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1. Introduction. Optimal control of determined systems governed by partial di-

�erential equations (PDEs) is currently of much interest [1, 4, 6, 7, 17, 18, 19, 20, 21, 22,
25, 26, 27, 29, 30, 31]. Optimal control problems for PDEs are most completely studied
for the case in which the control functions occur either on the right-hand sides of the
state equations, or the boundary or initial conditions (see for example, [14], [27], [31]). So
far, problems in which control functions occur in the coe�cients of the state equations
are less studied (see for example, [1], [4], [26], [29], [30]). A simple model example of such
type problem is the following (see [4]).

Consider the problem of allocating resources to maximize the net bene�t in the
conservation of the single species while the cost of the resource allocation is minimized.
In this case a state of controlled system for given control v ∈ U := L∞(Ω × (0, T )) is
de�ned by a weak solution y = y(v) = y(x, t; v), (x, t) ∈ Ω × (0, T ), from the space
L2(0, T ;H1

0 (Ω)) ∩ L3(Ω× (0, T )) ∩ C([0, T ];L2(Ω)), of the following problem:

yt −∆y + y2 − vy = 0 in Ω× (0, T ),

y
∣∣∣
Γ×(0,T )

= 0, y
∣∣∣
t=0

= y0 ∈ L2(Ω), y > 0 a.e. on Ω× (0, T ).

Here Ω is a bounded domain in Rn with piecewise smooth boundary Γ, T > 0. The
objective is to balance the two features of maximizing the population and minimizing
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the cost of the control, representing the resources. Therefore the cost functional has the
form

J(v) :=

∫ T

0

∫
Ω

[
y(x, t; v)− ρ|v(x, t)|2

]
dxdt ∀v ∈ U,

where y is the population density of a species, v is the resource function, and ρ > 0 is
given constant. An optimal control problem is to �nd a function u ∈ U∂ :=

{
v ∈ U :

0 6 v 6M a. e. in Ω× (0, T )
}
(here M = const > 0 is given) such that

J(u) = sup
v∈U∂

J(v).

This problem is nonlinear, since the dependence between the state and the control
is nonlinear.

Various generalizations of this problem were investigated in many papers, including
[1], [4], [6], [7], [17]-[20], [21], [25], [26], [29], [30] where the state of controlled system is
described by the initial-boundary value problems for parabolic equations.

In [1], [26], [29], [30] the state of controlled system is described by linear parabolic
equations and systems, while in [1] and [26] control functions appears as coe�cients
at lower derivatives, and in [29], [30] the control functions are coe�cients at higher
derivatives. In [26] the existence and uniqueness of optimal control in the case of �nal
observation was shown and a necessary optimality condition in the form of the generalized
rule of Lagrange multipliers was obtained. In paper [1] authors proved the existence of at
least one optimal control for system governed by a system of general parabolic equations
with degenerate discontinuous parabolicity coe�cienti. In papers [29], [30] the authors
consider cost function in general form, and as special case it includes di�erent kinds of
speci�c practical optimization problems.

In papers [4], [17]-[20], [21], [25] authors investigate optimal control of systems
governed by nonlinear PDEs. In particular, in [4] the problem of allocating resources
to maximize the net bene�t in the conservation of a single species is studied. The
population model is an equation with density dependent growth and spatial-temporal
resource control coe�cient. Numerical simulations illustrate several cases with Dirichlet
and Neumann boundary conditions. In [18] the optimal control problem is converted to
an optimization problem which is solved using a penalty function technique. Paper [21]
presents analytical and numerical solutions of an optimal control problem for quasilinear
parabolic equations. In [22] the authors consider the optimal control of a degenerate
parabolic equation governing a di�usive population with logistic growth terms. In paper
[25] optimal control for semilinear parabolic equations without Cesari-type conditions is
investigated.

In this paper, we study an optimal control problem for systems whose states are
described by problems without initial conditions or, other words, Fourier problems for
parabolic equations. The model example of considered optimal control problem is a
problem which di�ers from the previous one (see beginning of this section) by the followi-
ng facts: the initial moment is −∞ and, correspondly, the state equation and control
functions are considered in the domain Ω × (−∞, T ), a boundary condition is given on
the surface Σ = ∂Ω× (−∞, T ), while the initial condition is replaced by the condition

lim
t→−∞

∥y(·, t)∥L2(Ω) = 0.
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The problem without initial conditions for evolution equations describes processes
that started a long time ago and initial conditions do not a�ect on them in the actual
time moment. Such problem were investigated in the works of many mathematicians (see
[5, 12, 28] and bibliography there).

As we know among works devoted to the optimal control problems for PDEs, only
in papers [6], [7] the state of controlled system is described by the solution of Fourier
problem for parabolic equations. In the current paper, unlike the above two, we consider
optimal control problem in case when the control functions occur in the coe�cients of
the state equations. The main result of this paper is existence of the solution of this
problem.

The outline of this paper is as follows. In Section 2, we give notations, de�nitions
of function spaces and auxiliary results. In Section 3, we formulate the optimal control
problem. In Section 4, we prove existence and uniqueness of the solutions for the state
equations. Furthermore, we obtain estimates for the weak solutions of the state equations.
Finally, the existence of the optimal control is presented in Section 5.

2. Preliminaries. Let n be a natural number, Rn be the linear space of ordered
collections x = (x1, . . . , xn) of real numbers with the norm |x| := (|x1|2 + . . .+ |xn|2)1/2.
Suppose that Ω is a bounded domain in Rn with piecewise smooth boundary Γ. Set
S := (−∞, 0], Q := Ω× S, Σ := Γ× S, Ωt := Ω× {t} for each t ∈ R.

For any measurable set G ⊂ Rm, where m = n or m = n + 1, and arbitrary
q ∈ [1,∞] we denote by Lq(G) standard Lebesgue space with norm ∥ · ∥Lq(G). Under

Lq
loc

(Q), where q ∈ [1,∞], we mean the linear space of measurable functions on Q such
that their restrictions to any bounded measurable set Q′ ⊂ Q belong to the space Lq(Q′).

Let X be an arbitrary Banach space with the norm ∥ · ∥X , q ∈ [1,∞]. Denote by
Lq

loc
(S;X) the linear space of measurable functions de�ned on S with values in X, whose

restrictions to any segment [a, b] ⊂ S belong to the space Lq(a, b;X).
Let ν ∈ R, q ∈ [1,∞) and let X be as above. Put by de�nition

Lq
ν(S;X) :=

{
f ∈ Lq

loc
(S;X)

∣∣∣ ∫
S

e−2νt∥f(t)∥qXdt <∞
}
.

This space is a Banach space with respect to the norm

∥f∥Lq
ν(S;X) :=

(∫
S

e−2νt∥f(t)∥qX dt
)1/q

.

If X is a Hilbert space with the scalar product (·, ·)X then the space L2
ν(S;X) is also a

Hilbert space with the scalar product

(f, g)L2
ν(S;X) =

∫
S

e−2νt(f(t), g(t))X dt.

Denote by C1
c (I), where I ⊂ R is an interval, the linear space of continuously

di�erentiable functions on I with compact supports ( if I = (t1, t2), then we will write
C1

c (t1, t2) instead of C1
c ((t1, t2)) ). Under C(I;X), where I ⊂ R is an interval and X

is an arbitrary Banach space, we mean the linear space of continuous functions de�ned
on I with values in X. If I is a bounded closed interval then C(I;X) is Banach space
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with a norm ∥z∥C(I;X) = max
t∈I

∥z(t)∥X . In case when I is an open interval we say that

zm −→
m→∞

z in C(I;X) if for each τ1, τ2 ∈ I (τ1 < τ2) we have ∥z−zm∥C([τ1,τ2];X) −→
m→∞

0.

Let H1(Ω) := {v ∈ L2(Ω) | vxi ∈ L2(Ω) (i = 1, n)} be a Sobolev space, whi-
ch is a Hilbert space with respect to the scalar product (v, w)H1(Ω) :=

∫
Ω

{
∇v∇w +

vw
}
dx and the corresponding norm ∥v∥H1(Ω) :=

( ∫
Ω

{
|∇v|2 + |v|2

}
dx

)1/2
, where ∇v :=

(vx1 , . . . , vxn), |∇v|2 :=
n∑

i=1

|vxi |2. Under H1
0 (Ω) we mean the closure in H1(Ω) of the

space C∞
c (Ω) consisting of in�nitely di�erentiable functions on Ω with compact supports.

Denote

K := inf
v∈H1

0 (Ω), v ̸=0

∫
Ω

|∇v|2 dx∫
Ω

|v|2 dx
. (1)

Taking into account inequality (1), we de�ne a norm ∥v∥H1
0 (Ω) =

(
|∇v|2 dx

)1/2

onH1
0 (Ω),

which is equivalent to the standard norm on H1(Ω).
It is well known that the constant K is �nite and coincides with the �rst eigenvalue

of the following eigenvalue problem:

−∆v = λv, v|∂Ω = 0. (2)

From (1) it clearly follows the Friedrichs inequality∫
Ω

|∇v|2 dx > K

∫
Ω

|v|2 dx ∀ v ∈ H1
0 (Ω). (3)

Let q > 1 be a real number and q′ := q
q−1 , that is, 1

q + 1
q′ = 1. We denote

V q(Ω) := H1
0 (Ω) ∩ Lq(Ω).

It is well known that (
V q(Ω)

)′
:= H−1(Ω) + Lq′(Ω).

Also we denote
∫
Ωt

z dx :=
∫
Ω

z(x, t) dx for each z ∈ L1
loc

(S;L1(Ω)) and for a.e. t ∈ S.

Proposition 1. (Aubin theorem, see [2] and [3, p. 393]). If q > 1, r > 1 are any real

numbers, t1, t2 ∈ R (t1 < t2), W,L,B are any Banach spaces such that W
K
⊂L 	 B (here

K
⊂ means compact embedding and 	 means continuous embedding), then

{w ∈ Lq(t1, t2;W) | w′ ∈ Lr(t1, t2;B)}
K
⊂
(
Lq(t1, t2;L) ∩ C([t1, t2];B)

)
,

that is, if sequence {wm}m∈N is bounded in the space Lq(t1, t2;W) and sequence
{w′

m}m∈N is bounded in the space Lr(t1, t2;B), then there exists a subsequence
{wmj}j∈N ⊂ {wm}m∈N and function w ∈ Lq(t1, t2;L)∩C([t1, t2];B) such that wmj −→

j→∞
w

strongly in Lq(t1, t2;L) and in C([t1, t2];B).



OPTIMAL RESOURCE COEFFICIENT CONTROL ...
ISSN 2078-3744. Âiñíèê Ëüâiâ. óí-òó. Ñåðiÿ ìåõ.-ìàò. 2016. Âèïóñê 81 43

3. Formulation of the main problem and results. Let U be a closed li-
near subspace of L∞(Q), for example, U := L∞(Q) or U := {u ∈ L∞(Q) | v(x, t) =
0 for a.e. (x, t) ∈ Q \Qt∗,0}, where t∗ < 0 is arbitrary �xed. Assume that U is the space

of controls and for given M = const > 0 the set U∂ :=
{
v ∈ U

∣∣∣ 0 6 v 6M a.e. in Q
}

be the set of admissible controls.
We assume that the state of the investigated evolutionary system for a given control

v ∈ U∂ is described by a weak solution of problem

yt −
n∑

i,j=1

(aij(x)yxi
)xj

+ c(x)|y|p−2y − v(x, t)y = f(x, t), (x, t) ∈ Q, (4)

y
∣∣
Σ
= 0, (5)

lim
t→−∞

e−λt∥y(·, t)∥L2(Ω) = 0, (6)

where λ ∈ R is given.
Before de�ning the weak solution of problem (4)-(6), we make some assumptions:

(A): aij ∈ L∞(Ω) (i, j = 1, n), there exists µ =const> 0 such that
n∑

i,j=1

aij(x)ξiξj > µ
n∑

k=1

|ξk|2 for a.e. x ∈ Ω and for all ξ ∈ Rn, and

M − µK > 0;

(C): c ∈ L∞(Ω), c(x) > c0 = const > 0 for a.e. (x, t) ∈ Q;
(F): f ∈ L2

loc
(S;L2(Ω));

(P): p > 2.

Denote p′ = p
p−1 , i.e., 1

p + 1
p′ = 1.

De�nition 1. The function y ∈ L2
loc(S;H

1
0 (Ω))∩L

p
loc

(S;Lp(Ω))∩C(S;L2(Ω)) is called
a weak solution of problem (4)�(6) if its derivative yt belongs to L

2
loc(S;L

2(Ω)), and the
following integral equality holds∫

Ωt

{
ytψ +

n∑
i,j=1

aijyxiψxj + (c|y|p−2y − vy)ψ
}
dx

=

∫
Ωt

fψ dx for a.e. t ∈ S and for all ψ ∈ V p(Ω). (7)

A weak solution y of problem (4)�(6) will be denoted by y, or y(v), or y(x, t),
(x, t) ∈ Q, or y(x, t; v), (x, t) ∈ Q.

Remark 1. Research methodology of problems similar to problem (4)�(6) is quite well
developed, in particular, in papers of one of the authors [9]-[11],[12]. But exactly the
same problem as considered here, more precisely, Fourier problem for semilinear parabolic
equation in bounded spatial variables domains, is not investigated in literature. Moreover,
estimates of the weak solution are important for us. So, for a complete presentation of the
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material, in Section 3 we give full proof of existence and uniqueness of the weak solution
of problem (4)�(6) (for a given v ∈ U∂) and its estimates.

Hereafter we assume that λ > 0 and the cost functional has the form

J(v) =

∫∫
Q

[
|y(x, t; v)| − ρ(x, t)|v|2

]
dxdt, v ∈ U, (8)

where ρ ∈ L1(Q) is given.

Remark 2. If λ > 0 and (6) hold, then functional J is well de�ned. Indeed, (6) implies

that ∥y(·, t)∥L2(Ω) 6 C̃eλt ∀ t ∈ S, where C̃ = const > 0 . Hence, Cauchy-Schwarz

inequality yields
∫∫
Q

|y(x, t)| dxdt =
∫
S

dt
∫
Ω

|y(x, t)| dx 6 (mesnΩ)
1/2

∫
S

∥y(·, t)∥L2(Ω) dt

6 C̃(mesnΩ)
1/2

∫
S

eλtdt < ∞. Hence, the �rst term of functional J is well de�ned. As

well ρ ∈ L1(Q), v ∈ L∞(Q), so the second term of functional J is also well de�ned.

We consider the following optimal control problem: �nd a control u ∈ U∂ such
that

J(u) = sup
v∈U∂

J(v). (9)

We brie�y call this problem (9), and its solutions will be called optimal controls.

The main result of this paper is the following theorem.

Theorem 1. Let conditions (A), (C), (P), λ > M − µK hold and

f ∈ L2
λ(S;L

2(Ω)). (10)

Then problem (9) has a solution.

Remark 3. In real processes function y describes the density of population. In this cases
the additional condition y > 0 is required. This condition is satis�ed if f > 0 (see Lemma
2).

4. Well-posedness of the problem without initial conditions (Fourier
problem) for nonlinear parabolic equations.

Lemma 1. If conditions (A), (C), (F), (P) and λ >M−µK hold, then problem (4)�(6)
has at most one weak solution.

Proof. Assume the opposite. Let y1, y2 be two weak solutions of problem (4)�(6). Substi-
tuting them one by one into integral identity (7) and subtracting the obtained equalities,
for the di�erence z = y1 − y2 we obtain∫

Ωt

[
ztψ +

n∑
i,j=1

aijzxiψxj + c(|y1|p−2y1 − |y2|p−2y2)ψ

−vzψ
]
dx = 0 for every ψ ∈ V p(Ω) and for a.e. t ∈ S. (11)
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From (6) it follows the following condition

e−2λt

∫
Ωt

|z|2 dx→ 0 as t→ −∞. (12)

Taking in (11) ψ(·) = z(·, t), we get∫
Ωt

[
ztz +

n∑
i,j=1

aijzxizxj (13)

+c(|y1|p−2y1 − |y2|p−2y2)(y1 − y2)− v|z|2
]
dx = 0 and for a.e. t ∈ S.

Let us take arbitrary numbers τ1, τ2 ∈ S (τ1 < τ2). Multiplying identity (13) by 2e−2λt,
integrating from τ1 to τ2 and using the integration-by-parts formula, we obtain

e−2λt

∫
Ω

|z(x, t)|2 dx
∣∣∣t=τ2

t=τ1
+ 2

τ2∫
τ1

∫
Ω

e−2λt
[ n∑
i,j=1

aijzxizxj

+c(|y1|p−2y1 − |y2|p−2y2)(y1 − y2) + (λ− v)|z|2
]
dxdt = 0.

Thus, taking into account that c > 0, (|s1|p−2s1−|s2|p−2s2)(s1−s2) > 0 ∀s1, s2 ∈ R,
and using (A) and (3), we obtain

e−λτ2

∫
Ω

|z(x, τ2)|2 dx − e−λτ1

∫
Ω

|z(x, τ1)|2 dx

+ 2

τ2∫
τ1

∫
Ω

e−2λt(λ+ µK −M)|z|2 dxdt 6 0. (14)

Since λ >M − µK, from (14) we obtain

e−2λτ2

∫
Ω

|z(x, τ2)|2 dx 6 e−2λτ1

∫
Ω

|z(x, τ1)|2 dx. (15)

In (15) we �x τ2 and pass to the limit as τ1 → −∞. According to condition (12) we
obtain the equality e−2λτ2

∫
Ω

|z(x, τ2)|2 dx = 0. Since τ2 ∈ S is an arbitrary number, we

have z(x, t) = 0 for a. e. (x, t) ∈ Q, that is, y1(x, t) = y2(x, t) = 0 for a. e. (x, t) ∈ Q.
The resulting contradiction proves our statement. �

Remark 4. In case M − µK 6 0, there is no need to require additional condition on
solutions behavior on in�nity (like condition (6)) to insure uniqueness of solution of
problem (4)�(6) (see [13]).

Lemma 2. Let conditions (A), (C), (F), (P), f > 0 and λ > M − µK are satis�ed.
Then the weak solution of problem (4)�(6) is nonnegative.
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Proof. We denote y−(x, t) :=

{
y(x, t), if y(x, t) 6 0,
0, if y(x, t) > 0,

for a.e (x, t) ∈ Q. Let us consi-

der integral identity (7). In this identity for a.e. t ∈ S we take ψ(·) = y−(·, t). Then∫
Ωt

{
(y−)ty

− +
n∑

i,j=1

aij(y
−)xi(y

−)xj + c|y−|p − v|y−|2
}
dx

=

∫
Ωt

fy− dx for a.e. t ∈ S. (16)

Multiplying identity (16) by e−2λt, integrating from τ1 to τ2 (τ1, τ2 ∈ S arbitrary
numbers, τ1 < τ2) and using the integration-by-parts formula, we obtain

1

2
e−2λτ2

∫
Ω

|y−(x, τ2)|2 dx− 1

2
e−2λτ1

∫
Ω

|y−(x, τ1)|2 dx+ λ

τ2∫
τ1

∫
Ω

e−2λt|y−|2 dxdt

+

τ2∫
τ1

∫
Ω

e−2λt
[ n∑
i,j=1

aij(y
−)xi(y

−)xj + c|y−|p − v|y−|2
]
dxdt =

τ2∫
τ1

∫
Ω

fy−e−2λt dxdt. (17)

Since f > 0 and condition (A) hold, we obtain

1

2
e−2λτ2

∫
Ω

|y−(x, τ2)|2 dx− 1

2
e−2λτ1

∫
Ω

|y−(x, τ1)|2 dx

+

τ2∫
τ1

∫
Ω

e−2λt
[
(λ+ µK −M)|y−|2

]
dxdt 6 0.

Since λ >M − µK, then from previous inequality we obtain

e−2λτ2

∫
Ω

|y−(x, τ2)|2 dx 6 e−2λτ1

∫
Ω

|y−(x, τ1)|2 dx. (18)

We pass to the limit when τ1 → −∞ in (18). Taking into account that τ2 ∈ S is arbitrary
in (18) we have e−2λτ2

∫
Ω

|y−(x, τ2)|2 dx 6 0, we conclude that |y−(x, t)|L2(Ω) = 0 for a.e.

t ∈ S, what yields that y−(x, t) = 0 a.e. in Q. �

Theorem 2. Suppose that conditions (A), (C), (P), (10) and λ > M − µK hold. Then
problem (4)�(6) has a unique weak solution y, and y ∈ L2

λ(S;H
1
0 (Ω)) ∩ Lp

λ(S;L
p(Ω)),

yt ∈ L2
λ(S;L

2(Ω)). Moreover, the following estimates hold:

e−2λt∥y(·, t)∥2L2(Ω) 6 C1

t∫
−∞

e−2λs∥f(·, s)∥2L2(Ω) ds, t ∈ S, (19)

∥y∥2L2
λ(S;H1

0 (Ω)) + ∥yt∥2L2
λ(S;L2(Ω)) + ∥y∥p

Lp
λ(S;Lp(Ω))

6 C2∥f∥2L2
λ(S;L2(Ω)), (20)

where C1, C2 are positive constants depending on M,K, µ and λ only.
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Proof of Theorem 2. First, for each m ∈ N we de�ne Qm := Ω × (−m, 0], Σm := Γ ×
(−m, 0], fm(·, t) := f(·, t), if −m < t 6 0, and fm(·, t) := 0, if t 6 −m.

Consider the problem of �nding a function ym satisfying (in some sense) the equation

ym,t −
n∑

i,j=1

(aij(x)ym,xi)xj + c(x)|ym|p−2ym − v(x, t)ym = fm(x, t), (x, t) ∈ Qm, (21)

boundary condition

y
∣∣
Σm

= 0, (22)

and initial condition

ym(x,−m) = 0, x ∈ Ω. (23)

A weak solution of problem (21)�(23) is a function ym ∈ L2(−m, 0;H1
0 (Ω)) ∩

Lp(−m, 0;Lp(Ω)) ∩ C([−m, 0];L2(Ω)), whose derivative ym,t ∈ L2(−m, 0;L2(Ω)), and
which satis�es condition (23) and the following integral identity∫

Ωt

{
ym,tψ +

n∑
i,j=1

aijym,xiψxj + (c|ym|p−2ym − vym)ψ
}
dx

=

∫
Ωt

fmψ dxdt for a.e. t ∈ [−m, 0] and for all ψ ∈ V p(Ω) . (24)

Lemma 3. Let conditions (A), (C), (F) and (P) hold. Then problem (21)�(23) has
unique weak solution ym. Moreover, for any λ > M −µK this solution satis�es following
estimates:

e−2λt

∫
Ωt

|ym|2 dx 6 C1

t∫
−m

∫
Ω

e−2λs|f(x, s)|2 dxds, t ∈ [−m, 0], (25)

∫∫
Qm

e−2λt
[
|∇ym|2 + |ym,t|2 + |ym|p

]
dxdt 6 C2

∫∫
Qm

e−2λt|fm|2 dxdt, (26)

where C1, C2 are positive constants depending on M,K, µ and λ only.

The proof of Lemma 3 is given later in this section.
For every m ∈ N we extend ym by zero for the entire set Q and keep the

same notation ym for this extension. Note that for each m ∈ N , the function ym
belongs to L2(S;H1

0 (Ω)) ∩ Lp(S;Lp(Ω)) ∩ C(S;L2(Ω)), its derivative ym,t belongs to
L2(−m, 0;L2(Ω)), and ym satis�es integral identity (7) with fm substituted for f , i.e.,∫

Ωt

{
ym,tψ +

n∑
i,j=1

aijyxiψxj + (c|ym|p−2ym − vym)ψ
}
dx =

∫
Ωt

fmψ dx

for a.e. t ∈ S and for all ψ ∈ V p(Ω). (27)
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Thus, ym is a weak solution of problem (4)�(6) with fm substituted for f , and according
to Lemma 3 and condition (10), for ym we obtain estimates

e−2λt∥ym(·, t)∥2L2(Ω) 6 C1

t∫
−∞

e−2λs∥f(·, s∥2L2(Ω) ds, t ∈ S, (28)

∥ym∥2L2
λ(S;H1

0 (Ω)) + ∥ym,t∥2L2
λ(S;L2(Ω)) + ∥ym∥p

Lp
λ(S;Lp(Ω))

6 C2∥f∥2L2
λ(S;L2(Ω)). (29)

According to Proposition 1 and the compactness of the embedding H1
0 (Ω) ⊂ L2(Ω),

estimate (29), we obtain that there exist a subsequence of the sequence {ym} (still denoted
by {ym} for simplicity) and the function y ∈ L2

λ(S;H
1
0 (Ω))∩L

p
λ(S;L

p(Ω))∩C(S;L2(Ω))
such that yt ∈ L2

λ(S;L
2(Ω)) and

ym −→
m→∞

y weakly in L2
λ(S;H

1
0 (Ω)), (30)

ym,t −→
m→∞

yt weakly in L2
λ(S;L

2(Ω)), (31)

ym −→
m→∞

y weakly in Lp
λ(S;L

p(Ω)), (32)

ym −→
m→∞

y in C(S;L2(Ω)), (33)

ym −→
m→∞

y a.e. in Q, (34)

|ym|p−2ym −→
m→∞

|y|p−2y weakly in Lp′

λ (Q). (35)

From (35) we obtain∫∫
Q

c|ym|p−2ymψφdxdt −→
m→∞

∫∫
Q

c|y|p−2yψφdxdt ∀ψ ∈ V p(Ω), ∀φ ∈ C1
c (−∞, 0).

(36)
Let us show that the function y is a weak solution of problem (4)�(6). To do this,

we multiply identity (24) by arbitrary φ ∈ C1
c (−∞, 0) and integrate over t ∈ S∫∫

Q

{
ym,tψφ+

n∑
i,j=1

aijyxiψxjφ+ (c|ym|p−2ym − vym)ψφ
}
dxdt =

∫∫
Q

fmψφdxdt,

ψ ∈ V p(Ω), φ ∈ C1
c (−∞, 0). (37)

Now we letm→ ∞ in identity (37), taking into account (30), (31), (36) and the de�nition
of the function fm. From the obtained integral identity, taking into account Du Bois-
Reymond lemma, we get identity (7). Next, taking into account (33), we let m→ +∞ in
(28). From the resulting inequality and condition (10), we obtain condition (6). Hence,
we have proven that y is a weak solution of problem (4)�(6). And from estimate (29) and
convergence (30)�(32) we obtain estimate (20). Estimate (19) easily follows from (28)
and (33). �

Proof of Lemma 3. We �x arbitrary m ∈ N and, for simplicity, for the weak solution ym
of problem (21)�(23) we use notation z.

To prove our statement we use Galerkin's method. Let {wl | l ∈ N} be a linear
independent set of functions from V p(Ω), which is complete in V p(Ω), that is, the set of
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all its �nite linear combinations is dense in V p(Ω). According to Galerkin's method, for
every r ∈ N we put

zr(x, t) =
r∑

k=1

cr,k(t)wk(x), (x, t) ∈ Qm,

where cr,1, . . . , cr,r are absolutely continuous functions, which are solutions of the Cauchy
problem for the system of ordinary di�erential equations∫

Ωt

zr,twl dx+

∫
Ωt

{ n∑
i,j=1

aijzr,xiwl,xj + c|zr|p−2zrwl − vzrwl

}
dx

=

∫
Ωt

fwl dx, t ∈ [−m, 0], l = 1, r, (38)

cr,l(−m) = 0, l = 1, r. (39)

The linear independence of functions w1, . . . , wr yields that the matrix (brk,l)
r
k,l=1 is

positive-de�nite, where brk,l =
∫
Ω
wkwl dx (k, l = 1, r). Thus the system of ordinary

di�erential equations (38) can be transformed to the normal form. Hence, according to
the theorems of existence and extension of the solution to this problem (see [16]), there
exists the global solution cr,1, . . . .., cr,r of problem (38), (39), de�ned on [−m, t >, where
t ∈ (−m, 0], �>� means either �)� or �]�. Later we will show that [−m, t >= [−m, 0].

Multiply the equation of system (38) with number l ∈ {1, . . . , r} by e−2λtcr,l and
sum over l ∈ {1, . . . , r}. Integrating the obtained equality over t ∈ [−m, τ ] ⊂ [−m, t >,
we have

τ∫
−m

∫
Ω

e−2λtzr,tzr dxdt+

τ∫
−m

∫
Ω

e−2λt
[ n∑
i,j=1

aijzr,xizr,xj

+c|zr|p − v|zr|2
]
dxdt =

τ∫
−m

∫
Ω

e−2λtfzr dxdt. (40)

From (40), using (39), Cauchy inequality and the integration-by-parts formula, we obtain

1

2

∫
Ω

e−2λτ |zr(x, τ)|2 dx+ λ

τ∫
−m

∫
Ω

e−2λt|zr|2 dxdt

+

τ∫
−m

∫
Ω

e−2λt
[ n∑
i,j=1

aijzr,xi
zr,xj

+ c|zr|p − v|zr|2
]
dxdt (41)

6 ε1
2

τ∫
−m

∫
Ω

e−2λt|zr|2 dxdt+
1

2ε1

τ∫
−m

∫
Ω

e−2λt|f |2 dxdt, τ ∈ [−m, t >,

where ε1 > 0 is arbitrary number.
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Since v(x, t) 6 M for a.e. (x, t) ∈ Q, using (3) and condition (A), from (41), we
have

1

2

∫
Ω

e−2λτ |zr(x, τ)|2 dx+ (λ−M + µK(1− ε2)−
ε1
2
)

τ∫
−m

∫
Ω

e−2λt|zr|2 dxdt

+

τ∫
−m

∫
Ω

e−2λt
[
ε2µ|∇zr|2 + c0|zr|p

]
dxdt 6 1

2ε1

τ∫
−m

∫
Ω

e−2λt|f |2 dxdt, τ ∈ [−m, t > .

(42)

Since λ > M − µK, then one can easily choose ε1 > 0 and ε2 > 0 such that
λ−M + µK(1− ε2)− ε1

2 > 0 (for example, ε2 = λ−M+µK
4µK > 0 and ε1 = λ−M+µK

2 > 0).

This implies the following inequality

∫
Ω

e−2λτ |zr(x, τ)|2 dx+ C3

τ∫
−m

∫
Ω

e−2λt
[
|∇zr|2 + |zr|2 + |zr|p

]
dxdt (43)

6 C4

τ∫
−m

∫
Ω

e−2λt|f |2 dxdt, τ ∈ [−m, t >,

where positive constants C3, C4 do not depend on m and r.
From (43) we get the following estimates

e−2λτ

∫
Ω

|zr(x, τ)|2 dx 6 C1

τ∫
−m

∫
Ω

e−2λt|f |2 dxdt, τ ∈ [−m, t >, (44)

τ∫
−m

∫
Ω

e−2λt
[
|∇zr|2 + |zr|2 + |zr|p

]
dxdt 6 C2

τ∫
−m

∫
Ω

e−2λt|f |2 dxdt, τ ∈ [−m, t > . (45)

Estimate (44) yields that the sequence
{

ess sup
t∈[−m,t>

∥zr(·, t)∥2L2(Ω)

}
is bounded by a

constant, which is independent on t. This yields that [−m, t >= [−m, 0].
Multiply the equation of system (38) with number l ∈ {1, . . . , r} by e−2λtc′r,l(t) and

sum over l ∈ {1, . . . , r}. Integrating the obtained equality over t ∈ [−m, 0], we obtain∫∫
Qm

e−2λτ |zr,t|2 dxdt+
∫∫
Qm

e−2λt
[ n∑
i,j=1

aijzr,xizr,xj ,t

+c|zr|p−2zrzr,t − vzrzr,t
]
dxdt =

∫∫
Qm

e−2λtfzr,t dxdt. (46)

From (46), using (39) and the integration-by-parts formula and the fact that in our case

|zr|p−2zrzr,t =
1

p
(|zr|p)t,
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we obtain ∫∫
Qm

e−2λt|zr,t|2 dxdt+
1

2

∫
Ω

n∑
i,j=1

aijzr,xi(x, 0)zr,xj (x, 0) dx

+λ

∫∫
Qm

e−2λt
n∑

i,j=1

aijzr,xizr,xj dxdt+
1

p

∫
Ω

c(x)|zr(x, 0)|p dx

+
2λ

p

∫∫
Qm

e−2λtc|zr|p dxdt =
∫∫
Qm

e−2λtfzr,t dxdt+

∫∫
Qm

e−2λtvzrzr,t dxdt. (47)

Using conditions (A), (C) and Cauchy inequality from (47) we obtain∫∫
Qm

e−2λt|zr,t|2 dxdt+ λµ

∫∫
Qm

e−2λt|∇zr|2 dxdt

+
2λc0
p

∫∫
Qm

e−2λt|zr|p dxdt 6
1

2ε2

∫∫
Qm

e−2λt|f |2 dxdt

+
M

2ε1

∫∫
Qm

e−2λt|zr|2 dxdt+
(ε1M

2
+
ε2
2

)∫∫
Qm

e−2λt|zr,t|2 dxdt. (48)

From (48), using (45) and taking ε1 > 0 and ε2 > 0 such that 1− ε1M
2 − ε2

2 > 0, we get
the following estimate∫∫

Qm

e−2λt|zr,t|2 dxdt 6 C5

∫∫
Qm

e−2λt|f |2 dxdt, (49)

where constant C5 > 0 is independent on m and r.
Estimates (44), (45), (49) yield that sequence {zr}∞r=1 is bounded in the spaces

L2(−m, 0;H1
0 (Ω)), L

∞(−m, 0;L2(Ω)) and Lp(−m, 0;Lp(Ω)), and zr,t is bounded in
L2(−m, 0;L2(Ω)). Consequently, taking into account Proposition 1, we obtain exi-
stence of the subsequence of {zr}∞r=1 and the function z ∈ L2(−m, 0;H1

0 (Ω)) ∩
L∞(−m, 0;L2(Ω)) ∩ Lp(−m, 0;Lp(Ω)) such that zt ∈ L2(−m, 0;L2(Ω)) and

zr −→
r→∞

z weakly in L2(−m, 0;H1
0 (Ω)), (50)

zr,t −→
r→∞

zt weakly in L2(−m, 0;L2(Ω)), (51)

zr −→
r→∞

z weakly in Lp(−m, 0;Lp(Ω)), (52)

zr −→
r→∞

z strongly in L2(Qm), and in C([−m, 0];L2(Ω)), (53)

zr −→
r→∞

z a.e. in Q, (54)

|zr|p−2zr −→
r→∞

|z|p−2z weakly in Lp′

λ (Q). (55)
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From (54), (55), similar to the convergence (36), we have convergence∫∫
Qm

c|zr|p−2zrψφdxdt −→
r→∞

∫∫
Qm

c|z|p−2zψφdxdt. (56)

Let ν1, ..., νk (k ∈ N) are any real numbers and φ ∈ C1
c (−m, 0) is arbitrary function. For

every j ∈ {1, ..., k} we multiply the equation of system (38) with number j ∈ {1, . . . , r}
by νj , summarizing obtained equations and pass to the limit as r → ∞, denoting ψ =
k∑

j=1

νjwj and integrating resulting equality over t ∈ [−m, 0], we get

∫∫
Qm

ztψφ dxdt+

∫∫
Qm

{ n∑
i,j=1

aijzxiψxj + c|z|p−2zψ − vzψ
}
φdxdt

=

∫∫
Qm

fψφ dxdt ∀φ ∈ C1
c (−m, 0). (57)

Since the set {ν1w1+ ...+νkwk

∣∣ k ∈ N, ν1, ..., νk ∈ R} is dense in V p(Ω), then (57) yields
the equality∫∫

Qm

ztψφ dxdt+

∫∫
Qm

{ n∑
i,j=1

aijzxiψxj + c|z|p−2zψ − vzψ
}
φdxdt

=

∫∫
Qm

fψφ dxdt, ψ ∈ V p(Ω), φ ∈ C1
c (−m, 0). (58)

Using Du Bois-Reymond lemma we obtain identity (24). Thus, we have shown that
problem (21)�(23) has a solution z = ym. From (44), (45) and (49), taking into account
(50) � (53), we obtain that function ym satis�es estimates (25), (26). �

5. Proof of the main result.

Proof of Theorem 3. Existence of the solution. Since the cost functional J is bounded
above, there exists a maximizing sequence {vk} in U∂ : J(vk) −→

k→∞
sup
v∈U∂

J(v). The sequence

{vk} is bounded in the space L∞(Q), that is

0 6 vk(x, t) 6M for a.e. (x, t) ∈ Q. (59)

Since for each k ∈ N the function yk := y(vk) (k ∈ N) is a weak solution of problem
(4)�(6) for v = vk, then the following identity holds:∫∫

Q

{
yk,tψφ+

n∑
i,j=1

aijyk,xiψxjφ+ (c|yk|p−2yk − vkyk)ψφ
}
dxdt

=

∫∫
Q

fψφdxdt, ψ ∈ V p(Ω), φ ∈ C1
c (−∞, 0). (60)
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According to Theorem 2 we have the estimates

e−2λt∥yk(·, t)∥2L2(Ω) 6 C1

t∫
−∞

e−2λs∥f(·, s)∥2L2(Ω) ds, t ∈ S, (61)

∥yk∥2L2
λ(S;H1

0 (Ω)) + ∥yk,t∥2L2
λ(S;L2(Ω)) + ∥yk∥pLp

λ(S;Lp(Ω))
6 C2∥f∥2L2

λ(S;Lp(Ω)). (62)

Taking into account estimate (62) for arbitrary τ1, τ2 ∈ S (τ1 < τ2) we obtain
τ2∫

τ1

∥yk,t∥2L2(Ωt)
dt 6 C6, (63)

where C6 > 0 is a constant which depends on τ1 and τ2, but does not depend on k.
Since ρ ∈ L1(Q), using (59), we get that sequence {√ρvk}∞k=1 is bounded in L2(Q).

Since V p(Ω) � H1
0 (Ω)

K
⊂L2(Ω) (see [23] c. 245), then V p(Ω)

K
⊂L2(Ω). According to

Theorem 1 with W = V p(Ω), L = L2(Ω), B = L2(Ω), q = 2, r = 2, estimates
(59), (62), (63) yield that there exists a subsequence of the sequence {vk, yk} (still
denoted by {vk, yk}) and functions u ∈ U∂ , ζ ∈ L2(Q), y ∈ L2

λ(S;H
1
0 (Ω))∩L

p
λ(S;L

p(Ω)),
yt ∈ L2

λ(S;L
2(Ω)) such that

vk −→
k→∞

u ∗ -weakly in L∞(Q), (64)

yk −→
k→∞

y weakly in L2
λ(S;H

1
0 (Ω)), (65)

yk −→
k→∞

y weakly in Lp
λ(S;L

p(Ω)), (66)

yk −→
k→∞

y in C(S;L2(Ω)), and strongly in L2
loc(S;L

2(Ω)), (67)

yk −→
k→∞

y a.e. on Q, (68)

yk,t −→
k→∞

yt weakly in L2
λ(S;L

2(Ω)) (69)

|yk| −→
k→∞

|y| weakly in L2
λ(S;L

2(Ω)). (70)

Note that (65) implies the following

yk −→
k→∞

y, yk,xi −→
k→∞

yxi (i = 1, n) weakly in L2
loc(S;L

2(Ω)). (71)

As in (56), from (62), (67) and [?, Lemma 2.2], we obtain

c|yk|p−2yk −→
k→∞

c|y|p−2y weakly in Lp′

loc
(Q). (72)

Let us show that (64) and (67) yield∫∫
Q

ykvkψφdxdt −→
k→∞

∫∫
Q

yuψφdxdt ∀ ψ ∈ V p(Ω),∀ φ ∈ C1
c (−∞, 0). (73)

Indeed, let g := ψφ, t1, t2 ∈ S be such that suppφ ⊂ [t1, t2]. Then we have∫∫
Q

ykvkg dxdt =

t2∫
t1

∫
Ω

(ykvk − yvk + yvk)g dxdt
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=

t2∫
t1

∫
Ω

yvkg dxdt+

t2∫
t1

∫
Ω

(yk − y)vkg dxdt. (74)

From (59) and (67) it follows

∣∣∣ t2∫
t1

∫
Ω

(yk − y)vkg dxdt
∣∣∣ 6 ( t2∫

t1

∫
Ω

|vkg|2 dxdt
)1/2( t2∫

t1

∫
Ω

|yk − y|2 dxdt
)1/2

−→
k→∞

0. (75)

Thus, using (64) and (75), (74) implies (73).
Using (71) and (73), and letting k → ∞ in (60), we obtain∫∫

Q

{
ytψφ+

n∑
i,j=1

aijyxiψxjφ+ (c|y|p−2y − uy)ψφ
}
dxdt

=

∫∫
Q

fψφdxdt ∀ψ ∈ V p(Ω) ∀φ ∈ C1
c (−∞, 0). (76)

According to Du Bois-Reymond lemma, identity (76) implies that the function y =
y(u) satis�es integral identity (7). Let us show that y satis�es condition (6).

Taking into account (67), we pass to the limit in (61) as k → ∞. The resulting
inequality, according to condition (10), implies

lim
t→−∞

e−2λt

∫
Ω

|y(x, t)|2 dx = 0. (77)

Hence, we have shown that y = y(u) = y(x, t;u), (x, t) ∈ Q, is the state of the controlled
system for the control u.

It remains to prove that u is a maximizing element of the functional J . Indeed, from
(64) we get

√
ρvk −→

k→∞

√
ρu weakly in L2(Q). (78)

According to [15, p. 58, Proposition 3.5] we obtain

lim
k→∞

inf ∥√ρvk∥2L2(Q) > ∥√ρu∥2L2(Q). (79)

One can check that the functional w 7→
∫∫
Q

w dxdt : L2
λ(S;L

2(Ω)) → R is well

de�ned. Indeed, ∣∣∣ ∫∫
Q

w dxdt
∣∣∣ 6 ∫∫

Q

|w| dxdt =
∫∫
Q

e−λteλt|w| dxdt

6
(∫∫

Q

e−2λt|w| dxdt
)1/2(∫∫

Q

e2λt dxdt
)1/2

= C7∥w∥L2
λ(S;L2(Ω)), (80)

where C7 > 0 is some constant.
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We denote this functional by I. It belongs to
(
L2
λ(S;L

2(Ω))
)′
. Actually, the linearity

of I is trivial. And estimate (80) implies that I is bounded. Hence, according to (70) we
have ∫∫

Q

|yk| dxdt =< I, |yk| > −→
k→∞

< I, |y| >=
∫∫
Q

|y| dxdt. (81)

It follows easily from (8), (79) and (81) that

lim
k→∞

J(vk) = lim
k→∞

[ ∫∫
Q

|yk| dxdt−
∫∫
Q

ρ|vk|2 dxdt
]

6 lim
k→∞

∫∫
Q

|yk| dxdt− lim inf
k→∞

∥√ρvk∥2L2(Q) 6
∫∫
Q

|y| dxdt− ∥√ρu∥2L2(Q) = J(u).

Thus, we have shown that u is a solution of problem (9). �
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