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We �nd a nonempty set of continuously di�erentiable solutions x : (0, ρ] →
R each of which possesses required asymptotical properties when t→ +0. Also
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Key words: implicit di�erential equation, initial value problem, solvability,
uniqueness, asymptotic property.

The general solvability and solutions number problem for implicit ordinary di�erenti-
al equations was under consideration in [1], [2], [3], [6]. In [7], [9], [10] conditions for
convergence of successive approximations to implicit equations solutions were found.
At the same time asymptotic properties of implicit di�erential equations are still only
partially understood; there are only isolated results obtained, for example, [11]. This
article presents an investigation of the initial value problem x′ = f (t, x, x′), x (0) = 0.
The asymptotic behaviour of solutions is being discussed. We describe an approach which
makes it possible to consider implicit initial value problems. Our approach to the problem
seems to be very much di�erent from the usual ones. We use qualitative methods (see,
for instance, [4], [5], [8], and also [11]) together with �xed point methods. We establish
general schemes of investigation which may be applied to many various problems of local
analysis. In this paper existence of continuously di�erentiable solutions is being proved.
Asymptotic properties of each of these solutions is discussed and if certain conditions are
ful�lled then the uniqueness of solution is established.
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1. First the following initial value problem

x′ (t) = f (t, x (t) , x′ (t)) , (1)

x (0) = 0 (2)

is under consideration, where t ∈ (0, τ) is a real variable, x : (0, τ)→ R is a real unknown
function, f : D → R is a continuous function,

D = {(t, x, y) : t ∈ (0, τ) , |x− ξ (t)| < r1tα (t) , |y − ξ′ (t)| < r2α (t)} ;

here ξ : (0, τ)→ (0,+∞) , α : (0, τ)→ (0,+∞) are continuously di�erentiable functions,

|ξ′ (t)− f (t, ξ (t) , ξ′ (t))| ≤ α (t) , t ∈ (0, τ) ,

lim
t→+0

α (t) = 0, lim
t→+0

ξ (t) = 0, lim
t→+0

ξ′ (t) = ξ0, 0 ≤ ξ0 < +∞,

lim
t→+0

α (t)

ξ′ (t)
= 0, lim

t→+0
t
α′ (t)

α (t)
= α0, 0 ≤ α0 < +∞.

Suppose that

|f (t, x, y1)− f (t, x, y2)| ≤ ly |y1 − y2| , (t, x, yi) ∈ D, i ∈ {1, 2} ,

where ly is a constant, 0 < ly < 1, (1− ly)
−1

< min {(1 + α0) r1, lyr2}.

De�nition 1. For any ρ ∈ (0, τ) a continuously di�erentiable function x : (0, ρ]→ R is
said to be a ρ-solution of the problem (1), (2), if

1) (t, x (t) , x′ (t)) ∈ D, t ∈ (0, ρ];
2) x identically satis�es equation (1) for all t ∈ (0, ρ];
3) lim

t→+0
x (t) = 0.

We denote by U (ρ,M, q) the set of all continuously di�erentiable functions
u : (0, ρ]→ R such that

|u (t)− ξ (t)| ≤Mtα (t) , |u′ (t)− ξ′ (t)| ≤ qMα (t) , t ∈ (0, ρ] ; (3)

here ρ,M, q are constants, ρ ∈ (0, τ), M > 0, q > 0.

Theorem 1. Suppose that the following conditions hold:

|f (t1, x, y)− f (t2, x, y)| ≤ lt (µ) |t1 − t2| , (ti, x, y) ∈ D, 0 < µ ≤ t1, t2 < τ, (4)

|f (t, x1, y)− f (t, x2, y)| ≤ lx (t) |x1 − x2| , (t, xi, y) ∈ D, i ∈ {1, 2} , (5)

where lt : (0, τ)→ (0,+∞), lx : (0, τ)→ (0,+∞) are continuous functions, 0 < t1 < t2 <
τ ⇒ lt (t1) ≥ lt (t2), lim

t→+0
tlx (t) = 0. Then there exist ρ, M, q such that the problem (1),

(2) has a nonempty set of ρ-solutions x : (0, ρ]→ R each of which belongs to U (ρ, M, q).

Theorem 2. Suppose that the following condition holds:

|f (t, x1, y)− f (t, x2, y)| ≤ lx |x1 − x2| , (t, xi, y) ∈ D, i ∈ {1, 2} , (6)

where lx is a constant, lx + ly < 1. Then there exist ρ,M, q such that the problem (1),
(2) has a unique ρ-solution x : (0, ρ]→ R which belongs to U (ρ, M, q).
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Proof of Theorem 1. First of all we select constants ρ, M, q. Let the following conditions
hold:

1 + α0 < q <
m0 (1 + α0)− 1

m0ly
, (1 + α0 − qly)

−1
< M < m0,

wherem0 = ((1 + α0) (1− ly))
−1
. We do not present here the conditions for selection of ρ

to keep the size of this paper reasonable. We now indicate nothing but ρ is small enough,
M, q are large enough and our selection of ρ,M, q ensures the validity of all our reasoning
given below. Let B be the space of continuously di�erentiable functions x : (0, ρ] → R
with the norm

‖x‖B = max
t∈[0,ρ]

(|x (t)|+ |x′ (t)|) . (7)

Let U be the subset of B such that every its element u : [0, ρ] → R satis�es inequalities
(3), and also u (0) = 0, u′ (0) = ξ0 and, moreover,

∀µ ∈ (0, ρ] , ∀t1, t2 ∈ [µ, ρ] : |u′ (t1)− u′ (t2)| ≤ K (µ) |t1 − t2| , (8)

where

K (µ) = (1− ly)
−1 (

lt (µ) + µ−1
)
.

It is easy to see that U is a closed, bounded and convex set. Moreover, U is a compact
set (in view of the Arzelá Theorem). We will consider the di�erential equation

x′ (t) = f (t, u (t) , u′ (t)) , (9)

where u ∈ U is an arbitrary �xed function. Let

D0 = {(t, x) : t ∈ (0, ρ] , x ∈ R} .
In D for equation (9) conditions of the Existence and Uniqueness Theorem and conditions
of the Continuous Dependence of the Initial Data Theorem are ful�lled. Let

Φ1 = {(t, x) : t ∈ (0, ρ] , |x− ξ (t)| = Mtα (t)} ,

D1 = {(t, x) : t ∈ (0, ρ] , |x− ξ (t)| < Mtα (t)} ,
H = {(t, x) : t = ρ, |x− ξ (ρ)| < Mρα (ρ)} .

Let the function A1 : D0 → [0,+∞) be de�ned by the equality

A1 (t, x) = (x− ξ (t))
2
(tα (t))

−2

and let a1 : D0 → R be the derivative of the function A1 by virtue of equation (9). It is
easy to see that a1 (t, x) < 0 when (t, x) ∈ Φ1. Let us prove that any integral curve of
equation (9) which intersects Φ1 at an arbitrary point (t0, x0) for small enough |t− t0|
(where t ≤ ρ) lies in D1 if t > t0 and lies outside of D1 if t < t0. In fact, let P (t0, x0) be
an arbitrary point belonging to Φ1 and let Jp : (t, xP (t)) be an integral curve of equation
(9) which passes through the point P . Then

A1 (t0, xP (t0)) = M2, a1 (t0, xP (t0)) < 0.

Therefore if t0 ∈ (0, ρ) then there exists δ > 0 such that

sign (A1 (t, xP (t))−A1 (t0, xP (t0))) = sign (t0 − t) , |t− t0| < δ,

or

sign
(
|xP (t)− ξ (t)| (tα (t))

−1 −M
)

= sign (t0 − t) , |t− t0| < δ.
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What this means is (t, xP (t)) ∈ D1 if t ∈ (t0, t0 + δ) and (t, xP (t))∈D1 if t ∈ (t0 − δ, t0).
If t0 = ρ then there exists δ > 0 such that

A1 (t, xP (t)) > A1 (t0, xP (t0)) , t ∈ (ρ− δ, ρ) ,

or
|xP (t)− ξ (t)| (tα (t))

−1
> M, t ∈ (ρ− δ, ρ) ,

and this means that (t, xP (t))∈D1, t ∈ (ρ− δ, ρ).
This implies that at least one of integral curves of equation (9) which intersect H

is de�ned for all t ∈ (0, ρ] and lies in D1 if t ∈ (0, ρ]. In fact, having common points
with Φ1 when t increases is beyond the capabilities of any integral curve of equation (9)
which intersects Φ1. That is why all these curves have to intersect H. Let the mapping
ψ : Φ1 → H be de�ned by the following way: the point ψ (P ) ∈ H is assigned to P ∈ Φ1

if both P and ψ(P ) belong to the common integral curve of equation (9). Let

ψ (Φ1) = {ψ (P ) : P ∈ Φ1} .
The set H\ψ (Φ1) is nonempty (H is a closed set, but ψ (Φ1) is not since ψ (Φ1) is the
image of the nonclosed set Φ1). Let Ju : (t, xu (t)) be an integral curve of equation (9)
such that (ρ, xu (ρ)) ∈ H\ψ (Φ1). It is clear that Ju : (t, xu (t)) has no common point
with Φ1. Therefore Ju : (t, xu (t)) is de�ned for all t ∈ (0, ρ] and Ju : (t, xu (t)) comes
into the point (0, 0) if t → +0 and, moreover, Ju : (t, xu (t)) lies in D1 if t ∈ (0, ρ]. It is
easy to see that the following inequalities are ful�lled when t ∈ (0, ρ]:

|xu (t)− ξ (t)| ≤Mtα (t) , |x′u (t)− ξ′ (t)| ≤ qMα (t) . (10)

Let xu (0) = 0, x′u (0) = ξ0. Let us prove that

∀µ ∈ (0, ρ]∀t1, t2 ∈ [µ, ρ] : |x′u (t1)− x′u (t2)| ≤ K (µ) |t1 − t2| . (11)

Select µ ∈ (0, ρ] and ti ∈ [µ, ρ], i ∈ {1, 2}; let t1 < t2. From the identities

x′u (ti) = f (ti, u (ti) , u
′ (ti)) , i ∈ {1, 2} (12)

we obtain

|x′u (t1)− x′u (t2)| ≤ lt (µ) |t1 − t2|+ lx (t1) |u (t1)− u (t2)|+ ly |u′ (t1)− u′ (t2)| ≤
≤
(
lt (µ) + µ−1

)
|t1 − t2|+ lyK (µ) |t1 − t2| =

= (1− ly)K (µ) |t1 − t2|+ lyK (µ) |t1 − t2| =
= K (µ) |t1 − t2| .

This means that xu ∈ U . Let us prove that if t→ +0 then all integral curves of equation
(9) leave the set D1\ {(0, 0)}, with the only exception Ju : (t, xu (t)). Indeed, let

Φ2 (µ) = {(t, x) : t ∈ (0, ρ] , |x− xu (t)| = µtα (t) (− ln t)} ,
D2 (µ) = {(t, x) : t ∈ (0, ρ] , |x− xu (t)| < µtα (t) (− ln t)} ,

where µ is a parameter, µ ∈ (0, 1]. Let the function A2 : D0 → [0,+∞) be de�ned by the
equality

A2 (t, x) = (x− xu (t))
2
(tα (t) (− ln t))

−2

and let a2 : D0 → R be the derivative of the function A2 by virtue of equation (9). It
is easy to see that a2 (t, x) < 0 when (t, x) ∈ D0, x 6= xu (t). In particular, a2 (t, x) < 0
when (t, x) ∈ Φ2 (µ) for each µ ∈ (0, 1]. Therefore for each µ ∈ (0, 1] an integral curve
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of equation (9) which intersects Φ2 (µ) at an arbitrary point (t0, x0), for small enough

|t− t0| (where t ≤ ρ): lies in D2 (µ) when t > t0 and lies outside of D2 (µ) when t < t0
(the proof is similar to that for Φ1). Let P∗ (t∗, x∗) ∈ D1\ {(0, 0)}, x∗ 6= xu (t∗). Then
there exists µ∗ ∈ (0, 1] such that P∗ ∈ Φ2 (µ∗). As follows from the above, the integral

curve of equation (9) J∗ : (t, x∗ (t)) which passes through P∗ lies outside of D2 (µ∗) if
t ∈ (t−, t∗), where (t−, t∗) is the left maximal existence interval for the solution x∗. From
the other hand there exists t∗∗ ∈ (0, ρ) such that if (t, x) ∈ D1 and if t ∈ (0, t∗∗) then
(t, x) ∈ D2 (µ∗). Let

t∗ = min {t∗, t∗∗} .
As appears from the above J∗ : (t, x∗ (t)) lies outside of D1 when t ∈ (t−, t

∗). Introduce
an operator T : U → U by Tu = xu. Let us prove that T : U → U is a continuous operator.
Let ui ∈ U , i ∈ {1, 2}, be arbitrary functions and let Tui = xi, i ∈ {1, 2}. Then xi ∈ U ,
i ∈ {1, 2}, and if t ∈ (0, ρ] then the following identities are valid:

x′i (t) = f (t, ui (t) , u′i (t)) , i ∈ {1, 2} . (13)

If u1 = u2 then x1 = x2. Suppose ‖u1 − u2‖B = h, h > 0. Let

Φ3 =
{

(t, x) : t ∈ (0, ρ] , |x− x2 (t)| = hν(tα (t))
1−ν
}
,

D3 =
{

(t, x) : t ∈ (0, ρ] , |x− x2 (t)| < hν(tα (t))
1−ν
}
,

where ν is a constant such that 0 < ν < 0. Let the function A3 : D0 → [0,+∞) be de�ned
by the equality

A3 (t, x) = (x− x2 (t))
2
(tα (t))

−2(1−ν)

and let a3 : D0 → R be the derivative of the function A3 by virtue of equation

x′ (t) = f (t, u1 (t) , u′1 (t)) . (14)

Since

|u1 (t)− u2 (t)| = |u1 (t)− u2 (t)|ν |u1 (t)− u2 (t)|1−ν ≤

≤ ‖u1 − u2‖νB (|u1 (t)− ξ (t)|+ |u2 (t)− ξ (t)|)1−ν ≤

≤ hν(2Mtα (t))
1−ν

, t ∈ (0, ρ] ,

|u′1 (t)− u′2 (t)| = |u′1 (t)− u′2 (t)|ν |u′1 (t)− u′2 (t)|1−ν ≤

≤ ‖u1 − u2‖νB (|u′1 (t)− ξ′ (t)|+ |u′2 (t)− ξ′ (t)|)1−ν ≤

≤ hν(2qMα (t))
1−ν

, t ∈ (0, ρ] ,

it is easy to see that a3 (t, x) < 0 when (t, x) ∈ Φ3. Therefore an integral curve of equation
(14) which intersects Φ3 at an arbitrary point (t0, x0), for small enough |t− t0| (where
t ≤ ρ): lies in D3 when t > t0 and lies outside of D3 when t < t0 (the proof is similar to
that for Φ1). Moreover, we obtain

|x1 (t)− x2 (t)| ≤ |x1 (t)− ξ (t)|+ |x2 (t)− ξ (t)| ≤ 2Mtα (t) < h
ν

(tα (t))
1−ν

,

when t ∈ (0, t (h)], where t (h) ∈ (0, ρ] is small enough. Therefore if t ∈ (0, t (h)] then
the integral curve J : (t, x1 (t)) of equation (14) lies in D3. As follows from the above,
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if t increases monotonically from t = t (h) to t = ρ then the integral curve J : (t, x1 (t))
cannot intersect Φ3 and therefore this curve remains in D3 for all t ∈ (0, ρ]. We obtain

|x1 (t)− x2 (t)| ≤ h
ν

(tα (t))
1−ν

, t ∈ (0, ρ] . (15)

From (13) we see that

|x′1 (t)− x′2 (t)| ≤ h
ν

t
(tα (t))

1−ν
, t ∈ (0, ρ] . (16)

Since ρ is small su�ciently it follows from (15), (16) that

|x1 (t)− x2 (t)|+ |x′1 (t)− x′2 (t)| ≤ h
ν

t
, t ∈ (0, ρ] . (17)

We now turn to a direct proof of the continuity of the operator T : U → U . Let there be
given ε > 0. There exists tε ∈ (0, ρ) such that

2Mtα (t) + 2qMα (t) ≤ ε

2
, t ∈ (0, tε] .

Then

|x1 (t)− x2 (t)|+ |x′1 (t)− x′2 (t)| ≤ |x1 (t)− ξ (t)|+ |x2 (t)− ξ (t)|+

|x1′ (t)− ξ′ (t)|+ |x′2 (t)− ξ′ (t)| ≤ 2Mtα (t) + 2qMα (t) ≤ ε

2
, t ∈ (0, tε] . (18)

Suppose t ∈ [tε, ρ]. We �nd from (17) that

|x1 (t)− x2 (t)|+ |x′1 (t)− x′2 (t)| ≤ h
ν

tε
, t ∈ [tε, ρ] . (19)

Let

δ (ε) =

(
εtε
2

) 1
ν

.

If h < δ (ε) then it follows from (19) that

|x1 (t)− x2 (t)|+ |x′1 (t)− x′2 (t)| ≤ ε

2
, t ∈ [tε, ρ] . (20)

Since xi (0) = 0, x′i (0) = ξ0, i ∈ {1, 2}, it follows from (18), (20) that

|x1 (t)− x2 (t)|+ |x′1 (t)− x′2 (t)| ≤ ε

2
, t ∈ [0, ρ]

and therefore
‖x1 − x2‖B ≤

ε

2
.

Thus, for any ε > 0 there exists δ (ε) > 0 such that if ‖u1 − u2‖B = h < δ (ε) then

‖Tu1 − Tu2‖B = ‖x1 − x2‖B ≤
ε

2
< ε.

The reasoning given above is independent of selection ui ∈ U , i ∈ {1, 2}. Therefore
T : U → U is a continuous operator.

To complete the proof of Theorem 1 it su�ces to apply the Schauder Fixed Point
Theorem to the operator T : U → U . �

It may be noted that the condition lim
t→+0

α(t)
ξ′(t) = 0 is not necessary; we use this

condition only for obtaining asymptotic form of estimates (3).
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Proof of Theorem 2. At the beginning we select the constants ρ, M, q identical to those
for the proof of Theorem 1. Let B be the space of continuously di�erentiable functions
x : [0, ρ] → R with norm (7). Let U be the subset of B such that every its element
u : [0, ρ]→ R satis�es inequalities (3) and also u (0) = 0, u′ (0) = ξ0. It is obvious that U
is a bounded closed set. Let us consider the initial value problem (9), (2) where u ∈ U is
an arbitrary �xed function. Let us consider precisely the same sets D0, Φ1, D1, H as in
the proof of Theorem 1. In D0 for equation (9) conditions of the Existence and Uniqueness
Theorem and conditions of the Continuous Dependence of the Initial Data Theorem are
ful�lled. By using a reasoning as in the proof of Theorem 1 we make sure that among
integral curves of equation (9) which intersect H there exists a unique integral curve (e.g.
J0 : (t, xu (t))) which is de�ned for all t ∈ (0, ρ] and lies in D1 when t ∈ (0, ρ]. It is easy
to see that inequalities (10) are ful�lled if t ∈ (0, ρ]. Let xu (0) = 0, x′u (0) = ξ0. Then
xu ∈ U . Introduce an operator T : U → U by Tu = xu.

Let us prove that T : U → U is a contraction operator. Let ui ∈ U , i ∈ {1, 2}
be arbitrary functions and let Tui = xi, i ∈ {1, 2}. Then xi ∈ U , i ∈ {1, 2}, and if
t ∈ (0, ρ] then the identities (13) are ful�lled. If u1 = u2 then x1 = x2. Suppose that
‖u1 − u2‖B = h, h > 0. Let

Φ3 = {(t, x) : t ∈ (0, ρ] , |x− x2 (t)| = ηht} ,

D3 = {(t, x) : t ∈ (0, ρ] , |x− x2 (t)| < ηht} ,
where η is a constant such that η > lx + ly. Let a function A3 : D0 → [0,+∞) be de�ned
by the equality

A3 (t, x) = (x− x2 (t))
2
t−2

and let a3 : D0 → R be the derivative of the function A3 by virtue of equation (14). It is
easy to see that a3 (t, x) < 0 when (t, x) ∈ Φ3. Therefore an integral curve of equation
(14) which intersects Φ3 at an arbitrary point (t0, x0) for small enough |t− t0| (where
t ≤ ρ) lies in D3 if t > t0 and lies outside of D3 if t < t0 (the proof is similar to that for
Φ1 in the proof of Theorem 1). Thus

|x1 (t)− x2 (t)| ≤ |x1 (t)− ξ (t)|+ |x2 (t)− ξ (t)| ≤ 2Mtα (t) < ηht,

if t ∈ (0, t (h)]; here t (h) ∈ (0, ρ) is small enough. Therefore if t ∈ (0, t (h)] then the
integral curve J : (t, x1 (t)) of equation (14) lies in D3. As appears from the above, if
t increases monotonically from t = t (h) to t = ρ then the integral curve J : (t, x1 (t))
cannot intersect Φ3. Therefore J : (t, x1 (t)) remains in D3 for all t ∈ (0, ρ]. We obtain

|x1 (t)− x2 (t)| ≤ ηht, t ∈ (0, ρ] . (21)

From (13) we see that

|x′1 (t)− x′2 (t)| ≤ (lx + ly)h, t ∈ (0, ρ]

and therefore

|x1 (t)− x2 (t)|+ |x′1 (t)− x′2 (t)| ≤ (lx + ly + ηt)h, t ∈ (0, ρ] . (22)

Let θ = 1
2 (1 + lx + ly); it is obvious that θ ∈ (0, 1). Since ρ is small enough and xi (0) = 0,

x′i (0) = ξ0, i ∈ {1, 2}, it follows from (22) that

|x1 (t)− x2 (t)|+ |x′1 (t)− x′2 (t)| ≤ θh, t ∈ (0, ρ]
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and therefore

‖x1 − x2‖B ≤ θh,
or

‖Tu1 − Tu2‖B ≤ θ‖u1 − u2‖B, (23)

where θ ∈ (0, 1). The reasoning given above is independent of selection ui ∈ U , i ∈ {1, 2}.
Therefore T : U → U is a contraction operator.

To complete the proof of Theorem 2 it su�ces to apply the Banach Contraction
Mapping Theorem to the operator T : U → U . �

2. Next, the initial value problem (1), (2) will be under consideration, where t ∈
(0, τ) a real variable, x : (0, τ)→ R a real unknown function, f : D → R is a continuous
function,

D = {(t, x, y) : t ∈ (0, τ) , |x| < r1ξ (t) , |y| < r2ξ
′ (t)} ;

here ξ : (0, τ)→ (0,+∞) is a continuously di�erentiable function, ξ′ (t) > 0, t ∈ (0, τ),

lim
t→+0

ξ (t) = 0, lim
t→+0

ξ′ (t) = 0, lim
t→+0

ξ (t)

ξ′ (t)
= 0,

|f (t, 0, 0)| ≤ Kξ′ (t) , t ∈ (0, τ) .

Suppose that

|f (t, x, y1)− f (t, x, y2)| ≤ ly |y1 − y2| , (t, x, yi) ∈ D, i ∈ {1, 2} ,

where ly is a constant, ly < 1.
Let us introduce the same de�nition of ρ-solution of problem (1), (2) as in the �rst

part of the paper.
We denote by U (ρ,M, q) the set of all continuously di�erentiable functions

u : (0, ρ]→ R such that

|u (t)| ≤Mξ (t) , |u′ (t)| ≤ qMξ′ (t) , t ∈ (0, ρ] ; (24)

here ρ,M, q are constants, ρ ∈ (0, τ), M > 0, q > 0.

Theorem 3. Suppose that conditions (4), (5) hold, where lt : (0, τ) → (0,+∞),
lx : (0, τ)→ (0,+∞) are continuous nonincreasing functions,

lim
t→+0

ξ (t)

ξ′ (t)
lx (t) = Lx, 0 ≤ Lx < +∞

and

Lx + ly < 1, K < (1− Lx − ly) min {r1, r2} .
Then there exist ρ,M, q such that problem (1), (2) has a nonempty set of ρ-solutions
x : (0, ρ]→ R each of which belongs to U (ρ,M, q).

Theorem 4. Suppose that condition (6) be ful�lled, where lx is a constant,

lx + ly < 1, K < (1− ly) min {r1, r2} .

Then there exist ρ,M, q such that problem (1), (2) has a unique ρ-solution x : (0, ρ]→ R
which belongs to U (ρ,M, q).
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Proof of Theorem 3. First of all we select constants ρ,M, q. Let the following conditions
hold:

1 < q <
(1− Lx) min {r1, r2}
K + ly min {r1, r2}

,
K

1− Lx − qly
< M <

min {r1, r2}
q

.

We do not present here the conditions for selection of ρ, because the volume of this
paper is resricted. We now note nothing but ρ is small enough, M, q are large enough
and selection of ρ,M, q ensures the validity of all our reasoning given below. Let B be
the space of continuously di�erentiable functions x : [0, ρ]→ R with norm (7). Let U be
the subset of B such that every its element u : [0, ρ] → R satis�es inequalities (24) and
also u (0) = 0, u′ (0) = 0 and, moreover, condition (8) holds, where

K (µ) = (1− ly)
−1

(lt (µ) + lx (µ)) .

It is easy to see that U is a closed, bounded and convex set. Moreover, U is a compact
set (according to the Arzelá Theorem). We will consider di�erential equation (9), where
u ∈ U is an arbitrary �xed function. Let

D0 = {(t, x) : t ∈ (0, ρ] , x ∈ R} .
In D0 for equation (9) conditions of the Existence and Uniqueness Theorem and condi-
tions of the Continuous Dependence of the Initial Data Theorem hold. Let

Φ1 = {(t, x) : t ∈ (0, ρ] , |x| = Mξ (t)} ,
D1 = {(t, x) : t ∈ (0, ρ] , |x| < Mξ (t)} ,
H = {(t, x) : t = ρ, |x| < Mξ (ρ)} .

Let a function A1 : D0 → [0,+∞) be de�ned by the equality

A1 (t, x) = x2(ξ (t))
−2

and let a1 : D0 → R be the derivative of the function A1 by virtue of equation (9). It is
easy to see that a1 (t, x) < 0 when (t, x) ∈ Φ1. By using a reasoning as in the proof of
Theorem 1 we make sure that among integral curves of equation (9) which intersect H
there exists at least one integral curve (let it be J0 : (t, xu (t))) which is de�ned for all
t ∈ (0, ρ] and lies in D1 for all t ∈ (0, ρ]. Next we will prove that there is only one integral
curve of such type; for this purpose we consider the families of sets

Φ2 (µ) =
{

(t, x) : t ∈ (0, ρ] , |x− xu (t)| = µ(ξ (t))
1
2

}
,

D2 (µ) =
{

(t, x) : t ∈ (0, ρ] , |x− xu (t)| < µ(ξ (t))
1
2

}
,

where µ is a parameter, µ ∈ (0, 1]. Let a function A2 : D0 → [0,+∞) be de�ned by the
equality

A2 (t, x) = (x− xu (t))
2
(ξ (t))

−1

and let a2 : D0 → R be the derivative of the function A2 by virtue of equation (9). It is
easy to see that a2 (t, x) < 0 when (t, x) ∈ D0, x 6= xu (t). Then we can use a reasoning
as in the proof of Theorem 1. It is easy to see that the following inequalities are valid:

|xu (t)| ≤Mξ (t) , |x′u (t)| ≤ qMξ′ (t) , t ∈ (0, ρ] (25)

and condition (11) is ful�lled. Let xu (0) = 0, x′u (0) = 0. Then xu ∈ U . Introduce an
operator T : U → U by Tu = xu. Let us prove that T : U → U is a continuous operator.
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Let ui ∈ U , i ∈ {1, 2} be arbitrary functions and let Tui = xi, i ∈ {1, 2}. Then xi ∈ U ,
i ∈ {1, 2} and if t ∈ (0, ρ] then identities (13) are valid. If u1 = u2 then x1 = x2. Assume
‖u1 − u2‖B = h, h > 0. Let

Φ3 =
{

(t, x) : t ∈ (0, ρ] , |x− x2 (t)| = ηhν(ξ (t))
1−ν
}
,

D3 =
{

(t, x) : t ∈ (0, ρ] , |x− x2 (t)| < ηhν(ξ (t))
1−ν
}
,

where ν, η are constants such that

0 < ν < 1, η > 2(1− ν)
−1

(Lx + 1) (2M)
1−ν

.

Let a function A3 : D0 → [0,+∞) be de�ned by the equality

A3 (t, x) = (x− x2 (t))
2
(ξ (t))

−2(1−ν)

and let a3 : D0 → R be the derivative of the function A3 by virtue of equation (14). It
is easy to see that a3 (t, x) < 0 when (t, x) ∈ Φ3. Further our reasoning is identical with
the corresponding part of the proof of Theorem 1. We obtain

|x1 (t)− x2 (t)| ≤ ηhν(ξ (t))
1−ν

, t ∈ (0, ρ] ,

|x′1 (t)− x′2 (t)| ≤ ω (t)hν(ξ (t))
1−ν

, t ∈ (0, ρ] ,

where ω : (0, ρ]→ (0,+∞) is a continuous function, lim
t→+0

ω (t) = 0, and, lastly,

|x1 (t)− x2 (t)|+ |x′1 (t)− x′2 (t)| ≤ hν(ξ (t))
−1
, t ∈ (0, ρ] ,

and
‖Tu1 − Tu2‖B ≤

ε

2
< ε

if

‖u1 − u2‖B = h <
(ε

2
ξ (tε)

) 1
ν

.

The reasoning given above is independent of selection of ui ∈ U , i ∈ {1, 2}. Therefore
T : U → U is a continuous operator.

To complete the proof of Theorem 3 it is su�cient to apply the Schauder Fixed
Point Theorem to the operator T : U → U . �

Proof of Theorem 4. First of all we select constants ρ,M, q. Let the following conditions
hold:

1 < q <
(1− Lx) min {r1, r2}
K + ly min {r1, r2}

,
K

1− qly
< M <

min {r1, r2}
q

.

The conditions for selection of ρ is not presented. ρ is small enough. Let B be the space
of continuously di�erentiable functions x : [0, ρ]→ R with norm (7). Let U be the subset
of B, every element u : [0, ρ]→ R of which satis�es inequalities (24), and also u (0) = 0,
u′ (0) = 0. It is easy to see that U is a closed bounded set. Let us consider the initial
value problem (9), (2) where u ∈ U is an arbitrary �xed function. Further let us consider
precisely the same sets D0, Φ1, D1, H and Φ2 (µ) , D2 (µ) as in the proof of Theorem 3. In
D0 for equation (9) conditions of the Existence and Uniqueness Theorem and conditions
of the Continuous Dependence of the Initial Data Theorem hold. By using a reasoning
as in the proof of Theorem 3 we establish that there is one and only one integral curve of
equation (9) (let us denote it by J0 : (t, xu (t))) which intersects H and lies in D1 when
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t ∈ (0, ρ]. It is easy to see that inequalities (25) hold. Let xu (0) = 0, x′u (0) = 0. Then
xu ∈ U . Introduce an operator T : U → U by Tu = xu. Let us prove that T : U → U is
a contraction operator. Let ui ∈ U , i ∈ {1, 2} be arbitrary functions and let Tui = xi,
i ∈ {1, 2}. Then xi ∈ U , i ∈ {1, 2}, and if t ∈ (0, ρ] then identities (13) are ful�lled.
If u1 = u2 then x1 = x2. Suppose that ‖u1 − u2‖B = h, h > 0. Let us consider the
same sets Φ3,D3 and the function A3 : D0 → [0,+∞) as in the proof of Theorem 2. Let
a3 : D0 → R be the derivative of the function A3 by virtue of equation (14). It is easy to
see that a3 (t, x) < 0 when (t, x) ∈ Φ3. Moreover,

|x1 (t)− x2 (t)| ≤ |x1 (t) |+ |x2 (t)| ≤ 2Mξ (t) < ηht

when t ∈ (0, t (h)], where t (h) ∈ (0, ρ) is small enough. In the same way as in the proof
of Theorem 2 it is easy to obtain (21), (22) and (23), where

θ =
1

2
(1 + lx + ly) .

It is obvious that θ ∈ (0, 1). The reasoning given above is independent of selection of
ui ∈ U , i ∈ {1, 2}. Therefore T : U → U is a contraction operator.

To complete the proof of Theorem 4 it is su�cient to apply the Banach Contraction
Mapping Theorem to the operator T : U → U . �
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Ðîçãëÿäà¹ìî çàäà÷ó Êîøi x′ = f (t, x, x′), x (0) = 0. Äîâåäåíî iñíó-
âàííÿ íåïåðåðâíî äèôåðåíöiéîâíèõ ðîçâ'ÿçêiâ x : (0, ρ] → R ç ïîòðiáíèìè
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