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We study feebly compact topologies 7 on the semilattice (exp,, A,N) such
that (exp,, A, 7) is a semitopological semilattice and prove that for any shift-
continuous Ti-topology 7 on exp, A the following conditions are equivalent:
(¢) T is countably pracompact; (i) 7 is feebly compact; (ii7) 7 is d-feebly
compact; (iv) (exp,, A, 7) is an H-closed space.
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Dedicated to the memory of Professor Vitaly Sushchanskyy

We shall follow the terminology of [6l 8 [ 13]. If X is a topological space and
A C X, then by clx(A) and intx(A) we denote the closure and the interior of A in
X, respectively. By w we denote the first infinite cardinal and by N the set of positive
integers.

A subset A of a topological space X is called regular open if intx (clx(A)) = A.

We recall that a topological space X is said to be

o quasiregular if for any non-empty open set U C X there exists a non-empty open

set V' C U such that clx (V) C U,

semiregular if X has a base consisting of regular open subsets;

compact if each open cover of X has a finite subcover;

countably compact if each open countable cover of X has a finite subcover;

countably compact at a subset A C X if every infinite subset B C A has an

accumulation point x in X;

e countably pracompact if there exists a dense subset A in X such that X is
countably compact at A;
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o feebly compact (or lightly compact) if each locally finite open cover of X is fini-
te [3];

o d-feebly compact (or DFCC) if every discrete family of open subsets in X is finite
(see [12]);

o pseudocompact if X is Tychonoff and each continuous real-valued function on X
is bounded.

According to Theorem 3.10.22 of [8], a Tychonoff topological space X is feebly compact if
and only if X is pseudocompact. Also, a Hausdorff topological space X is feebly compact
if and only if every locally finite family of non-empty open subsets of X is finite [3].
Every compact space and every sequentially compact space are countably compact, every
countably compact space is countably pracompact, and every countably pracompact
space is feebly compact (see [2]), and every H-closed space is feebly compact too (see
[10]). Also, it is obvious that every feebly compact space is d-feebly compact.

A semilattice is a commutative semigroup of idempotents. On a semilattice S there
exists a natural partial order: e < f if and only if ef = fe = e. For any element e of a
semilattice S we put

te={feS:e<f}.

A topological (semitopological) semilattice is a topological space together with a
continuous (separately continuous) semilattice operation. If S is a semilattice and 7 is
a topology on S such that (S,7) is a topological semilattice, then we shall call 7 a
semilattice topology on S, and if 7 is a topology on S such that (S, 7) is a semitopological
semilattice, then we shall call T a shift-continuous topology on S.

For an arbitrary positive integer n and an arbitrary non-zero cardinal A we put

exp, A ={A CX: |A] <n}.

It is obvious that for any positive integer n and any non-zero cardinal A the set
exp,, A with the binary operation N is a semilattice. Later in this paper by exp, A we
shall denote the semilattice (exp,, A,N).

This paper is a continuation of [I1I] where we study feebly compact topologies T
on the semilattice exp,, A such that (exp,, A, 7) is a semitopological semilattice. Therein,
all compact semilattice Tj-topologies on exp, A were described. In [I1] it was proved
that for an arbitrary positive integer n and an arbitrary infinite cardinal A every Tj-
semitopological countably compact semilattice (exp,, A, 7) is a compact topological semi-
lattice. Also, there we construct a countably pracompact H-closed quasiregular non-
semiregular topology 72 such that (exp2 A, szc) is a semitopological semilattice with the
discontinuous semilattice operation and show that for an arbitrary positive integer n and
an arbitrary infinite cardinal A a semiregular feebly compact semitopological semilattice
exp,, A is a compact topological semilattice.

In this paper we show that for any shift-continuous Ti-topology 7 on exp, A the
following conditions are equivalent: (i) 7 is countably pracompact; (i¢) 7 is feebly
compact; (#i7) 7 is d-feebly compact; (iv) (exp,, A, 7) is an H-closed space.

The proof of the following lemma is similar to Lemma 4.5 of [5] or Proposition 1
from [1J.

Lemma 1. Every Hausdorff d-feebly compact topological space with a dense discrete
subspace is countably pracompact.
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We observe that by Proposition 1 from [IT] for an arbitrary positive integer n and an
arbitrary infinite cardinal A every shift-continuous T1-topology 7 on exp,, A is functionally
Hausdorff and quasiregular, and hence it is Hausdorff.

Proposition 1. Let n be an arbitrary positive integer and A be an arbitrary infinite
cardinal. Then for every d-feebly compact shift-continuous Ti-topology T on exp, A the
subset exp, A\ exp,,_; A is dense in (exp, A, 7).

Proof. Suppose to the contrary that there exists a d-feebly compact shift-continuous
Ti-topology 7T on exp,, A such that exp, A \ exp,,_; A is not dense in (exp,, A, 7). Then
there exists a point « € exp,,_; A of the space (exp,, A, 7) such that ¢ clexp x(exp, A\
exp,,_1 A). This implies that there exists an open neighbourhood U(z) of x in (exp,, A, )
such that U(z)N (exp, A \ exp,,_; A) = @. The definition of the semilattice exp,, A implies
that every maximal chain in exp,, A is finite and hence there exists a point y € U(z) such
that Ty N U(z) = {y}. By Proposition 1(ii¢) from [II], 1y is an open-and-closed subset
of (exp,, A\, 7) and hence 1Ty is a d-feebly compact subspace of (exp,, A, 7).

It is obvious that the subsemilattice 1y of exp,, A is algebraically isomorphic to the
semilattice exp, A for some positive integer £ < n. This and above arguments imply
that without loss of generality we may assume that y is the isolated zero of the d-feebly
compact semitopological semilattice (exp,, A, 7).

Hence we assume that 7 is a d-feebly compact shift-continuous topology on exp,, A
such that the zero 0 of exp,, A is an isolated point of (exp,, A, 7). Next we fix an arbitrary
infinite sequence {z;},.y of distinct elements of cardinal A. For every positive integer j
we put

@5 = {Zn-1) 41 TnG-1)2 0 T )
Then a; € exp, A and moreover a; is a greatest element of the semilattice exp, A for
each positive integer j. Also, the definition of the semilattice exp,, A implies that for
every non-zero element a of exp,, A there exists at most one element a; such that a; € Ta.
Then for every positive integer j by Proposition 1(#i) of [I1], a; is an isolated point of
(exp,, A, T), and hence the above arguments imply that {a1,a2,...,a;,...} is an infinite
discrete family of open subset in the space (exp,, A, 7). This contradicts the d-feeble
compactness of the semitopological semilattice (exp,, A, 7). The obtained contradiction
implies the statement of our proposition. O

The following example show that the converse statement to Proposition [I] is not
true in the case of topological semilattices.

Example 1. Fix an arbitrary cardinal A and an infinite subset A in A such that |\ \ A| >
w. By m: A = exp; A\: a — {a} we denote the natural embedding of X into exp; A\. On
exp; A we define a topology 7gm in the following way:
(1) all non-zero elements of the semilattice exp; A are isolated points in (exp; A, Tam);
and
(74) the family Bym = {Up = {0} Un(B): B C A and A\ B is finite} is the base of
the topology Tam at zero 0 of exp; A.
Simple verifications show that 74, is a Hausdorff locally compact semilattice topology
on exp; A which is not compact and hence by Corollary 8 of [11] it is not feebly compact.
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Remark 1. We observe that in the case when A = w by Proposition 13 of [I1] the topologi-
cal space (exp; A, Tdm) is collectionwise normal and it has a countable base, and hence
(expy A, Tdm) is metrizable by the Urysohn Metrization Theorem [14]. Moreover, if | B| = w
then the space (exp; A, 7am) is metrizable for any infinite cardinal ), as a topological sum
of the metrizable space (exp; w, 7gm) and the discrete space of cardinality A.

Remark 2. If n is an arbitrary positive integer > 3, A is any infinite cardinal and 7" is
the unique compact semilattice topology on the semilattice exp,, A defined in Example 4
of [I1], then we construct more stronger topology 7., on exp,, A them 7 in the following
way. Fix an arbitrary element x € exp,, A such that |z| = n — 1. It is easy to see that the
subsemilattice Tz of exp,, A is isomorphic to exp; A, and by h: exp; A = T2 we denote
this isomorphism.

Fix an arbitrary subset A in A such that |A\ A| > w. For every zero element y €
exp,, A\ Tz we assume that the base ], () of the topology 77, at the point y coincides
with the base of the topology 77" at y, and assume that 1z is an open-and-closed subset
and the topology on fx is generated by the map h: (exp, A, 72) — ta. We observe
that (exp, A, 74,,) is a Hausdorff locally compact topological space, because it is the
topological sum of a Hausdorff locally compact space 1z (which is homeomorphic to
the Hausdorff locally compact space (exp; A, 7gm) from Example and an open-and-
closed subspace exp,, A\ 1z of (exp,, A, 7). It is obvious that the set exp, A\ exp,,_; A is
dense in (exp,, A, 74.,)- Also, since 1z is an open-and-closed subsemilattice with zero x of
(exp,, A, Tjw, ), the continuity of the semilattice operations in (exp,, A, 74,,) and (exp,, A, 7Z")
and the property that the topology 7, is more stronger them 7, imply that (exp,, A, 73,)
is a topological semilattice. Moreover, the space (exp,, A, 7}, ) is not d-feebly compact,
because it contains an open-and-closed non-d-feebly compact subspace 1.

Arguments presented in the proof of Proposition |1 and Proposition 1(iii) of [11]
imply the following corollary.

Corollary 1. Letn be an arbitrary positive integer and X\ be an arbitrary infinite cardinal.
Then for every d-feebly compact shift-continuous Ti-topology T on exp, A a point © is
isolated in (exp, A\, 7) if and only if © € exp, A\ exp,,_1 A.

Remark 3. We observe that the example presented in Remark [2| implies there exists
a locally compact non-d-feebly compact semitopological semilattice (exp,, A, 7,,) with
the following property: a point x is isolated in (exp, A, 75,) if and only if x € exp, A\
€XpP,,_1 A

The following proposition gives an amazing property of the system of nei-
ghbourhoodd of zero in a T}-feebly compact semitopological semilattice exp,, A.

Proposition 2. Let n be an arbitrary positive integer, \ be an arbitrary infinite cardi-
nal and T be a shift-continuous feebly compact Ti-topology on the semilattice exp,, A.
Then for every open neighbourhood U (0) of zero 0 in (exp,, A, 7) there exist finitely many
T1,y...,Tm € X such that

exp, A\ Clexp, A(U(0)) € Tz1 U Ulay,.
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Proof. Suppose to the contrary that there exists an open neighbourhood U(0) of zero in
a Hausdorff feebly compact semitopological semilattice (exp,, A, 7) such that

XD M €l A (U(0)) £ Ty U Uty
for any finitely many x1,...,z, € A

We fix an arbitrary y; € A such that (exp, A\ clexp A(U(0))) N Ty # 2.
By Proposition 1(i7i) of [I1] the set fTy; is open in (exp, A,7) and hence the set
(exp, A\ clexp, A(U(0))) N ty1 is open in (exp, A, 7) too. Then by Proposition
there exists an isolated point m; € exp, A \ exp,_; A in (exp, A, 7) such that
my € (exp, A\ clexp, A(U(0)))NTy1. Now, by the assumption there exists y, € A such that

(expn A \ Clcxpn A(U(O))) n (TyQ \ Tyl) 7£ a.

Again, since by Proposition 1(éi¢) of [11] both sets Ty; and fy, are open-and-closed
in (exp,, A, 7), Proposition [1| implies that there exists an isolated point mg € exp, A\
exp,,_1 A in (exp,, A, 7) such that

ma € (expy, A\ clexp, A(U(0))) N (Ty2 \ Ty1).-
Hence by induction we can construct a sequence {y;: i =1,2,3,...} of distinct poi-
nts of A and a sequence of isolated points {m;:i=1,2,3,...} C exp, A\ exp,_; A in
(exp,, A, 7) such that for any positive integer k the following conditions hold:

(1) (expy A\ clexp, A(U(0))) N (Tyx \ (Tyr U -+~ Utyp—1)) # &5 and
(i1) my € (expn AN\ Clexp, A(U(()))) Aye\ (Tyr U---Utye—1)).
Then similar arguments as in the proof of Proposition [I] imply that the following family

{{m;}:1=1,2,3,...}
is infinite and locally finite, which contradicts the feeble compactness of (exp,, A, 7). The
obtained contradiction implies the statement of the proposition. O

Proposition 1(éi7) of [11] implies that for any element x € exp,, A the set Tz is open-
and-closed in a T;-semitopological semilattice (exp,, A, 7) and hence by Theorem 14 from
[3] we have that for any = € exp,, A the space Tz is feebly compact in a feebly compact T7-
semitopological semilattice (exp,, A, 7). Hence Proposition [2]implies the following proposi-
tion.

Proposition 3. Letn be an arbitrary positive integer, A be an arbitrary infinite cardinal
and 7 be a shift-continuous feebly compact T1-topology on the semilattice exp,, \. Then
for any point x € exp,, A and any open neighbourhood U(z) of x in (exp, A, T) there exist
finitely many x1,...,x, € To\ {z} such that

1\ clexp, A(U(2)) Stz U---Ulzy,.
The main results of this paper is the following theorem.

Theorem 1. Let n be an arbitrary positive integer and A be an arbitrary infinite cardi-
nal. Then for any shift-continuous T -topology T on exp,, A the following conditions are
equivalent:

(i) T is countably pracompact;
(#i) 7 is feebly compact;
(#i2) T is d-feebly compact;
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(iv) the space (exp, \,7) is H-closed.

Proof. Implications (i) = (4i) and (i¢) = (i4i) are trivial and implication (iii) = (%)
follows from Proposition 1 of [I1], Lemma 1] and Proposition

Implication (iv) = (4¢) follows from Proposition 4 of [10].

(74) = (iv) We shall prove this implication by induction.

By Corollary 2 from [II] every feebly compact Tj-topology 7 on the semilatti-
ce exp; A such that (exp; A,7) is a semitopological semilattice, is compact, and hence
(exp; A, 7) is an H-closed topological space.

Next we shall show that if our statements holds for all positive integers j < k < n
then it holds for j = k. Suppose that a feebly compact Tj-semitopological semilattice
(expy, A, 7) is a subspace of Hausdorff topological space X . Fix an arbitrary point x € X
and an arbitrary open neighbourhood V(x) of z in X. Since X is Hausdorff, there exist
disjoint open neighbourhoods U(xz) C V(z) and U(0) of x and zero 0 of the semilattice
expy, A in X, respectively. Then clx (U (0)) NU(z) = & and hence by Proposition [2f there
exists finitely many x1,..., 2, € A such that

expr, ANU(z) Ttz U-- Utz

But for any x € X the subsemilattice Tz of exp, A is algebraically isomorphic to the
semilattice expy_; A. Then by Proposition 1(éi¢) of [II] and Theorem 14 from [3], 1z is
a feebly compact Tj-semitopological semilattice, and the assumption of our induction
implies that Tx1,-- -, Tx,, are closed subsets of X. This implies that

W(z)=U(x)\ (Tz1 U -UTzy)

is an open neighbourhood of z in X such that W (z) Nexp, A = @. Thus, (exp, A\, 7) is
an H-closed space. This completes the proof of the requested implication. O

The following theorem gives a sufficient condition when a d-feebly compact space is
feebly compact.

Theorem 2. FEvery quasireqular d-feebly compact space is feebly compact.

Proof. Suppose to the contrary that there exists a quasiregular d-feebly compact space
X which is not feebly compact. Then there exists an infinite locally finite family %4 of
non-empty open subsets of X.

By induction we shall construct an infinite discrete family of non-empty open subsets
of X.

Fix an arbitrary U; € % and an arbitrary point z; € Uj. Since the family %4 is
locally finite there exists an open neighbourhood U(z1) C U; of the point z; in X such
that U(x1) intersects finitely many elements of %. Also, the quasiregularity of X implies
that there exists a non-empty open subset V3 C U(zy) such that clx (V1) C U(xy). Put

02/1:{UE%01U(CL‘1)QU:®}.

Since the family %4 is locally finite and infinite, so is %;. Fix an arbitrary Us € %4 and
an arbitrary point xo € Us. Since the family %4 is locally finite, there exists an open
neighbourhood U(x3) C Us of the point x5 in X such that U(xs) intersects finitely many
elements of % . Since X is quasiregular, there exists a non-empty open subset V5 C U (x3)
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such that clx(V2) € U(zz). Our construction implies that the closed sets clx (V1) and
clx (Va) are disjoint and hence so are V; and V5. Next we put

%QZ{UE%liU($2)ﬁU:®}.

Also, we observe that it is obvious that U(x1) NU = & for each U € 7.
Suppose for some positive integer k > 1 we construct:

(a) a sequence of infinite locally finite subfamilies %4, ..., %.—1 in % of non-empty
open subsets in the space X;

(b) a sequence of open subsets Uy, ..., Uy in X;

(¢) a sequence of points x1, ...,z in X and a sequence of their corresponding open
neighbourhoods U(z1),...,U(zy) in X;

(d) a sequence of disjoint non-empty subsets Vi,...,V, in X

such that the following conditions hold:

(i) %, is a proper subfamily of %;_1;
(it) U; € %i—1 and U; NU = @ for each U € %; with i < j < k;
(Z’LZ) x; € U; and U(Q}Z) CU;;
(iv) V; is an open subset of U; with clx (V;) C U(x;),
foralli=1,...,k, and

(v) clx(V1),...,clx (Vi) are disjoint.

Next we put

U, ={U € U;—1:U(x1)NU=...=U(zp)NU = &}.

Since the family %1 is infinite and locally finite, there exists a subfamily %4 in %;—1
which is infinite and locally finite. Fix an arbitrary Upy; € % and an arbitrary point
ZTk+1 € Ugqq. Since the family % is locally finite, there exists an open neighbourhood
U(zgt1) € Ugyq of the point zx11 in X such that U(xgyq) intersects finitely many
elements of %. Since the space X is quasiregular, there exists a non-empty open subset
Vi1 € U(xga1) such that clx (Viy1) € U(xgs1). Simple verifications show that the
conditions (i) — (¢v) hold in the case of the positive integer k + 1.

Hence by induction we construct the following two infinite countable families of open
non-empty subsets of X:

U ={U;:i=1,2,3,..} and ¥ ={Vi:i=1,23,.]}

such that clx (V;) C U; for each positive integer 7. Since % is a subfamily of % and %
is locally finite in X, % is locally finite in X as well. Also, above arguments imply that
¥ and

YV ={cdx(V;):i=1,2,3,...}
are locally finite families in X too.

Next we shall show that the family 7 is discrete in X. Indeed, since the family 7 is
locally finite in X, by Theorem 1.1.11 of [§] the union |J 7 is a closed subset of X, and
hence any point z € X \ |7 has an open neighbourhood O(x) = X \ |J7 which does
not intersect the elements of the family ¥". If z € clx (V) for some positive integer ¢, then
our construction implies that U(x;) is an open neighbourhood of = which intersects only
the set V; € ¥. Hence X has an infinite discrete family ¥ of non-empty open subsets in
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X, which contradicts the assumption that the space X is d-feebly compact. The obtained
contradiction implies the statement of the theorem. O

We finish this note by some simple remarks about dense embedding of an infinite
semigroup of matrix units and a polycyclic monoid into d-feebly compact topological
semigroups which follow from the results of the paper [5].

Let A be a non-zero cardinal. On the set By = (A x A\) U {0}, where 0 ¢ X x A\, we
define the semigroup operation “-” as follows

wn- o= { G0 e

and (a,b)-0=0-(a,b) =0-0 = 0 for a,b,¢,d € . The semigroup B, is called the
semigroup of AxA-matriz units (see [1]).

The bicyclic monoid %'(p, q) is the semigroup with the identity 1 generated by two
elements p and ¢ subjected only to the condition pg = 1 [7]. For a non-zero cardinal
A, the polycyclic monoid P, on A generators is the semigroup with zero given by the
presentation:

Py = <{pi}ie>\ ’ {pfl}igx | pip; ' = 17]91'10;1 =0 for i # j>

(see [3]). It is obvious that in the case when A = 1 the semigroup P, is isomorphic to the
bicyclic semigroup with adjoined zero.

By Theorem 4.4 from [5] for every infinite cardinal A the semigroup of Ax A-matrix
units By does not densely embed into a Hausdorff feebly compact topological semigroup,
and by Theorem 4.5 from [5] for arbitrary cardinal A > 2 there exists no Hausdorff feebly
compact topological semigroup which contains the A-polycyclic monoid Py as a dense
subsemigroup. These theorems and Lemma [I| imply the following two corollaries.

Corollary 2. For every infinite cardinal A the semigroup of AxA-matrix units B) does
not densely embed into a Hausdorff d-feebly compact topological semigroup.

Corollary 3. For arbitrary cardinal A > 2 there ewists no Hausdorff d-feebly compact
topological semigroup which contains the \-polycyclic monoid Py as a dense subsemi-

group.
The proof of the following corollary is similar to Theorem 5.1(5) from [4].

Corollary 4. There exists no Hausdor[f topological semigroup with the d-feebly compact
square which contains the bicyclic monoid € (p,q) as a dense subsemigroup.
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e-mails: o_ gutik@franko.lviv.ua,
ovgutik@yahoo.com, olesyasobol@mail.Tu

Bupuaemo cs1abk0 KOMnakTHI Tonosorii 7 na mamsrparoi (exp,, A, N) Taki,
o (exp,, A, T) € HANIIBTOIOJION YHOIO HAMIBI'PATKOIO 1 JI0BEIEHO, 110 IS JOBLIIb-
uoi T-romosorii T Ha exp,, A, CTOCOBHO $IKOI 3CyBU B (€Xp,, A, T) € HeIlepepBHU-
Mu, Taki yMOBu exBiBasenTHi: (i) 7 — 371i9eHHO npakoMuakTHa; (i4) T — caabko
KoMIakTHa; (4i1) T — d-ciabko komnakTHa; (1v) (exp,, A, 7) — H-3aMHeHwHit mpo-
cTip.

Karwosi caosa: TOMONIOTiYHA HAIIBIPaTKa, HANIBTOIIOIOTIYHA HAINIBIDAT-

Ka, 3/IIYeHHO IPAKOMIIAKTHHUN. CJIA0KO KOMITAKTHUM, d-C/1abKo KoMITakTHuit, H -
3aMKHEHU TIPOCTip, HABPEry/JIAPHUIA IPOCTIp, PEryJIAPHUMA IPOCTIp.



