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We study feebly compact topologies τ on the semilattice (expn λ,∩) such
that (expn λ, τ) is a semitopological semilattice and prove that for any shift-
continuous T1-topology τ on expn λ the following conditions are equivalent:
(i) τ is countably pracompact; (ii) τ is feebly compact; (iii) τ is d-feebly
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Dedicated to the memory of Professor Vitaly Sushchanskyy

We shall follow the terminology of [6, 8, 9, 13]. If X is a topological space and
A ⊆ X, then by clX(A) and intX(A) we denote the closure and the interior of A in
X, respectively. By ω we denote the �rst in�nite cardinal and by N the set of positive
integers.

A subset A of a topological space X is called regular open if intX(clX(A)) = A.
We recall that a topological space X is said to be

• quasiregular if for any non-empty open set U ⊂ X there exists a non-empty open
set V ⊂ U such that clX(V ) ⊆ U ;

• semiregular if X has a base consisting of regular open subsets;
• compact if each open cover of X has a �nite subcover;
• countably compact if each open countable cover of X has a �nite subcover;
• countably compact at a subset A ⊆ X if every in�nite subset B ⊆ A has an
accumulation point x in X;

• countably pracompact if there exists a dense subset A in X such that X is
countably compact at A;
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• feebly compact (or lightly compact) if each locally �nite open cover of X is �ni-
te [3];

• d-feebly compact (or DFCC ) if every discrete family of open subsets in X is �nite
(see [12]);

• pseudocompact if X is Tychono� and each continuous real-valued function on X
is bounded.

According to Theorem 3.10.22 of [8], a Tychono� topological space X is feebly compact if
and only if X is pseudocompact. Also, a Hausdor� topological space X is feebly compact
if and only if every locally �nite family of non-empty open subsets of X is �nite [3].
Every compact space and every sequentially compact space are countably compact, every
countably compact space is countably pracompact, and every countably pracompact
space is feebly compact (see [2]), and every H-closed space is feebly compact too (see
[10]). Also, it is obvious that every feebly compact space is d-feebly compact.

A semilattice is a commutative semigroup of idempotents. On a semilattice S there
exists a natural partial order: e 6 f if and only if ef = fe = e. For any element e of a
semilattice S we put

↑e = {f ∈ S : e 6 f} .
A topological (semitopological) semilattice is a topological space together with a

continuous (separately continuous) semilattice operation. If S is a semilattice and τ is
a topology on S such that (S, τ) is a topological semilattice, then we shall call τ a
semilattice topology on S, and if τ is a topology on S such that (S, τ) is a semitopological
semilattice, then we shall call τ a shift-continuous topology on S.

For an arbitrary positive integer n and an arbitrary non-zero cardinal λ we put

expn λ = {A ⊆ λ : |A| 6 n} .
It is obvious that for any positive integer n and any non-zero cardinal λ the set

expn λ with the binary operation ∩ is a semilattice. Later in this paper by expn λ we
shall denote the semilattice (expn λ,∩).

This paper is a continuation of [11] where we study feebly compact topologies τ
on the semilattice expn λ such that (expn λ, τ) is a semitopological semilattice. Therein,
all compact semilattice T1-topologies on expn λ were described. In [11] it was proved
that for an arbitrary positive integer n and an arbitrary in�nite cardinal λ every T1-
semitopological countably compact semilattice (expn λ, τ) is a compact topological semi-
lattice. Also, there we construct a countably pracompact H-closed quasiregular non-
semiregular topology τ2

fc
such that

(
exp2 λ, τ

2
fc

)
is a semitopological semilattice with the

discontinuous semilattice operation and show that for an arbitrary positive integer n and
an arbitrary in�nite cardinal λ a semiregular feebly compact semitopological semilattice
expn λ is a compact topological semilattice.

In this paper we show that for any shift-continuous T1-topology τ on expn λ the
following conditions are equivalent: (i) τ is countably pracompact; (ii) τ is feebly
compact; (iii) τ is d-feebly compact; (iv) (expn λ, τ) is an H-closed space.

The proof of the following lemma is similar to Lemma 4.5 of [5] or Proposition 1
from [1].

Lemma 1. Every Hausdor� d-feebly compact topological space with a dense discrete

subspace is countably pracompact.
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We observe that by Proposition 1 from [11] for an arbitrary positive integer n and an
arbitrary in�nite cardinal λ every shift-continuous T1-topology τ on expn λ is functionally
Hausdor� and quasiregular, and hence it is Hausdor�.

Proposition 1. Let n be an arbitrary positive integer and λ be an arbitrary in�nite

cardinal. Then for every d-feebly compact shift-continuous T1-topology τ on expn λ the

subset expn λ \ expn−1 λ is dense in (expn λ, τ).

Proof. Suppose to the contrary that there exists a d-feebly compact shift-continuous
T1-topology τ on expn λ such that expn λ \ expn−1 λ is not dense in (expn λ, τ). Then
there exists a point x ∈ expn−1 λ of the space (expn λ, τ) such that x /∈ clexpn λ(expn λ \
expn−1 λ). This implies that there exists an open neighbourhood U(x) of x in (expn λ, τ)

such that U(x)∩
(
expn λ \ expn−1 λ

)
= ∅. The de�nition of the semilattice expn λ implies

that every maximal chain in expn λ is �nite and hence there exists a point y ∈ U(x) such
that ↑y ∩ U(x) = {y}. By Proposition 1(iii) from [11], ↑y is an open-and-closed subset
of (expn λ, τ) and hence ↑y is a d-feebly compact subspace of (expn λ, τ).

It is obvious that the subsemilattice ↑y of expn λ is algebraically isomorphic to the
semilattice expk λ for some positive integer k 6 n. This and above arguments imply
that without loss of generality we may assume that y is the isolated zero of the d-feebly
compact semitopological semilattice (expn λ, τ).

Hence we assume that τ is a d-feebly compact shift-continuous topology on expn λ
such that the zero 0 of expn λ is an isolated point of (expn λ, τ). Next we �x an arbitrary
in�nite sequence {xi}i∈N of distinct elements of cardinal λ. For every positive integer j
we put

aj =
{
xn(j−1)+1, xn(j−1)+2, . . . , xnj

}
.

Then aj ∈ expn λ and moreover aj is a greatest element of the semilattice expn λ for
each positive integer j. Also, the de�nition of the semilattice expn λ implies that for
every non-zero element a of expn λ there exists at most one element aj such that aj ∈ ↑a.
Then for every positive integer j by Proposition 1(iii) of [11], aj is an isolated point of
(expn λ, τ), and hence the above arguments imply that {a1, a2, . . . , aj , . . .} is an in�nite
discrete family of open subset in the space (expn λ, τ). This contradicts the d-feeble
compactness of the semitopological semilattice (expn λ, τ). The obtained contradiction
implies the statement of our proposition. �

The following example show that the converse statement to Proposition 1 is not
true in the case of topological semilattices.

Example 1. Fix an arbitrary cardinal λ and an in�nite subset A in λ such that |λ \A| >
ω. By π : λ → exp1 λ : a 7→ {a} we denote the natural embedding of λ into exp1 λ. On
exp1 λ we de�ne a topology τdm in the following way:

(i) all non-zero elements of the semilattice exp1 λ are isolated points in (exp1 λ, τdm);
and

(ii) the family Bdm = {UB = {0} ∪ π(B) : B ⊆ A and A \B is �nite} is the base of
the topology τdm at zero 0 of exp1 λ.

Simple veri�cations show that τdm is a Hausdor� locally compact semilattice topology
on exp1 λ which is not compact and hence by Corollary 8 of [11] it is not feebly compact.
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Remark 1. We observe that in the case when λ = ω by Proposition 13 of [11] the topologi-
cal space (exp1 λ, τdm) is collectionwise normal and it has a countable base, and hence
(exp1 λ, τdm) is metrizable by the Urysohn Metrization Theorem [14]. Moreover, if |B| = ω
then the space (exp1 λ, τdm) is metrizable for any in�nite cardinal λ, as a topological sum
of the metrizable space (exp1 ω, τdm) and the discrete space of cardinality λ.

Remark 2. If n is an arbitrary positive integer > 3, λ is any in�nite cardinal and τnc is
the unique compact semilattice topology on the semilattice expn λ de�ned in Example 4
of [11], then we construct more stronger topology τn

dm
on expn λ them τnc in the following

way. Fix an arbitrary element x ∈ expn λ such that |x| = n− 1. It is easy to see that the
subsemilattice ↑x of expn λ is isomorphic to exp1 λ, and by h : exp1 λ → ↑x we denote
this isomorphism.

Fix an arbitrary subset A in λ such that |λ \A| > ω. For every zero element y ∈
expn λ \ ↑x we assume that the base Bn

dm
(y) of the topology τn

dm
at the point y coincides

with the base of the topology τnc at y, and assume that ↑x is an open-and-closed subset
and the topology on ↑x is generated by the map h :

(
exp2 λ, τ

2
fc

)
→ ↑x. We observe

that (expn λ, τ
n
dm

) is a Hausdor� locally compact topological space, because it is the
topological sum of a Hausdor� locally compact space ↑x (which is homeomorphic to
the Hausdor� locally compact space (exp1 λ, τdm) from Example 1) and an open-and-
closed subspace expn λ \ ↑x of (expn λ, τ

n
c ). It is obvious that the set expn λ \ expn−1 λ is

dense in (expn λ, τ
n
dm

). Also, since ↑x is an open-and-closed subsemilattice with zero x of
(expn λ, τ

n
dm

), the continuity of the semilattice operations in (expn λ, τ
n
dm

) and (expn λ, τ
n
c )

and the property that the topology τn
dm

is more stronger them τnc , imply that (expn λ, τ
n
dm

)
is a topological semilattice. Moreover, the space (expn λ, τ

n
dm

) is not d-feebly compact,
because it contains an open-and-closed non-d-feebly compact subspace ↑x.

Arguments presented in the proof of Proposition 1 and Proposition 1(iii) of [11]
imply the following corollary.

Corollary 1. Let n be an arbitrary positive integer and λ be an arbitrary in�nite cardinal.

Then for every d-feebly compact shift-continuous T1-topology τ on expn λ a point x is

isolated in (expn λ, τ) if and only if x ∈ expn λ \ expn−1 λ.

Remark 3. We observe that the example presented in Remark 2 implies there exists
a locally compact non-d-feebly compact semitopological semilattice (expn λ, τ

n
dm

) with
the following property: a point x is isolated in (expn λ, τ

n
dm

) if and only if x ∈ expn λ \
expn−1 λ.

The following proposition gives an amazing property of the system of nei-
ghbourhoodd of zero in a T1-feebly compact semitopological semilattice expn λ.

Proposition 2. Let n be an arbitrary positive integer, λ be an arbitrary in�nite cardi-

nal and τ be a shift-continuous feebly compact T1-topology on the semilattice expn λ.
Then for every open neighbourhood U(0) of zero 0 in (expn λ, τ) there exist �nitely many

x1, . . . , xm ∈ λ such that

expn λ \ clexpn λ(U(0)) ⊆ ↑x1 ∪ · · · ∪ ↑xm.
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Proof. Suppose to the contrary that there exists an open neighbourhood U(0) of zero in
a Hausdor� feebly compact semitopological semilattice (expn λ, τ) such that

expn λ \ clexpn λ(U(0)) 6⊆ ↑x1 ∪ · · · ∪ ↑xm
for any �nitely many x1, . . . , xm ∈ λ.

We �x an arbitrary y1 ∈ λ such that
(
expn λ \ clexpn λ(U(0))

)
∩ ↑y1 6= ∅.

By Proposition 1(iii) of [11] the set ↑y1 is open in (expn λ, τ) and hence the set(
expn λ \ clexpn λ(U(0))

)
∩ ↑y1 is open in (expn λ, τ) too. Then by Proposition 1

there exists an isolated point m1 ∈ expn λ \ expn−1 λ in (expn λ, τ) such that

m1 ∈
(
expn λ \ clexpn λ(U(0))

)
∩↑y1. Now, by the assumption there exists y2 ∈ λ such that(

expn λ \ clexpn λ(U(0))
)
∩ (↑y2 \ ↑y1) 6= ∅.

Again, since by Proposition 1(iii) of [11] both sets ↑y1 and ↑y2 are open-and-closed
in (expn λ, τ), Proposition 1 implies that there exists an isolated point m2 ∈ expn λ \
expn−1 λ in (expn λ, τ) such that

m2 ∈
(
expn λ \ clexpn λ(U(0))

)
∩ (↑y2 \ ↑y1) .

Hence by induction we can construct a sequence {yi : i = 1, 2, 3, . . .} of distinct poi-
nts of λ and a sequence of isolated points {mi : i = 1, 2, 3, . . .} ⊂ expn λ \ expn−1 λ in
(expn λ, τ) such that for any positive integer k the following conditions hold:

(i)
(
expn λ \ clexpn λ(U(0))

)
∩ (↑yk \ (↑y1 ∪ · · · ∪ ↑yk−1)) 6= ∅; and

(ii) mk ∈
(
expn λ \ clexpn λ(U(0))

)
∩ (↑yk \ (↑y1 ∪ · · · ∪ ↑yk−1)).

Then similar arguments as in the proof of Proposition 1 imply that the following family

{{mi} : i = 1, 2, 3, . . .}
is in�nite and locally �nite, which contradicts the feeble compactness of (expn λ, τ). The
obtained contradiction implies the statement of the proposition. �

Proposition 1(iii) of [11] implies that for any element x ∈ expn λ the set ↑x is open-
and-closed in a T1-semitopological semilattice (expn λ, τ) and hence by Theorem 14 from
[3] we have that for any x ∈ expn λ the space ↑x is feebly compact in a feebly compact T1-
semitopological semilattice (expn λ, τ). Hence Proposition 2 implies the following proposi-
tion.

Proposition 3. Let n be an arbitrary positive integer, λ be an arbitrary in�nite cardinal

and τ be a shift-continuous feebly compact T1-topology on the semilattice expn λ. Then
for any point x ∈ expn λ and any open neighbourhood U(x) of x in (expn λ, τ) there exist
�nitely many x1, . . . , xm ∈ ↑x \ {x} such that

↑x \ clexpn λ(U(x)) ⊆ ↑x1 ∪ · · · ∪ ↑xm.

The main results of this paper is the following theorem.

Theorem 1. Let n be an arbitrary positive integer and λ be an arbitrary in�nite cardi-

nal. Then for any shift-continuous T1-topology τ on expn λ the following conditions are

equivalent:

(i) τ is countably pracompact;

(ii) τ is feebly compact;

(iii) τ is d-feebly compact;
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(iv) the space (expn λ, τ) is H-closed.

Proof. Implications (i) ⇒ (ii) and (ii) ⇒ (iii) are trivial and implication (iii) ⇒ (i)
follows from Proposition 1 of [11], Lemma 1 and Proposition 1.

Implication (iv)⇒ (ii) follows from Proposition 4 of [10].
(ii)⇒ (iv) We shall prove this implication by induction.
By Corollary 2 from [11] every feebly compact T1-topology τ on the semilatti-

ce exp1 λ such that (exp1 λ, τ) is a semitopological semilattice, is compact, and hence
(exp1 λ, τ) is an H-closed topological space.

Next we shall show that if our statements holds for all positive integers j < k 6 n
then it holds for j = k. Suppose that a feebly compact T1-semitopological semilattice
(expk λ, τ) is a subspace of Hausdor� topological space X. Fix an arbitrary point x ∈ X
and an arbitrary open neighbourhood V (x) of x in X. Since X is Hausdor�, there exist
disjoint open neighbourhoods U(x) ⊆ V (x) and U(0) of x and zero 0 of the semilattice
expk λ in X, respectively. Then clX(U(0))∩U(x) = ∅ and hence by Proposition 2 there
exists �nitely many x1, . . . , xm ∈ λ such that

expk λ ∩ U(x) ⊆ ↑x1 ∪ · · · ∪ ↑xm.

But for any x ∈ λ the subsemilattice ↑x of expk λ is algebraically isomorphic to the
semilattice expk−1 λ. Then by Proposition 1(iii) of [11] and Theorem 14 from [3], ↑x is
a feebly compact T1-semitopological semilattice, and the assumption of our induction
implies that ↑x1, · · · , ↑xm are closed subsets of X. This implies that

W (x) = U(x) \ (↑x1 ∪ · · · ∪ ↑xm)

is an open neighbourhood of x in X such that W (x) ∩ expk λ = ∅. Thus, (expk λ, τ) is
an H-closed space. This completes the proof of the requested implication. �

The following theorem gives a su�cient condition when a d-feebly compact space is
feebly compact.

Theorem 2. Every quasiregular d-feebly compact space is feebly compact.

Proof. Suppose to the contrary that there exists a quasiregular d-feebly compact space
X which is not feebly compact. Then there exists an in�nite locally �nite family U0 of
non-empty open subsets of X.

By induction we shall construct an in�nite discrete family of non-empty open subsets
of X.

Fix an arbitrary U1 ∈ U0 and an arbitrary point x1 ∈ U1. Since the family U0 is
locally �nite there exists an open neighbourhood U(x1) ⊆ U1 of the point x1 in X such
that U(x1) intersects �nitely many elements of U0. Also, the quasiregularity of X implies
that there exists a non-empty open subset V1 ⊆ U(x1) such that clX(V1) ⊆ U(x1). Put

U1 = {U ∈ U0 : U(x1) ∩ U = ∅} .

Since the family U0 is locally �nite and in�nite, so is U1. Fix an arbitrary U2 ∈ U1 and
an arbitrary point x2 ∈ U2. Since the family U1 is locally �nite, there exists an open
neighbourhood U(x2) ⊆ U2 of the point x2 in X such that U(x2) intersects �nitely many
elements of U1. Since X is quasiregular, there exists a non-empty open subset V2 ⊆ U(x2)
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such that clX(V2) ⊆ U(x2). Our construction implies that the closed sets clX(V1) and
clX(V2) are disjoint and hence so are V1 and V2. Next we put

U2 = {U ∈ U1 : U(x2) ∩ U = ∅} .

Also, we observe that it is obvious that U(x1) ∩ U = ∅ for each U ∈ U1.
Suppose for some positive integer k > 1 we construct:

(a) a sequence of in�nite locally �nite subfamilies U1, . . . ,Uk−1 in U0 of non-empty
open subsets in the space X;

(b) a sequence of open subsets U1, . . . , Uk in X;
(c) a sequence of points x1, . . . , xk in X and a sequence of their corresponding open

neighbourhoods U(x1), . . . , U(xk) in X;
(d) a sequence of disjoint non-empty subsets V1, . . . , Vk in X

such that the following conditions hold:

(i) Ui is a proper subfamily of Ui−1;
(ii) Ui ∈ Ui−1 and Ui ∩ U = ∅ for each U ∈ Uj with i 6 j 6 k;
(iii) xi ∈ Ui and U(xi) ⊆ Ui;
(iv) Vi is an open subset of Ui with clX(Vi) ⊆ U(xi),

for all i = 1, . . . , k, and

(v) clX(V1), . . . , clX(Vk) are disjoint.

Next we put

Uk = {U ∈ Uk−1 : U(x1) ∩ U = . . . = U(xk) ∩ U = ∅} .

Since the family Uk−1 is in�nite and locally �nite, there exists a subfamily Uk in Uk−1
which is in�nite and locally �nite. Fix an arbitrary Uk+1 ∈ Uk and an arbitrary point
xk+1 ∈ Uk+1. Since the family Uk is locally �nite, there exists an open neighbourhood
U(xk+1) ⊆ Uk+1 of the point xk+1 in X such that U(xk+1) intersects �nitely many
elements of Uk. Since the space X is quasiregular, there exists a non-empty open subset
Vk+1 ⊆ U(xk+1) such that clX(Vk+1) ⊆ U(xk+1). Simple veri�cations show that the
conditions (i)− (iv) hold in the case of the positive integer k + 1.

Hence by induction we construct the following two in�nite countable families of open
non-empty subsets of X:

U = {Ui : i = 1, 2, 3, . . .} and V = {Vi : i = 1, 2, 3, . . .}

such that clX(Vi) ⊆ Ui for each positive integer i. Since U is a subfamily of U0 and U0

is locally �nite in X, U is locally �nite in X as well. Also, above arguments imply that
V and

V = {clX(Vi) : i = 1, 2, 3, . . .}
are locally �nite families in X too.

Next we shall show that the family V is discrete in X. Indeed, since the family V is
locally �nite in X, by Theorem 1.1.11 of [8] the union

⋃
V is a closed subset of X, and

hence any point x ∈ X \
⋃

V has an open neighbourhood O(x) = X \
⋃

V which does
not intersect the elements of the family V . If x ∈ clX(Vi) for some positive integer i, then
our construction implies that U(xi) is an open neighbourhood of x which intersects only
the set Vi ∈ V . Hence X has an in�nite discrete family V of non-empty open subsets in
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X, which contradicts the assumption that the space X is d-feebly compact. The obtained
contradiction implies the statement of the theorem. �

We �nish this note by some simple remarks about dense embedding of an in�nite
semigroup of matrix units and a polycyclic monoid into d-feebly compact topological
semigroups which follow from the results of the paper [5].

Let λ be a non-zero cardinal. On the set Bλ = (λ × λ) ∪ {0}, where 0 /∈ λ × λ, we
de�ne the semigroup operation � · � as follows

(a, b) · (c, d) =
{

(a, d), if b = c;
0, if b 6= c,

and (a, b) · 0 = 0 · (a, b) = 0 · 0 = 0 for a, b, c, d ∈ λ. The semigroup Bλ is called the
semigroup of λ×λ-matrix units (see [7]).

The bicyclic monoid C (p, q) is the semigroup with the identity 1 generated by two
elements p and q subjected only to the condition pq = 1 [7]. For a non-zero cardinal
λ, the polycyclic monoid Pλ on λ generators is the semigroup with zero given by the
presentation:

Pλ =
〈
{pi}i∈λ ,

{
p−1i
}
i∈λ | pip

−1
i = 1, pip

−1
j = 0 for i 6= j

〉
(see [5]). It is obvious that in the case when λ = 1 the semigroup P1 is isomorphic to the
bicyclic semigroup with adjoined zero.

By Theorem 4.4 from [5] for every in�nite cardinal λ the semigroup of λ×λ-matrix
units Bλ does not densely embed into a Hausdor� feebly compact topological semigroup,
and by Theorem 4.5 from [5] for arbitrary cardinal λ > 2 there exists no Hausdor� feebly
compact topological semigroup which contains the λ-polycyclic monoid Pλ as a dense
subsemigroup. These theorems and Lemma 1 imply the following two corollaries.

Corollary 2. For every in�nite cardinal λ the semigroup of λ×λ-matrix units Bλ does

not densely embed into a Hausdor� d-feebly compact topological semigroup.

Corollary 3. For arbitrary cardinal λ > 2 there exists no Hausdor� d-feebly compact

topological semigroup which contains the λ-polycyclic monoid Pλ as a dense subsemi-

group.

The proof of the following corollary is similar to Theorem 5.1(5) from [4].

Corollary 4. There exists no Hausdor� topological semigroup with the d-feebly compact

square which contains the bicyclic monoid C (p, q) as a dense subsemigroup.
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Âèâ÷à¹ìî ñëàáêî êîìïàêòíi òîïîëîãi¨ τ íà íàïiâ ðàòöi (expn λ,∩) òàêi,
ùî (expn λ, τ) ¹ íàïiâòîïîëîãi÷íîþ íàïiâ ðàòêîþ i äîâåäåíî, ùî äëÿ äîâiëü-
íî¨ T1-òîïîëîãi¨ τ íà expn λ, ñòîñîâíî ÿêî¨ çñóâè â (expn λ, τ) ¹ íåïåðåðâíè-
ìè, òàêi óìîâè åêâiâàëåíòíi: (i) τ � çëi÷åííî ïðàêîìïàêòíà; (ii) τ � ñëàáêî
êîìïàêòíà; (iii) τ � d-ñëàáêî êîìïàêòíà; (iv) (expn λ, τ) � H-çàìíåíèé ïðî-
ñòið.

Êëþ÷îâi ñëîâà: òîïîëîãi÷íà íàïiâ ðàòêà, íàïiâòîïîëîãi÷íà íàïiâ ðàò-
êà, çëi÷åííî ïðàêîìïàêòíèé. ñëàáêî êîìïàêòíèé, d-ñëàáêî êîìïàêòíèé, H-
çàìêíåíèé ïðîñòið, íàïiâðåãóëÿðíèé ïðîñòið, ðåãóëÿðíèé ïðîñòið.


