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We find a nonempty set of continuously differentiable solutions z: (0, p] —
R each of which possesses required asymptotical properties when ¢ — +0. Also
we establish uniqueness conditions.
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The general solvability and solutions number problem for implicit ordinary differenti-
al equations was under consideration in [1], [2], [3], [6]. In [7], [9], [10] conditions for
convergence of successive approximations to implicit equations solutions were found.
At the same time asymptotic properties of implicit differential equations are still only
partially understood; there are only isolated results obtained, for example, [11]. This
article presents an investigation of the initial value problem 2’ = f (¢,z,2'), « (0) = 0.
The asymptotic behaviour of solutions is being discussed. We describe an approach which
makes it possible to consider implicit initial value problems. Our approach to the problem
seems to be very much different from the usual ones. We use qualitative methods (see,
for instance, [4], [5], [8], and also [11]) together with fixed point methods. We establish
general schemes of investigation which may be applied to many various problems of local
analysis. In this paper existence of continuously differentiable solutions is being proved.
Asymptotic properties of each of these solutions is discussed and if certain conditions are
fulfilled then the uniqueness of solution is established.
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1. First the following initial value problem
o' (t) = f(tz(t),2' (1), (1)
z(0)=0 (2)

is under consideration, where ¢t € (0,7) is a real variable, = : (0,7) — R is a real unknown
function, f : D — R is a continuous function,

D={(tzy) :te(0,7), |z —&E@)] <rta(t), ly—E& (t)| <raa(t)};
here £ : (0,7) — (0,+00) , @ : (0,7) — (0,+00) are continuously differentiable functions,
€)= f(£€@),& () <a(t), te(0,7),
Jm a(t) =0, lim £() =0, lim & (t) =&, 0< & < +oo,

at) ) g ¢ 2D

R0 € (2) | toto a(t)

=qp,0 < ay < +o0.
Suppose that

|f (tzoyn) = f (o y2)l <y lys — vl s (6a,9:) €D, i € {1,2},
where 1, is a constant, 0 < I, < 1, (1 —1,)”" < min {(1 + aq) 71,72}

Definition 1. For any p € (0,7) a continuously differentiable function x: (0,p] — R is
said to be a p-solution of the problem (1), (2), if

1) (t,z(t),2' (t)) € D, t € (0,p];
2) x identically satisfies equation (1) for all t € (0, p|;
3) lim z(t) =0.

t—+0

We denote by U (p, M,q) the set of all continuously differentiable functions
u: (0, p] = R such that
lu(t) =€) < Mta(t), [u'(t) =& ()] < gMa(t), t € (0,p]; (3)
here p, M, g are constants, p € (0,7), M >0, g > 0.

Theorem 1. Suppose that the following conditions hold:
|f (t, 2, y) = f (a2, y)| S L (p) [t —t2f, (ti,2,y) €D, 0< p<ty, ta<T7, (4

|f (t7x17y) - f (t7:1723y)| < l£ (t) ‘Il - LE2| ) (taxlay) € D? i € {lﬂ 2}3 (5)
where ly: (0,7) = (0,+400), l,: (0,7) = (0,400) are continuous functions, 0 < t1 < tg <
T =1 (t) > 1 (t2), tliIEO tl, (t) = 0. Then there exist p, M, q such that the problem (1
—

)

(2) has a nonempty set of p-solutions x: (0, p] — R each of which belongs to U (p, M, q).
Theorem 2. Suppose that the following condition holds:

|f (taxlvy) - f (t7x27y)| <ly |II?1 - $2| ) (tvxivy) € Dvl € {172} ) (6)

where I, is a constant, I, + 1, < 1. Then there exist p, M, q such that the problem (1),
(2) has a unique p-solution x: (0, p] — R which belongs to U (p, M, q).
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Proof of Theorem 1. First of all we select constants p, M, g. Let the following conditions

hold:
mo (1 + 040) -1

(1 —ql,) "t < M < my,
Toly (1+ a0 —qly) mo

14+ap<qg<

where mg = ((1+ ap) (1 — ly))_l. We do not present here the conditions for selection of p
to keep the size of this paper reasonable. We now indicate nothing but p is small enough,
M, q are large enough and our selection of p, M, g ensures the validity of all our reasoning
given below. Let B be the space of continuously differentiable functions z: (0,p] — R
with the norm

llls = max (| (D] + 12" (B)])- (7)

Let U be the subset of B such that every its element w : [0, p] — R satisfies inequalities
(3), and also u (0) = 0, u’ (0) = & and, moreover,

Vi € (0,p], Vi1, t2 € [, p] : |u' (t2) — ' (t2)] < K (p) [t1 — taf, (8)
where

-1 _
K(p)=1—1) (le(p)+n").

It is easy to see that U is a closed, bounded and convex set. Moreover, U is a compact
set (in view of the Arzeld Theorem). We will consider the differential equation

o' (t) = f(tu(t),u (1), (9)
where v € U is an arbitrary fixed function. Let
Do ={(t,z) :t € (0,p],z € R}.

In D for equation (9) conditions of the Existence and Uniqueness Theorem and conditions
of the Continuous Dependence of the Initial Data Theorem are fulfilled. Let

Oy ={(t,x): t € (0,p], |z =& ()] = Mta(t)},
D1 ={(t,z):t € (0,p],|x — &) < Mta(t)},
H={(tz):t=pfe—E(p)| < Mpa(p)}.
Let the function A;: Dy — [0, 4+00) be defined by the equality
A (tw) = (2 = €(1)  (ta (1)

and let a;: Dy — R be the derivative of the function A; by virtue of equation (9). It is
easy to see that a; (¢,2) < 0 when (¢,2) € ®;. Let us prove that any integral curve of
equation (9) which intersects ®; at an arbitrary point (to, o) for small enough [t — 7|
(where t < p) lies in Dy if t > to and lies outside of D if t < to. In fact, let P (to, 7o) be

an arbitrary point belonging to ®; and let J,, : (¢, zp (¢)) be an integral curve of equation
(9) which passes through the point P. Then

Aq (to, rp (to)) = ]\427 aj (to,xp (to)) < 0.
Therefore if tg € (0, p) then there exists § > 0 such that
Sign (Al (t,xp (t)) - Al (to, Trp (to))) = Sigl’l (to — t) 5 |f, - t0| < (5,

sign (|mp () — ()| (ta (t) ! - M) = sign (to — t), [t — to| < 4.
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What this means is (¢,zp (t)) € Dy if t € (to,to + 6) and (¢, zp (t)) €Dy if t € (tg — 6, to)-
If ty = p then there exists § > 0 such that

Ai (t,zp (1) > Ax (to,zp (to)), t € (p—06,p),
or

jep (8) = € (0)] (ta (8)) ™ > M, t € (p—6,p),
and this means that (t,zp (t)) €Dy, t € (p — 4, p).

This implies that at least one of integral curves of equation (9) which intersect H
is defined for all ¢ € (0, p] and lies in Dy if ¢ € (0, p]. In fact, having common points
with ®; when ¢ increases is beyond the capabilities of any integral curve of equation (9)
which intersects ®;. That is why all these curves have to intersect H. Let the mapping
¥: ®; — H be defined by the following way: the point 1 (P) € H is assigned to P € &,
if both P and % (P) belong to the common integral curve of equation (9). Let

Y (P1) ={¢(P): P e Pi}.
The set H\v (®1) is nonempty (H is a closed set, but ¢ (1) is not since 1 (®1) is the
image of the nonclosed set ®;). Let J,, : (¢, 2, (t)) be an integral curve of equation (9)
such that (p,z, (p)) € H\@ (®1). It is clear that J, : (t,2, (t)) has no common point
with ®;. Therefore J, : (¢, 2, (t)) is defined for all ¢t € (0, p] and J, : (¢, 2, (t)) comes
into the point (0,0) if ¢ — +0 and, moreover, J, : (¢, 2, (t)) lies in Dy if ¢t € (0, p]. It is
easy to see that the following inequalities are fulfilled when ¢ € (0, p):

|2 (1) = € (0] < Mtar(t) 2" () = &' (8)] < gMa(t). (10)
Let x,, (0) = 0, z/, (0) = &. Let us prove that
Vi € (0, 0]V, ta € [p, p] : 2" (1) — 2w (B2)] < K (n) [t2 — tof - (11)
Select € (0, p] and ¢; € [u, pl, ¢ € {1,2}; let t; < to. From the identities
i, () = f (ti,u(t) o' (4)) i € {1,2} (12)

we obtain
|20 (t1) — 2"y (t2)] < 1 (1) [t1 = ta| + Lo (t1) u (t1) —u(t2)| + 1y |0 (1) — o' (t2)| <
< (e () + 1) [t = o] + 1, K () [t — t2] =
=(1=1y) K(p) [t1 — to| + [, K () [t1 — t2| =
=K (p) [ty — t2|.

This means that z,, € U. Let us prove that if ¢ — +0 then all integral curves of equation
(9) leave the set D1\ {(0,0)}, with the only exception J, : (£, z, (¢)). Indeed, let

Dy (1) = {(t.2) £ € (0,p], |2 — o (8)] = puter () (— )},

Dy () = {(t,2) : £ € (0,p], & — 0 (8)] < pitar (£) (~In1)},
where p is a parameter, u € (0,1]. Let the function As: Dy — [0,400) be defined by the
equality

Ay (t,x) = (z — xy (1)) (ta () (— Int)) >

and let as: Dy — R be the derivative of the function As by virtue of equation (9). It
is easy to see that as (t,z) < 0 when (¢,x) € Dy, x # x, (t). In particular, as (t,2) < 0
when (t,z) € ®3(u) for each p € (0,1]. Therefore for each p € (0,1] an integral curve



AN INITIAL VALUE PROBLEM z’ = f (t,z,2z'), z (0) =0 ...
ISSN 2078-3744. Bicuuk JIbBiB. yu-Ty. Cepis mex.-mat. 2016. Bumyck 82 155

of equation (9) which intersects ®3 (p) at an arbitrary point (tg, o), for small enough
|t — to| (where t < p): lies in Do (1) when t > to and lies outside of Dy () when ¢ < g
(the proof is similar to that for ®;). Let P (t.,z.) € D1\ {(0,0)}, 2. # x, (t.). Then
there exists p. € (0,1] such that P, € ®3 (u.). As follows from the above, the integral
curve of equation (9) J, : (¢,2* (t)) which passes through P, lies outside of Dy (1) if
t € (t_,t.), where (¢t_,t,) is the left maximal existence interval for the solution z*. From
the other hand there exists t.. € (0, p) such that if (¢t,z) € D; and if ¢ € (0,%..) then

(t,x) € Da (). Let

t* = min {t., ts }
As appears from the above J, : (t,2* (t)) lies outside of D; when t € (t_,t*). Introduce
an operator T: Y — U by Tu = x,,. Let us prove that T': I — U is a continuous operator.
Let u; € U, i € {1,2}, be arbitrary functions and let Tu; = z;, ¢ € {1,2}. Then z; € U,
i€{1,2}, and if t € (0, p] then the following identities are valid:
:L'; (t) = f(tvui (t)vu/i (t))vi € {172} (13)

If u; = up then xy = 5. Suppose ||u; — uz||z = h, h > 0. Let
5 = {(t,2) L e (0,0], lo— 22 ()] = A (ta ()™}

Dy = {(ta) s t € (0,0], o — w2 (O] < B*(tar (£))' 7"},
where v is a constant such that 0 < v < 0. Let the function As: Dy — [0, +00) be defined
by the equality
A (t ) = (& — w2 (1)) (b (1) "
and let a3 : Dy — R be the derivative of the function As by virtue of equation
2’ (t) = f(t,u1 () ,u'1 (1)) (14)
Since
Jur () =z (£)] = Jur (£) = ua (8)]"ua (£) —us ()77 <
< flur — wslls (Jur (8) = € (B)] + Juz (£) = £ (1)) <
< h(@2Mta ()™, te(0,p],

1—-v

[u'y (t) — /s (8)] = |u'y (t) — w2 (8)] |y () — /2 (8)] 7 <
< lur —uall (Ju's (8) = € (8] + [u'2 (8) — €' (1)) <
<h"(2qMa ()™, te(0,0],

it is easy to see that as (t,2) < 0 when (¢, z) € ®3. Therefore an integral curve of equation
(14) which intersects ®3 at an arbitrary point (¢, o), for small enough |t — to| (where
t < p): lies in D3 when ¢ > ty and lies outside of D3 when ¢ < to (the proof is similar to
that for ®;). Moreover, we obtain

@1 () = w2 (8)] < |21 (8) = € ()] + a2 (1) — £ (1)] < 2Mta(t) < b (ta (1)),

when t € (0,t(h)], where t (h) € (0, p] is small enough. Therefore if ¢t € (0,¢ (h)] then
the integral curve J : (t,z1 (t)) of equation (14) lies in D3. As follows from the above,
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if ¢ increases monotonically from ¢ =t (h) to t = p then the integral curve J : (¢, z1 (t))
cannot intersect ®3 and therefore this curve remains in D3 for all ¢ € (0, p]. We obtain

o1 (8) =22 (D < Rt (£)",  tE€(0,]. (15)
From (13) we see that

21 (8) =22 ()] < (b ()", tE(0,p]. (16)

Since p is small sufficiently it follows from (15), (16) that

o1 () — 2 (O] 4l () — 2 (O] < ) e (0,4, (17)

We now turn to a direct proof of the continuity of the operator T : U — U. Let there be
given € > 0. There exists t. € (0, p) such that

2Mto(t) +2qMa(t) <

E
t

€ (0,te].

DN ™

Then
|21 (t) = o ()| + [2"1 (1) — 2’2 ()] < |1 () — E(O)] + |22 (1) — ()| +
21/ (t) — & (t)] + |22 (t) — € ()] < 2Mta () + 2¢Ma (t) < g te(0,t]. (18)
Suppose t € [t, p]. We find from (17) that

|21 (1) = @2 (8)] + |21 (t) — 22 (8)] < t € [te, p].- (19)

o= (%)

If h < 0 () then it follows from (19) that
21 (8) = 2 (O] + |21 (1) =22 (1) < 3,
Since z; (0) = 0, z} (0) = &, ¢ € {1, 2}, it follows from (18), (20) that
|21 () = @2 ()] + |21 (t) — 22 (1)] < g t € [0, p]

hu
t )

Let
t€[tep]. (20)

and therefore c
|21 — 225 < 3

Thus, for any € > 0 there exists § (¢) > 0 such that if |ju; — uz|z3 = h < 6 (¢) then
€
||TU1 — TUQHB = ||J?1 — I’QHB < 5 < €.

The reasoning given above is independent of selection u; € U, i € {1,2}. Therefore
T:U — U is a continuous operator.

To complete the proof of Theorem 1 it suffices to apply the Schauder Fixed Point
Theorem to the operator T: U — U. O
ot)
0 &M
condition only for obtaining asymptotic forrn of estimates (3).

It may be noted that the condition hm

= 0 is not necessary; we use this
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Proof of Theorem 2. At the beginning we select the constants p, M, ¢ identical to those
for the proof of Theorem 1. Let B be the space of continuously differentiable functions
x: [0,p] = R with norm (7). Let U be the subset of B such that every its element
u: [0, p] — R satisfies inequalities (3) and also u (0) = 0, v’ (0) = &. It is obvious that U
is a bounded closed set. Let us consider the initial value problem (9), (2) where u € U is
an arbitrary fixed function. Let us consider precisely the same sets Dy, ®1, D1, H as in
the proof of Theorem 1. In Dy for equation (9) conditions of the Existence and Uniqueness
Theorem and conditions of the Continuous Dependence of the Initial Data Theorem are
fulfilled. By using a reasoning as in the proof of Theorem 1 we make sure that among
integral curves of equation (9) which intersect H there exists a unique integral curve (e.g.
Jo @ (t, x4 (t))) which is defined for all ¢ € (0, p] and lies in Dy when ¢ € (0, p]. It is easy
to see that inequalities (10) are fulfilled if ¢ € (0, p]. Let x,, (0) = 0, 2/, (0) = &. Then
Z, € U. Introduce an operator T: U — U by Tu = x,,.

Let us prove that T : Y — U is a contraction operator. Let u; € U, i € {1,2}
be arbitrary functions and let Tu; = x;, ¢ € {1,2}. Then x; € U, i € {1,2}, and if
t € (0,p] then the identities (13) are fulfilled. If u; = wg then z; = 3. Suppose that
lluy — uz|lg = h, h > 0. Let

O3 ={(t,z):t € (0,p], [x —z2(t)] = nht},

D3 ={(t,z) : 1 € (0,p], |w— 2 (t)] <nht},
where 7 is a constant such that n > [, +1,,. Let a function As: Dy — [0, 4+00) be defined
by the equality

Ag (tx) = (x — o (1)t

and let asz: Dy — R be the derivative of the function Ag by virtue of equation (14). It is
easy to see that a3 (t,2) < 0 when (¢,z) € ®3. Therefore an integral curve of equation
(14) which intersects ®3 at an arbitrary point (¢o,xo) for small enough |t — to| (where

t < p) lies in D5 if t > to and lies outside of D3 if t < ¢y (the proof is similar to that for
®; in the proof of Theorem 1). Thus

|21 () = 22 ()] < |21 (8) = E(O)] + |2 () = E(B)] < 2Mtex (t) < nht,

if t € (0,t(h)]; here t(h) € (0,p) is small enough. Therefore if ¢ € (0,¢(h)] then the
integral curve J : (t,z1 (¢t)) of equation (14) lies in D5. As appears from the above, if
t increases monotonically from ¢ = ¢ (h) to ¢ = p then the integral curve J : (¢,z1 (t))
cannot intersect ®3. Therefore J : (¢, 27 (¢)) remains in D5 for all ¢ € (0, p]. We obtain

21 (t) = @2 (O] < wht, £ € (0,0, (21)
From (13) we see that
2"y () =22 ()] < (la +1y) b, L€ (0,p)
and therefore
|21 (8) =22 ()] + 2"y (1) =22 ()] < (o + 1y +mt) b, L€ (0,p]. (22)

Let 0 = £ (141, + 1,); it is obvious that 6 € (0,1). Since p is small enough and z; (0) = 0,
2} (0) = &, @ € {1,2}, it follows from (22) that

|21 () — 22 (1) + |21 (1) — "2 (1) < Oh,t € (0, p]
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and therefore
||$1 — {EQHB S 9h,
or
[Tu1 — Tus|[g < Of|ur — uzl|g, (23)
where 6 € (0, 1). The reasoning given above is independent of selection u; € U, i € {1, 2}.
Therefore T: U — U is a contraction operator.

To complete the proof of Theorem 2 it suffices to apply the Banach Contraction
Mapping Theorem to the operator T': U — U. (]

2. Next, the initial value problem (1), (2) will be under consideration, where ¢ €
(0,7) a real variable, z: (0,7) — R a real unknown function, f: D — R is a continuous
function,

D={(t,z,y): t € (0,7),|z[ <& @), lyl <ra’ ()}
here £: (0,7) — (0, +00) is a continuously differentiable function, &' (¢t) > 0, t € (0, 7),

: o T gl ey £(t) _
tl—lgqeo5 (5 =0, t1—1>r£0§ (5 =0, t510 & (1)

If (£,0,0)| <K& (),  te(0,7).

Suppose that
|f(t7x7y1)_f(ta‘r7y2)‘Sly‘yl_yﬂv (taxvyi)epa i€{172}7

where [, is a constant, [, < 1.

Let us introduce the same definition of p-solution of problem (1), (2) as in the first
part of the paper.

We denote by U (p,M,q) the set of all continuously differentiable functions
u: (0, p] — R such that

lu()] < ME®R), [/ ()] < qME (t), te(0,p]; (24)
here p, M, g are constants, p € (0,7), M >0, ¢ > 0.

Theorem 3. Suppose that conditions (4), (5) hold, where l;: (0,7) — (0,400),
lo: (0,7) = (0,400) are continuous nonincreasing functions,

&) _

and
L,+1,<1, K< (1—-L;—1,)min{r,rs}.

Then there exist p, M,q such that problem (1), (2) has a nonempty set of p-solutions
x: (0,p] = R each of which belongs to U (p, M, q).

Theorem 4. Suppose that condition (6) be fulfilled, where I, is a constant,
lo + 1y, <1, K < (1—1ly)min{ry,rs}.

Then there exist p, M, q such that problem (1), (2) has a unique p-solution z: (0,p] - R
which belongs to U (p, M, q).
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Proof of Theorem 3. First of all we select constants p, M, q. Let the following conditions
hold:

(1—LE)Ir.11n{r17r2}’ K <M< min{rl,rg}.

K + l,min {r, 72} 1—-L, —ql, q

We do not present here the conditions for selection of p, because the volume of this
paper is resricted. We now note nothing but p is small enough, M, ¢ are large enough
and selection of p, M, q ensures the validity of all our reasoning given below. Let B be
the space of continuously differentiable functions z: [0, p] — R with norm (7). Let U be
the subset of B such that every its element u: [0, p] — R satisfies inequalities (24) and
also 4 (0) = 0, v’ (0) = 0 and, moreover, condition (8) holds, where

K ()= (1=1,) 7" (0 (1) + 1 (1)
It is easy to see that U is a closed, bounded and convex set. Moreover, U is a compact

set (according to the Arzeld Theorem). We will consider differential equation (9), where
u € U is an arbitrary fixed function. Let

Do ={(t,z) : t € (0,p],x € R}.
In Dq for equation (9) conditions of the Existence and Uniqueness Theorem and condi-
tions of the Continuous Dependence of the Initial Data Theorem hold. Let
Py ={(t,z) : t € (0,p], || = ME(D)},
D1 ={(t,z):t€(0,p], |z| < ME(2)},
H={({tz):t=p, x| <ME(p)}.
Let a function A;: Dy — [0,400) be defined by the equality

A () = 22 (£ ()7
and let a;: Dy — R be the derivative of the function A; by virtue of equation (9). It is
easy to see that a; (¢,2) < 0 when (¢,x) € ®;. By using a reasoning as in the proof of
Theorem 1 we make sure that among integral curves of equation (9) which intersect H
there exists at least one integral curve (let it be Jy : (¢, 2, (t))) which is defined for all
t € (0, p] and lies in Dy for all ¢t € (0, p]. Next we will prove that there is only one integral
curve of such type; for this purpose we consider the families of sets

@2 (n) = {(t.2) 1 € (0.p], o= ()] = (€ ()* }

Dy () = {(t2) : £ € (0,p], | = (8)] < (€ (1)* },
where p is a parameter, u € (0,1]. Let a function As: Dy — [0, +00) be defined by the
equality

1l<qg<

Nl

Ay (t2) = (v — o (£)*(E (1)
and let ag : Dy — R be the derivative of the function Ay by virtue of equation (9). It is
easy to see that as (t,2) < 0 when (t,2) € Dy, © # 2, (t). Then we can use a reasoning
as in the proof of Theorem 1. It is easy to see that the following inequalities are valid:
|z (B)] < ME(2), 2w ()] < qME' (t) T € (0, 7] (25)

and condition (11) is fulfilled. Let z, (0) = 0, 2/, (0) = 0. Then x, € U. Introduce an
operator T: Y — U by Tu = x,,. Let us prove that T: Y — U is a continuous operator.
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Let u; € U, i € {1,2} be arbitrary functions and let Tw; = z;, ¢ € {1,2}. Then x; € U,
i € {1,2} and if t € (0, p] then identities (13) are valid. If u; = ug then x1 = 5. Assume
lur — uzl|g = h, h > 0. Let

@5 = {(t.2): L e (0,p], o =22 ()] = mh" (€ (1)},

Dy = {(ta) 1€ (0.0, o -2 ()] < (€ (1)},
where v, 7 are constants such that
O<v<l n>201-v)"(Ly+1) M) "
Let a function Az : Dy — [0, 4+00) be defined by the equality

Az (tw) = (2 — 22 () (€ (1) 207
and let az: Dy — R be the derivative of the function As by virtue of equation (14). It

is easy to see that ag (t,z) < 0 when (¢,x) € ®3. Further our reasoning is identical with
the corresponding part of the proof of Theorem 1. We obtain

o1 (8) = w2 ()] < ¥ (€)', € (0],

'y (8) — 2 (1) Sw ()R (EW)' T, te(0,0],
where w: (0, p] = (0,400) is a continuous function, tlinﬂow (t) =0, and, lastly,
—

w1 (8) — 22 (B)] + |21 (8) —2'2 () <BV(E®) T, te(0,0],
and -
||Tu1 —TUQHB < 5 < e
if

1

s sl = b < (56 t) "

The reasoning given above is independent of selection of u; € U, i € {1,2}. Therefore
T:U — U is a continuous operator.

To complete the proof of Theorem 3 it is sufficient to apply the Schauder Fixed
Point Theorem to the operator T: U — U. O

Proof of Theorem 4. First of all we select constants p, M, q. Let the following conditions
hold:

(lfLr)H.liIl{T‘l,’l"Q}’ K <M< min{rl,rg}'

K + 1, min {ry, 72} 1—gql, q

The conditions for selection of p is not presented. p is small enough. Let 5 be the space
of continuously differentiable functions z: [0, p] — R with norm (7). Let U be the subset
of B, every element u: [0, p] — R of which satisfies inequalities (24), and also u (0) = 0,
u' (0) = 0. It is easy to see that U is a closed bounded set. Let us consider the initial
value problem (9), (2) where u € U is an arbitrary fixed function. Further let us consider
precisely the same sets Dy, ®1, D1, H and ®5 (1), D2 (1) as in the proof of Theorem 3. In
Dy for equation (9) conditions of the Existence and Uniqueness Theorem and conditions
of the Continuous Dependence of the Initial Data Theorem hold. By using a reasoning
as in the proof of Theorem 3 we establish that there is one and only one integral curve of
equation (9) (let us denote it by Jo : (¢, z, (¢))) which intersects H and lies in D; when

1<g<
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t € (0,p]. It is easy to see that inequalities (25) hold. Let z, (0) = 0, 2/, (0) = 0. Then
x, € U. Introduce an operator 7' : Y — U by Tu = x,. Let us prove that T: U — U is
a contraction operator. Let u; € U, i € {1,2} be arbitrary functions and let Tu; = x;,
i € {1,2}. Then x; € U, i € {1,2}, and if t € (0, p] then identities (13) are fulfilled.
If u; = uy then x; = x5. Suppose that ||u; —uzlz = h, h > 0. Let us consider the
same sets @3, D3 and the function As: Dy — [0,+00) as in the proof of Theorem 2. Let
as: Dy — R be the derivative of the function Az by virtue of equation (14). It is easy to
see that a3 (t,2) < 0 when (¢,2) € ®3. Moreover,

|1 (8) — w2 (O)] < |oa () [ + [aa (8)] < 2ME(t) < nht

when t € (0,¢ (h)], where ¢t (k) € (0, p) is small enough. In the same way as in the proof
of Theorem 2 it is easy to obtain (21), (22) and (23), where

1

It is obvious that 6 € (0,1). The reasoning given above is independent of selection of
u; €U, i € {1,2}. Therefore T: U — U is a contraction operator.

To complete the proof of Theorem 4 it is sufficient to apply the Banach Contraction
Mapping Theorem to the operator T: U — U. O
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