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Defect correction methods are based on the idea of measuring the quality
of an approximate solution to an operator equation by forming the defect, or
residual, with respect to the given problem. By an appropriate backsolving
procedure, an error estimate is obtained. This process can also be continued in
an iterative fashion. One purpose of this overview is the further dissemination
of the underlying concepts. Therefore, we �rst give a general and consistent
review on various types defect correction methods, and its application in the
context of discretization schemes for di�erential equations. After describing
the general algorithmic templates we discuss some speci�c techniques used in
the solution of ordinary di�erential equations. Moreover, new results about the
application to implicit problems are presented.

Key words: defect correction, discretization, ordinary di�erential equati-
ons.

1. Introduction

Defect Correction (DeC) methods (also: `deferred correction methods') are based on
a particular way to estimate local or global errors, especially for di�erential and integral
equations. The use of simple and stable integration schemes in combination with defect
(residual) evaluation leads to computable error estimates and, in an iterative fashion,
yields improved numerical solutions.

In the �rst part of this article, the underlying principle is motivated and described in
a general setting, with focus on the main ideas and algorithmic templates. In the sequel,
we consider its application to ordinary di�erential equations in more detail. The proper
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choice of algorithmic components is not always straightforward, and we discuss some of
the relevant issues.

We are not specifying all algorithmic components in detail, e.g., concerning the requi-
red interpolation and quadrature processes. But these are numerical standard procedures
which are easy to understand and to realize. Also, exhaustive survey of the available li-
terature on the topic is no provided here.

The introductory part of this text is a revised and extended version of the overview
given in [1]. We motivate the DeC principle in a way slightly di�erent from the classical
paper [18], with a clear focus on the underlying error estimation principles.

In addition, some recent material is included, in particular, that concerning the role
of error structures for the convergence behavior. An algorithmic version for di�erential
equations in implicit formulation proposed in [19] is also presented.

We use upper indices for iteration counts and lower indices for numbering along
discrete grids.

2. Underlying concepts and general algorithmic templates

Many iterative numerical algorithms are based on the following principle. Let an
initial value y0 be given. For i = 0, 1, 2, . . . :

• Compute the residual, or `defect', d i of the current iterate yi with respect to the
given problem,

• backsolve for a correction εi using an approximate solver,
• apply the correction to obtain the next iterate yi+1 := yi − εi.

Stationary iterative methods for linear systems of equations and Newton iteration for
systems of nonlinear equations are classical examples. For starting our general consi-
derations, we think of a given, original problem in form of a system of nonlinear equati-
ons,

φ(y) = 0, with exact solution y = y∗. (1)

2.1. Error estimation based on nonlinear approximation. We assume that some
reasonable linear or nonlinear approximation φ̃ ≈ φ is given. We consider a procedure
for the purpose of estimating the error of a given approximate solution y0 to y∗. To this
end we de�ne the defect

d 0 := φ(y0)

of y0, i.e., the amount by which φ(y0) fails approximate 0 = φ(y∗). Furthermore, with
y0, d 0 we associate the so-called neighboring problem related to (1),

φ(y) = d 0, with exact solution y = y0. (2)

We invoke two heuristic principles, (A) and (B) in the terminology from [18], for esti-
mating the error of y0. Originally introduced in [18] (see also [6]), these are based on the
idea that (2) may be considered to be closely related to (1), provided d 0 is small enough.

(A): Let ỹ and ỹ0 be the solutions of φ̃(y) = 0 and φ̃(y) = d 0, respectively; we
assume that these can be formed at low computational cost. Considering original
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problem (1) neighboring problem (2) together with their approximations,

φ(y∗) = 0 φ(y0) = d 0

φ̃(ỹ) = 0 φ̃(ỹ0) = d 0

suggests the approximate identity

ỹ0 − ỹ ≈ y0 − y∗.

This leads to the

error estimator ε0 := ỹ0 − ỹ (3a)

as a computable estimate for the error e0 := y0 − y∗. We can use it to obtain an
updated approximation y1 in the form

y1 := y0 − ε0 = y0 − (ỹ 0 − ỹ). (3b)

(B): Consider the truncation error ` ∗ := φ̃(y∗), the amount by which y∗ fails to

satisfy the approximate equation φ̃(y) = 0. With d̃ 0 := φ̃(y0), considering the
approximate identity

φ̃(y∗)− φ̃(y0) ≈ φ(y∗)− φ(y0),

i.e., ` ∗ − d̃ 0 ≈ −d 0,

suggests to choose the

truncation error estimator λ0 := d̃ 0 − d 0 (4a)

i.e., λ0 = (φ̃ − φ)(y0), as a computable estimate for the truncation error. Note
that −d 0 = φ(y∗) − d 0 is the truncation error of y∗ with respect to (2). In the

case y0 = ỹ, i.e., φ̃(y0) = 0, we have λ0 = −d 0 ≈ ` ∗.
We can use λ0 to obtain an updated approximation y1 by solving

φ̃(y1) = λ0, (4b)

which also provides an estimate for the error: ε0 := y0 − y1 ≈ y0 − y∗ = e0.
Eq. (4b) can also be written in terms of the error estimate as

φ̃(y0 − ε0) = λ0, (4c)

approximating the error equation φ̃(y0 − e0) = ` ∗.

In general, (A) and (B) are not equivalent. However, if φ̃(y) = P y−c is an a�ne mapping,
it is easy to check that (A) and (B) result in the same error estimate ε0, which can be
directly obtained as the solution of the correction equation

P ε0 = d 0, (5)

and the corresponding truncation error estimate is λ0 = (P y0 − c)− d 0.
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2.2. Iterated Defect Correction (IDeC). Both approaches (A) and (B) are designed
for a posteriori error estimation, and they can also be used to design iterative soluti-
on algorithms, involving updated versions of the neighboring problem in course of the
iteration. This leads in straightforward way to two alternative versions the method of
Iterated Defect Correction (IDeC), starting from an initial approximation y0. Of course,
y0 = ỹ is a natural choice.

IDeC (A) : : Solve φ̃(ỹ) = 0
For i = 0, 1, 2, ... :
� Compute d i := φ(yi)

� Solve φ̃(ỹi) = d i

� Set εi := ỹi − ỹ
� Update yi+1 := yi − εi

The corrections εi play the role of successive estimates for the errors ei =
yi − y∗.

IDeC (B) : : Set λ−1 := φ̃(y0)
For i = 0, 1, 2, ... :
� Compute d i := φ(yi)
� Update λi := λi−1 − d i
� Solve φ̃(yi+1) = λi

The λi evolve from accumulated defects, λi = φ̃(y0) − d 0 − . . . − d i, playing
the role of successive approximations to the truncation error ` ∗ = φ̃(y∗).

An equivalent reformulation reads
For i = 0, 1, 2, ... :
� Compute d i := φ(yi)

� Solve φ̃(yi+1) = (φ̃− φ)(yi)

Remarks.

• Nonlinear IDeC has the form of a `full approximation scheme', where we directly
solve for the new approximation in each step. If φ̃ is a�ne, IDeC (A) and IDeC (B)
are again equivalent and can be reformulated as a correction scheme in terms of
linear backsolving steps for the correction εi = ỹi − ỹ, as in (5).

• IDeC (B) can also be rewritten in the spirit of (4c).
• Note that y∗ is a �xed point of an IDeC iteration since d ∗ := φ(y∗) = 0.

For systems of algebraic equations, choosing φ̃ to be nonlinear is usually not very relevant
from a practical point of view. Rather, such a procedure turns out to be useful in a more
general context, where φ represents an operator between functions spaces (typically a

di�erential or integral operator), and where φ̃ is a discretization of φ. This leads us to
the class of DeC methods for di�erential or integral equations.
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3. Application to ordinary differential equations (ODEs)

We mainly focus on IDeC (A), the `classical' IDeC method originally due to [20].
IDeC (B) can be realized in a similar way, and we will remark on this where appropriate.

3.1. A basic version: IDeC (A) based on forward Euler. Let us identify the original
problem φ(y) = 0 with an initial value problem (IVP) for a system of n ODEs,

d
dx y(x) = f(x, y(x)), y(x0) = y0, (6a)

with exact solution y∗(x) ∈ Rn. This means

φ(y)(x) := d
dx y(x)− f(x, y(x)), (6b)

with �xed initial condition y(x0) = y0. More precisely, the underlying function spaces
and the initial condition y(x0) = y0 are part of the complete problem speci�cation.

Furthermore, we identify the problem φ̃(y) = 0 with a discretization scheme for
(6); at the moment we assume that a constant stepsize h is used, with grid points xl =
a+ l h, l = 0, 1, 2, . . .. Consider for instance the �rst order accurate forward Euler scheme

Y 0
l+1 − Y 0

l

h
= f(xl, Y

0
l ), l = 0, 1, 2, . . . , (7a)

and associate it with the operator φ̃ acting on continuous functions y(x) satisfying the
initial condition y(x0) = y0,

φ̃(y)(xl) :=
y(xl+1)− y(xl)

h
− f(xl, y(xl)) = 0. (7b)

Choose a continuous function y0(x) interpolating the Y 0
l at the grid points xl. The

standard choice is a continuous piecewise polynomial interpolant of degree p over p + 1
successive grid points, i.e., piecewise interpolation over subintervals Ij of length ph. In

the corresponding piecewise-polynomial space Pp, y0(x) is the solution of φ̃(y) = 0. The
defect d 0 := φ(y0) is well-de�ned,

d 0(x) = φ(y0)(x) = d
dx y

0(x)− f(x, y0(x)), (8a)

and y0(x) is the exact solution of the neighboring IVP

d
dx y(x) = f(x, y(x)) + d 0(x), y(x0) = y0. (8b)

We now consider a correction step y0 7→ y1 of type (A),

Solve φ̃(ỹ 0) = d 0,

followed by y1(x) := y0(x)− (ỹ 0 − y0)(x).

This means that ỹ 0 ∈ Pp is to be understood as the interpolant of the discrete values

Ỹ 0
j obtained by the solution of

Ỹ 0
l+1 − Ỹ 0

l

h
= f(xl, Ỹ

0
l ) + d 0(xl), l = 0, 1, 2, . . . ,

which is the forward Euler approximation to (8b), with additional pointwise evaluation
of the defect at the grid points xl.

According to our general characterization of IDeC (A), this process is to be continued
to obtain further iterates yi(x). If we usem IDeC steps in the �rst subinterval I1 = [a, a+
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ph], we can restart the process at the starting point a+ ph of the second subinterval I2,
with the new initial value y(a + ph) = ym(a + ph). This is called local, or active mode.
Alternatively, one may integrate with forward Euler over a longer interval I encompassing
several of the Ij and perform IDeC on I, where each individual yi(x) is forwarded over
the complete interval. This is called global, or passive mode.

Remark. The exact solution y∗ is not in the scope of the iteration, since the yi live
in the space Pp. But there is a �xed point ŷ ∈ Pp related to y∗: It is characterized by

the property d̂ := φ(ŷ) = 0, i.e., d
dx ŷ(xl) = f(xl, ŷ(xl)) for all l. This means that ŷ is

a collocation polynomial, and IDeC based on the Euler scheme can be regarded as an
iterative method to approximate collocation solutions. In fact, this means that, instead
of (6), the system of collocation equations φ(ŷ)(xl) = d

dx ŷ(xl) − f(x, ŷ(xl)) = 0 at the
collocation nodes xl is rather to be considered as the e�ective original problem.

3.2. IDeC based on higher order schemes φ̃. Remarks on convergence theory.
For IDeC applied to IVPs, any basic scheme φ̃ may be used instead of forward Euler.
E.g., in the pioneering paper [20] a classical Runge-Kutta (RK) scheme of order 4 was
used. Using RK in the correction steps means that in each individual evaluation of the
right hand side the pointwise value of the current defect is to be added (RK applied
to [NP]). Many other authors have also considered and analyzed IDeC versions based on
RK schemes.

Despite the natural idea behind IDeC, the convergence analysis is not strai-
ghtforward. Obtaining a full higher order of convergence asymptotically for h → 0
requires

� a su�ciently well-behaved, smooth problem,
� a su�ciently high degree p for the local interpolants yi(x),
� su�cient smoothness of these interpolants, in the sense of boundedness of a
certain number of derivatives of the yi(x), uniformly for h→ 0.

A typical convergence result reads as follows:

If the sequence of grids is equidistant and the underlying scheme

has order q, then m IDeC steps result in an error ym(x) − y∗(x) =
O(hmin{p,m q}) for h→ 0, where p is the degree of interpolation.

The achievable order p is usually identical to the approximation order of the �xed point
û ∈ Pp, which corresponds to a collocation polynomial in a generalized sense.

Naturally, IDeC can also be applied to boundary value problems (BVPs). For second
order two-point boundary value problems, the necessary algorithmic modi�cations have
�rst been described in [9]. Here, special care has to be taken at the end points of the
interpolation intervals Ij , where an additional defect terms arises due to jumps in the
derivatives of the local interpolants.

3.3. The in�uence of a nonequidistant grid. As mentioned above, the smoothness
of the global error is essential for the successful performance of an IDeC iteration. A
technical tool to assure the latter smoothness property are asymptotic expansions of the
global discretization error ỹ − y∗ for the underlying scheme, which have been proved to
exist for RK methods over constant stepsize sequences. A convergence result for IDeC
derived in this way is, e.g., given in [10]; see also [17].



DEFECT CORRECTION METHODS . . .
ISSN 2078-3744. Âiñíèê Ëüâiâ. óí-òó. Ñåðiÿ ìåõ.-ìàò. 2016. Âèïóñê 82 11

Fig. 1. Error behavior of an Euler solution, equidistant grid (left) and
nonequidistant grid (right).

The assumption of a constant stepsize appears quite restrictive, but it is su�cient to
assume that the stepsize h be kept �xed over each interpolation interval. We note that for
IDeC algorithms, this requirement is indeed necessary, as has been demonstrated in [3].
Otherwise the error ỹ − y∗ usually lacks the required smoothness properties, despite its
asymptotic order.

To illustrate this fact, let us consider the forward Euler scheme (7a) applied to the
simple ODE y′(x) = y(x) − (sinx + cosx). For y(0) = 1, the solution of the IVP is
y∗(x) = cosx. We apply (7a) on the interval x ∈ [0, 1] and take 20 integration steps with
constant stepsize h = 1/20. Then we repeat the procedure on on a nonequidistant grid,
where the stepsizes hj are small relative random perturbations of the original stepsize
h. Fig. 1 shows the behavior of the error (lower curve) and its �rst di�erence quotients
over the grid (upper curve) for both cases. In the right plot the irregular variation of
the error is clearly visible, and this e�ect becomes even more signi�cant if we consider
higher di�erence quotients. This is not di�cult to explain theoretically, see [19]. As a
consequence, higher derivatives of the associated interpolants yi(x) are not uniformly
bounded, which would be required in the convergence theory of IDeC schemes.

3.4. Reformulation in terms of integral equations. IQDeC (A) and IQDeC (B)
(`spectral IDeC'). An ODE can be transformed into an integral equation. Taking the
integral means of (6a) over the interval spanned by two successive grid points gives

y(xl+1)− y(xl)

h
=

∫ xl+1

xl

f(x, y(x)) dx. (9)

We observe that the left-hand side is of the same type as in the Euler approximation (7a).
Therefore it appears natural to consider (9) instead of (6) as the original problem. In
addition, for numerical evaluation the integral on the right-hand side has to be approxi-
mated, typically by polynomial quadratures using the p+1 nodes available in the current
working interval Ij 3 xl. The coe�cients depend on the location of xl within Ij .

Using Q as a generic symbol for these quadratures we obtain the computationally
tractable, modi�ed original problem replacing the ODE (6b), de�ned over the grid {xl}
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as

φ(y)(xl) :=
y(xl+1)− y(xl)

h
− (Qf)(x, y(x))l = 0, (10a)

or, more precisely, its e�ective version restricted to y ∈ Pp. Up to quadrature error, (10a)
is an `exact �nite di�erence' scheme exactly satis�ed by y∗. The treatment of the leading
derivative term y′ is the same in (10a) and in (7b), which turns out to be advantageous.
(10a) leads to an alternative de�nition of the defect at the evaluation points xl, namely

d̄ i(xl) := φ(yi)(xl) (10b)

=
yi(xl+1)− yi(xl)

h
− (Qf)(x, yi(x))l .

This may be interpreted in the sense that the original, pointwise defect d i(x) is `precondi-
tioned' by applying local quadrature. All other algorithmic components of IDeC remain
unchanged, with correspondingly de�ned neighboring problems.

In [3], this version is introduced and denoted as IQDeC (type (A)). Variants in the
spirit of IQDeC of type (B) have also been developed; this is often called `spectral defect
correction' and has �rst been described in [8]. For a convergence proof, see [12].

Remarks.

• With appropriate choice of defect quadrature, the �xed point of IQDeC is

the same as for IDeC. In fact, the equation d̂ = φ(û) = 0 turns out to
be closely related to a reformulation of the associated collocation equations
ŷ′(xl) = f(xl, ŷ(xl)) in the form of an exact �nite di�erence scheme approxi-
mated via quadrature. The latter is closely related to the implicit Runge-Kutta
(IRK) reformulation of the collocation equations.

• There are several motivations for considering IQDeC. The major point is that, as
demonstrated in [3], its convergence properties are much less a�ected by irregular

distribution of the xl. This is due to the close relationship between φ̃ and φ,
see (7a) and (10a). In the forward Euler case, for instance, the normal order
sequence 1, 2, 3, . . . shows up, in contrast to classical IDeC.

We also refer to [2] for a motivation and explanation of the IQDeC technique
in the context of semilinear problems.

• IQDeC is also closely related to the concept of exact di�erence schemes, see, e.g.,
[11, 15]: Eq. (9) represents an exact di�erence scheme (EDS) satis�ed by the
true solution y∗. In the context of IQDeC, the defect is taken with respect this
EDS, using an appropriate quadrature formula for evaluation of the right-hand
side. However, this way of `truncating' the EDS not the same as in [11, 15], where
compact schemes are constructed and defect correction is typically not considered
as an algorithmic option.

Similar remarks apply to second order problems (which are also considered
in Sec. 4 below). To our opinion, the combination of compactly truncated EDS
schemes with defect correction will be worth considering as an alternative to
simple �xed point iterations or more intricate Newton-like schemes applied to an
EDS.
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• For a related approach in the context of second order two-point boundary value
problems, also permitting variable mesh spacing, see [7].

• Another modi�cation can be used to construct superconvergent IDeC methods:
In [3] (`IPDeC') and in [16], use of an equidistant basic grid is combined with
defect evaluation at Gaussian nodes, in a way that the resulting iterates converge
to the corresponding superconvergent �xed point (collocation at Gaussian nodes).

3.5. Sti� and singular problems. For sti� systems of ODEs, DeC methods have been
used with some success. However, as for any other method, the convergence properti-
es strongly depend on the problem at hand. The main di�culty for DeC is that the
convergence rate may be rather poor for error components associated with sti� eigendi-
rections. An overview and further material on this topic can be found in [4] or [8]. Similar
remarks apply to problems with singularities.

3.6. Boundary value problems (BVPs) and `deferred correction'. Historically,
one of the �rst applications of a type (B) truncation error estimator (4a) appears in the
context of �nite-di�erence approximations to a BVP

d

dx
y(x) = f(x, y(x)), R(y(x0), y(b)) = 0, (11)

posed on an interval [a, b] (with boundary conditions represented by the function R),
or higher order problems. (A classical text on the topic is [14].) For a �nite-di�erence
approximation of y′(xl), e.g. as in (7a), asymptotic expansion of the truncation error `∗

is straightforward using Taylor series and using (11):

`∗(xl) = φ̃(y∗)(xl) =
y∗(xl+1)− y∗(xl)

h
− d

dx
y∗(xl)

=
1

2

d2

dx2
y∗(xl) +

1

6

d3

dx3
y∗(xl) + . . . (12)

The idea is to approximate the leading term 1
2
d2

dx2 y
∗(xl) by a second order di�erence

quotient involving three successive nodes. This de�nes an approximate truncation error
associated with an approximate original problem, which corresponds to a higher order
discretization of (11). The corresponding estimator λ0 is obtained by evaluating the
approximate truncation error at a given y = y0. This is used in the �rst step of an
IDeC (B) procedure (see (4a)�(4c)). In this context, updating the (approximate) [OP] in
course of the iteration is natural, involving di�erence approximations of the higher order
terms in (12), to be successively evaluated at the iterates yi.

IDeC (B) versions of this type are usually addressed as deferred correction techni-
ques, and they have been extensively used, especially in the context of boundary value
problems. The analysis heavily relies on the smoothness properties of the error. Piecewise
equidistant meshes are usually required. A di�culty to be coped with is the fact that
the di�erence quotients involved increase in complexity and have to be modi�ed near the
boundary and at points where the stepsize is changed.

3.7. Defect-based error estimation and adaptivity. In practice, the DeC principle
is also applied � in the spirit of our original motivation � for estimating the error of
a given numerical solution with the purpose of adapting the mesh. A typical case is
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described and analyzed in [5]: Assume that y0 is a piecewise polynomial collocation
solution to the BVP (11). Collocation methods are very popular and have favorable
convergence properties. By de�nition of y0, its pointwise defect d 0(x) = d

dx y
0(x) −

f(x, y 0(x)) vanishes at the collocation nodes which are, e.g., chosen in the interior of
the collocation subintervals Ij . Therefore, information about the quality of y0 is to be
obtained by evaluating d 0(x) at another nodes, e.g., the endpoints of the Ij .

For estimating the global error e0(x) = (y0 − y∗)(x) one can use the type (A) error

estimator (3a) based on a low-order auxiliary scheme φ̃, e.g., an Euler or box scheme,
over the collocation grid. Replacing the pointwise defect d 0 by the modi�ed defect d̄ 0,
analogously as in (10b), is signi�cantly advantageous, because this version is robust with
respect to the lack of smoothness of y0 which is only a C1 function. In [5] it has been
proved that such a procedure leads to a reliable and asymptotically correct error estimator
of QDeC type.

With an appropriately modi�ed version of d̄ 0, closely related to the defect de�nition
from [7], the QDeC estimator can also be extended to second (or higher order) problems.

4. Extensions

In this section we describe recent extensions of the I*DeC technique (version A) to
regular implicit �rst and second order initial value problems in more detail. Numerical
results for selected test examples are also presented. Clearly, these versions can also be
applied to the special case of explicit ODEs.

4.1. IQDeC (A) for implicit �rst order ODEs � IIQDeC. Consider a �rst order
initial value problem of the type

F
(
x, y(x), ddx y(x)

)
= 0, y(x0) = y0. (13)

The IIQDeC algorithm for the solution of (13) is an extension of the IQDeC approach
explained in Sec. 3.4. For the numerical solution of (13) we introduce a grid comprising
several subintervals I1, I2, . . ., where the relative position of the grid points within the Ij
is determined by m+1 parameters 0 6 c0 < c1 < . . . < cm−1 < cm 6 1, and the absolute
position is given by

xj,l = xj−1 + cl hj , j = 1, 2, . . . , l = 0 . . .m,

where hj denotes the length of the subinterval Ij . On this grid, a �rst approximation
Y 0
j,l, using the backward Euler scheme as basic discretization, is computed, i.e., we solve

F
(
xj,l, Y

0
j,l,

Y 0
j,l−Y

0
j,l−1

hj,l

)
= 0, (14)

starting from Y 0
1,0 = y0 at x1,0 = x0. The Y

0
j,l and, later on, the Y

i
j,l (i = 1, 2, . . .) are

interpolated by polynomials pij(x) of degree 6 m, which de�ne the piecewise polynomial

function pi(x) = pij(x). The pointwise defect of pij(x) with respect to (13) is given by

d ij (x) = F
(
x, pij(x), ddx p

i
j(x)

)
, x ∈ Ij .
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Now we de�ne the locally integrated defect, an extension of (10b) to the implicit case,
by

d̄ ij,l :=

m∑
µ=1

αl,µ d
i
j (xj,µ) ≈

∫ xj,l

xj,l−1

d ij (x) dx

xj,l − xj,l−1
. (15)

The αl,µ are the weights of the corresponding interpolatory quadrature formulas with
nodes c1, . . . , cm and degree of exactnessm−1. With the basic discretization scheme (14),
and the defect (15), the discretized neighboring problem reads

F
(
xj,l, Ỹ

i
j,l,

Ỹ i
j,l−Ỹ

i
j,l−1

hj,l

)
= d̄ ij,l, (16)

starting from Ỹ i1,0 = y0 at x1,0 = x0. With the solution of (16), the improved approxi-
mations are de�ned by

Y ij,l = Y 0
j,l −

(
Ỹ i−1j,l − Y

i−1
j,l

)
, i = 1, 2, . . . . (17)

For a convergence proof of the IIQDeC method, see [19].

Example 1. Consider the implicit scalar nonlinear test problem

ey
′(x) + y′(x) + y(x) (18a)

= e− sin x + cosx− sinx,

y(0) = 1, (18b)

with exact solution y∗(x) = cosx. The numerical solution is computed over a sequence of
subintervals of length h, each of them divided into a nonequidistant grid with 4 `randomly'
chosen nodes (c1 = 0.1234, c2 = 0.5054, c3 = 0.7134, c4 = 1), in order to demonstrate
the robustness of IQDeC with respect to varying stepsizes.

We choose the integration interval x ∈ [0, 3]. The resulting global errors with respect
to the exact solution at the endpoint x = 3 are displayed in Table 1 together with the
observed convergence orders. Results are given for the basic scheme (BEUL), 4 IIQDeC
iterates working in passive mode, and the �xed point of the IIQDeC iteration (COLL,
corresponding to collocation at the points where the defect is evaluated).

4.2. IPDeC (A) for implicit second order ODEs � IIPDeC2-DQ2. Here we
present a new superconvergent I*DeC algorithm for implicit initial value problems of
second order. Consider a problem of the type

F
(
x, y(x), ddx y(x), d

2

dx2 y(x)
)

= 0, (19a)

y(x0) = y0,
d
dx y(x0) = y′0. (19b)

The IIPDeC2 algorithm for the solution of (19) is an extension of the IPDeC approach
mentioned at the end of Sec. 3.4. It is based on a combination of an equidistant grid
{xj,l, l = 0 . . .m} with constant inner stepsize h in each interval Ij , and another grid
{x̂j,k, k = 1 . . . m̂} (m̂ = m− 1) based on Lobatto nodes (with parameters ĉk).
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h BEUL IIQDeC/1 IIQDeC/2 IIQDeC/3 COLL

0.1 6.31E-03 1.14E-04 1.02E-06 3.83E-09 3.98E-09
0.05 3.16 E-03 2.90E-05 1.31E-07 2.69E-10 2.43E-10
0.025 1.58E-03 7.30E-05 1.66E-08 1.77E-11 1.50E-11
0.0125 7.91E-04 1.83E-06 2.09E-09 1.14E-12 9.31E-12

0.1
0.05

1.00 1.98 2.96 3.83 4.04

0.025
1.00 1.99 2.98 3.92 4.02

0.0125
1.00 1.99 2.99 3.96 4.01

Table 1. Numerical results for Example 1

The equidistant grid {xj,l} is used for realizing a second order basic discretization
(DQ2) based on symmetric �nite di�erences according to

F
(
x1,0, y0, y

′
0,

Y 0
1,1−y0

h −y′0
h
2

)
= 0;

For j > 1, l > 1 :

F
(
xj,l, Y

0
j,l,

Y 0
j,l+1−Y

0
j,l−1

2h ,
Y 0
j,l+1−2Y

0
j,l+Y

0
j,l−1

h2

)
= 0;

For j > 1, l = 1 :

F
(
xj−1,m, Y

0
j−1,m,

Y 0
j,1−Y

0
j−1,m−1

2h ,

Y 0
j,1−2Y

0
j−1,m+Y 0

j−1,m−1

h2

)
= 0.

The Lobatto grid {x̂j,l} is used for the computation of an interpolated defect. This is
realized as follows:

• First, after interpolating the current iterate and de�ning the defect in the usual
way, the defect is evaluated at the x̂j,k,

d̂ ij,k := d
dx p

i(xj,k)− f(xi, pi(xj,k)), k = 1 . . . m̂.

• Next, after interpolating the d̂ ij,k by a piecewise polynomial function d̂(x) we
de�ne the modi�ed defect

d̂A,i1,0 := d̂ i(x1,0), d̂B,i1,0 := d
dx p

i(x1,0)− y′0;

For j > 1, l > 0 : d̂ ij,l := d̂ i(xj,l);

For j > 1, l = 0 :

d̂ ij,0 = F
(
xj,l, p

i
j,0,

d
dx p

i(xj,0)+
d
dx p

i(xj−1,m)

2 , γ̂ij,0

)
(20a)
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with the `jump defect'

γ̂ij,0 :=
d2

dx2 p
i(xj,0) + d2

dx2 p
i(xj−1,m)

2

+
d
dx p

i(xj,0)− d
dx p

i(xj−1,m)

h
.

(20b)

Then we solve the corresponding discretized neighboring problem

F
(
x1,0, y0, y

′
0 + d̂B,i1,0 ,

Ỹ i
1,1−y0

h −(y′0+d
B,i
1,0 )

h
2

)
= dA,i1,0 ;

For j > 1, l > 1 :

F
(
xj,l, Ỹ

i
j,l,

Ỹ i
j,l+1−Ỹ

i
j,l−1

2h ,
Ỹ i
j,l+1−2Ỹ

i
j,l+Ỹ

i
j,l−1

h2

)
= d̂ ij,l;

For j > 1, l = 1 :

F
(
xj−1,m, Ỹ

i
j−1,m,

Ỹ i
j,1−Ỹ

i
j−1,m−1

2h ,
Ỹ i
j,1−2Ỹ

i
j−1,m+Ỹ i

j−1,m−1

h2

)
= d̂ ij,0,

and proceed as before (cf. (17)).
The purpose of the modi�ed defect de�nition (20) is, like for classical explicit �rst

order IPDeC from [3], to modify the iteration in such a way that its �xed point is given by
a higher-order superconvergent collocation scheme, in our case of Lobatto type. In fact,
Lobatto collocation at the nodes x̂j,k means that the defect of the collocation polynomial
vanishes at these nodes, and thus, this collocation polynomial is a �xed point of our
iteration. This lets us expect that after several defect correction steps a superconvergent
iterate is obtained; see Example 2 for numerical evidence.

1. Remark. In (20a), a defect with respect to the initial condition for the �rst
derivative is also taken into account. Furthermore, the discontinuity of the �rst derivati-
ve of pi(x) at the endpoints of the intervals Ij (pi(xj)) enforces to include the jump
defect γ̂ij,0, see (20), see also [9].

Example 2. Consider the implicit scalar nonlinear test problem

ey
′′(x) + y′(x) + y(x) (21a)

= e− sin x + 1 + sinx+ cosx,

y(0) = 1, y′(0) = 1, (21b)

with exact solution y∗(x) = 1+sinx. The numerical solution is computed over a sequence
of subintervals of length h, each of them divided into 6 equidistants nodes and 5 Lobatto

nodes (ĉ1 = 0, ĉ2 = 1
2 −

√
21
14 , ĉ3 = 1

2 ; , ĉ4 = 1
2 +

√
21
14 , ĉ5 = 1).

We choose the integration interval x ∈ [0, 3]. The resulting global errors with respect
to the exact solution at the endpoint x = 3 are displayed in Table 2 together with the
observed convergence orders. Results are given for the basic scheme (DQ2), 4 IIPDeC2
iterates working in passive mode, and the �xed point of the IIPDeC2 iteration (L-COLL,
corresponding to Lobatto collocation of degree m̂ = 5 at the nodes x̂j,k where the defect
is interpolated). Note that the convergence order of the Lobatto collocation scheme is
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h DQ2 IIPDeC2/1 IIPDeC2/2 IIPDeC2/3 L-COLL

0.1 2.30E-05 1.93E-09 9.62E-14 6.07E-16 6.32E-16
0.05 5.75E-06 1.21E-10 1.51E-15 2.37E-18 2.47E-18
0.025 1.44E-06 7.54E-12 2.36E-17 9.24E-21 9.63E-21
0.0125 3.59E-07 4.71E-13 3.69E-19 3.61E-23 3.76E-23

0.1
0.05

2.00 4.00 5.99 8.00 8.00

0.025
2.00 4.00 6.00 8.00 8.00

0.0125
2.00 4.00 6.00 8.00 8.00

Table 2. Numerical results for Example 2.

O(h2m̂−2) = O(h8), and the same convergence order is realized after only 3 IIPDeC2
iteration steps.
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ïðèéíÿòà äî äðóêó 20.02.2017

ÌÅÒÎÄÈ ÊÎÐÅÊÖI� ÄÅÔÅÊÒÓ, ÊËÀÑÈ×ÍI ÒÀ ÍÎÂI

Âiíôðiä ÀÓÖIÍ�ÅÐ1, Ðîêñîëàíà ÑÒÎËßÐ×ÓÊ2,
Ìàðòií ÒÓÒÖ1

1Âiäåíüñüêèé òåõíi÷íèé óíiâåðñèòåò,

Âiäíåð Ãàóïòøòðàññå, 8-10, 1040 Âiäåíü, Àâñòðiÿ
2Íàöiîíàëüíèé óíiâåðñèòåò �Ëüâiâñüêà Ïîëiòåõíiêà�,

âóë. Ñ. Áàíäåðè 12, 79013, Ëüâiâ, Óêðà¨íà

Ìåòîäè êîðåêöi¨ äåôåêòó  ðóíòóþòüñÿ íà iäå¨ îöiíêè òî÷íîñòi íàáëèæå-
íîãî ðîçâ'çêó çà äîïîìîãîþ ôîðìóâàííÿ äåôåêòó, àáî çàëèøêó, ñòîñîâíî
äî äàíî¨ çàäà÷i. Çà äîïîìîãîþ ïðîöåäóðè çâîðîòíüîãî ðîçâ'ÿçóâàííÿ îòðè-
ìó¹ìî îöiíêó ïîõèáêè. Öåé ïðîöåñ ìîæíà ïðîäîâæèòè iòåðàòèâíî. Ìåòà
öüîãî îãëÿäó � ïîäàëüøå ïîøèðåííÿ êîíöåïöi¨, ùî ðîçãëÿäà¹òüñÿ. Áiëüø
òîãî, âïåðøå ïîäàíî çàãàëüíèé i óçãîäæåíèé îãëÿä ðiçíèõ òèïiâ ìåòîäiâ
êîðåêöi¨ äåôåêòó, ¨õí¹ çàñòîñóâàíü â êîíòåêñòi äèñêðåòèçàöiéíèõ ñõåì äëÿ
äèôåðåíöiàëüíèõ ðiâíÿíü. Ïiñëÿ îïèñó çàãàëüíîãî àëãîðèòìó îáãîâîðèìî
äåÿêi ñïåöiàëüíi òåõíîëîãi¨, ÿêi âèêîðèñòîâóþòüñÿ äëÿ ðîçâ'ÿçóâàííÿ çâè-
÷àéíèõ äèôåðåíöiàëüíèõ ðiâíÿíü. Òàêîæ ïðåäñòàâëåíi íîâi ðåçóëüòàòè ñòî-
ñîâíî çàñòîñóâàííÿ äî íåÿâíèõ çàäà÷.

Êëþ÷îâi ñëîâà: êîðåêöiÿ äåôåêòó, äèñêðåòèçàöiÿ, çâè÷àéíi äèôåðåí-
öiàëüíi ðiâíÿííÿ.
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