) (70)
—00
Note that (65) implies the following
Y — Yy Ykas — Yp, (i=1,n) weakly in L _(S;L*(Q)). (71)
k—o0 k—o0
As in (56), from (62), (67) and [?, Lemma 2.2], we obtain
clynl"~yr — clyl”?y  weakly in (@) (72)

Let us show that (64) and (67) yield

// YrVEp dedt v // yuppdrdt ¥ b € VP(Q),Y ¢ € C(—0,0). (73)
—00
Q Q

Indeed, let g := v, t1,t2 € S be such that supp ¢ C [t1,t2]. Then we have

ta
// Yrvrg dadt = //(ykvk — yvg + yv)g dedt
Q

t1 Q
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tz t2

= //yvkgdacdt—i—//(yk — y)vgg dadt. (74)
t1 Q t1 Q

From (59) and (67) it follows

‘f/(yk — y)ung dadt| < (7/|vkg|2dxdt)1/2(/t2/|yk yfdzat)” 0. (@)
t1 Q

t1 Q t1 Q

Thus, using (64) and (75), (74) implies (73).
Using (71) and (73), and letting £ — oo in (60), we obtain

4,j=1

// {ytw + En) iy, Vu, o + (clyP %y — uy)wgo} dadt
G

= //fwdxdt Vi € VP(Q) Vo € CH(—00,0). (76)
Q

According to Du Bois-Reymond lemma, identity (76) implies that the function y =
y(u) satisfies integral identity (7). Let us show that y satisfies condition (6).

Taking into account (67), we pass to the limit in (61) as k — oo. The resulting
inequality, according to condition (10), implies

lim e M [|y(z,t)|* dz = 0. (77

t——o0
Q
Hence, we have shown that y = y(u) = y(x,t;u), (z,t) € Q, is the state of the controlled
system for the control u.
It remains to prove that u is a maximizing element of the functional J. Indeed, from
(64) we get

VUK P Vpu  weakly in - L*(Q). (78)
— 00
According to [15, p. 58, Proposition 3.5] we obtain
Jim inf IvVPvklZa(q) = VPl e (q)- (79)

One can check that the functional w — [[wdzdt : L3(S;L*(?)) — R is well
Q

‘//w d:cdt’ < //|w|dmdt = // e MeM|w| drdt
Q Q

Q
1/2 1/2
<( / / e ddr) " ( / / M drdt) ' = Crllwll s (80)
Q Q

where C7 > 0 is some constant.

defined. Indeed,
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We denote this functional by L. Tt belongs to (L3 (S; L*(Q2)))". Actually, the linearity

of I is trivial. And estimate (80) implies that I is bounded. Hence, according to (70) we
have

// el dedt =< LJye > — <, Jy] >= / ly| dadt. (81)
—00
Q

It follows easily from (8), (79) and (81) that

hm J(vg) = hm //|yk|dxdt //p|vk| dxdt

. . . 2 2 _
< Jim [ [l dodt ~ timint | VBon e < [ [ oldede ~ |VBullaq) = J0)
Q Q

Thus, we have shown that v is a solution of problem (9). O
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