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An optimal control problem for systems described by Fourier problem
(problem without initial conditions) for weakly nonlinear evolution variational
inequalities is studied. A control function occurs in the coe�cients of the vari-
ational inequality which describes the state of control system. Di�erent types
of observation are considered. The existence of the optimal control is proved.
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1. Introduction

Optimal control problems for systems governed by variational inequalities are quite
popular nowadays. A large number of such problems were considered in the monograph
[3] and other publications (see, e.g., [1, 10, 16, 17]).

In particular, in [1] an optimal control problem for a parabolic variational inequality
is considered. Existence and necessary conditions for the optimal control are established.

In [16] the optimal control of parabolic variational inequalities is studied in the case
where the spatial domain is not necessarily bounded. An optimal control problem with
the control appearing in the coe�cient of the leading term is investigated and a �rst
order optimality system in a Lagrangian framework is derived. In [17] the author proves
an existence result for optimal control problem in coe�cients of a nonlinear elliptic vari-
ational inequality using the direct method of calculus of variation and the compensated
compactness lemma.

In this paper, we study an optimal control problem for systems whose states are
described by problems without initial conditions for evolutionary variational inequalities.
A particular case of the problem for the evolution variational inequalities is a problem
for evolutionary equations. The research of the problem without initial conditions for the
evolution equations and variational inequalities were conducted in the papers [9, 13, 15,
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18, 19, 20, 22, 26] and others. In particular, R.E. Showalter [25] proved the existence of
a unique solution u ∈ e2ω·W 1,2(−∞, 0;H), where H is a Hilbert space, of the problem
without initial condition

u′(t) + µu(t) +A
(
u(t)

)
3 f(t), t ∈ (−∞, 0),

for every ω + µ > 0 and f ∈ e2ω·W 1,2(−∞, 0;H), in case when A : H → 2H is
maximal monotone operator such that 0 ∈ A(0). Moreover, if A = ∂ϕ, where ϕ :
H → (−∞,+∞] is proper, convex, and lower-semi-continuous functional such that
ϕ(0) = 0 = min {ϕ(v) : v ∈ H}, then this problem is uniquely solvable for each µ > 0,
f ∈ L2(−∞, 0;H) and ω = 0.

Note that the uniqueness of the solutions of such problem for linear parabolic equati-
ons and variational inequalities is possible only under some restrictions on the behavior
of solutions when t → −∞. For the �rst time in the case of heat equation it was stri-
ctly justi�ed by A.N. Tikhonov [27]. However, as it was shown by M.M. Bokalo [9], the
problem without initial conditions for some nonlinear parabolic equations has a unique
solution in the class of functions with arbitrary behavior when t→ −∞. Similar results
were also obtained for evolutionary variational inequalities in [9].

Previously, optimal control problems of evolution equations without initial conditi-
ons were studied by the authors (see., e.g., [8, 7]). But as far as we know, optimal control
problems for variational inequalities without initial conditions were not considered yet,
which serves as one of the motivations for the study of such problems.

The outline of this paper is as follows. In Section 1, we provide notations, de�nitions
of function spaces and auxiliary results. In Section 2, we formulate the optimal control
problem. In Section 3, we prove existence and uniqueness of the solutions of problem
without initial conditions which describe the state of control system. Furthermore, we
obtain estimates for the solutions of the state equations. Finally, the existence of the
optimal control is presented in Section 4.

2. Preliminaries

Set S := (−∞, 0]. Let V and H be separable Hilbert spaces with the scalar products
(·, ·)V , (·, ·) and norms ‖·‖, |·|, respectively. Suppose that V ⊂ H with continuous injection
and V is dense and compact in H, i.e., the closure of V in H coincides with H, and there
exists a constant λ > 0 such that

λ|v|2 6 ‖v‖2 ∀v ∈ V, (1)

and for every bounded sequence {wk}∞k=1 in V there exist an element w ∈ H and a
subsequence {wkj}∞j=1 of sequence {wk}∞k=1 such that wkj −→

j→∞
w strongly in H.

Let V ′ and H ′ be the dual spaces to V and H, respectively. We suppose (after
appropriate identi�cation of functionals), that the space H ′ is a subspace of V ′. Identifyi-
ng (by the Riesz�Fr�echet representation theorem) spaces H and H ′, we obtain continuous
and dense embeddings

V ⊂ H ⊂ V ′ . (2)

Note, that in this case 〈g, v〉V = (g, v) for every v ∈ V, g ∈ H, where 〈·, ·〉V is the scalar
product for the duality V ′, V . Therefore, further we use the notation (·, ·) instead of
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〈·, ·〉V . Also we use the notation ‖ · ‖∗ for the norm in V ′. Note that

λ‖h‖2∗ 6 |h|2 ∀h ∈ H, (3)

where λ is the constant from the equality (1). Indeed, under (1) we have

‖h‖∗ = sup
v∈V,‖v‖=1

|(h, v)| 6 sup
v∈V,‖v‖=1

|h||v| 6 λ−1/2|h|.

We introduce some spaces of functions and distributions. Let X be an arbitrary
Hilbert space with the scalar product (·, ·)X and the norm ‖ · ‖X . Under C(S;X) we
mean the linear space of continuous functions de�ned on S with values in X. We say that
zm −→

m→∞
z in C(S;X) if for each t1, t2 ∈ S (t1 < t2) we have ‖z−zm‖C([t1,t2];X) −→

m→∞
0.

Let q ∈ [1,∞], q′ be dual to q, i.e., 1/q + 1/q′ = 1. Denote by L2
loc

(S;X) the linear
space of measurable functions de�ned on S with values in X, whose restrictions to any
segment [t1, t2] ⊂ S belong to the space Lq(t1, t2;X). We say that a sequence {zm} is
bounded (respectively, strongly, weakly or ∗-weakly convergent to z) in Lq

loc
(S;X), if for

each t1, t2 ∈ S (t1 < t2) the sequence of restrictions of {zm} to the segment [t1, t2] is
bounded (respectively, strongly, weakly or ∗-weakly convergent to the restrictions of z to
this segment) in Lq(t1, t2;X).

Let ν ∈ R. Put by de�nition

L2
ν(S;X) :=

{
f ∈ L2

loc
(S;X)

∣∣∣ ∫
S

e−2νt‖f(t)‖2Xdt <∞
}
.

This space is a Hilbert space with the scalar product

(f, g)L2
ν(S;X) =

∫
S

e−2νt(f(t), g(t))X dt

and the corresponding norm

‖f‖L2
ν(S;X) :=

(∫
S

e−2νt‖f(t)‖2X dt
)1/2

.

Also we introduce the space L∞ν (S;X) := {f ∈ L∞(S;X) | ess sup
t∈S

[
e−νt‖f(t)‖X

]
<∞}.

Under D′(−∞, 0;V ′w) we mean the space of de�ned on D(−∞, 0) with values in V ′

distributions, i.e., the space of continuous linear functionals on D(−∞, 0) with values
in V ′w (hereafter D(−∞, 0) is the space of test functions, that is, the space of in�nitely
di�erentiable on (−∞, 0) functions with compact support, equipped with corresponding
topology, and Vw is the linear space V ′ equipped with weak topology). It is easy to see
(using (2)), that the spaces L2

loc
(S;V ), L2

loc(S;H), L2
loc

(S;V ′) can be identi�ed with the
corresponding subspaces ofD′(−∞, 0;V ′w). This, in particular, allows us to talk about the
derivatives z′ of the functions z from L2

loc
(S;V ) or L2

loc(S;H) in the sense of distributions
D′(−∞, 0;V ′w) and belonging of such derivatives to L2

loc(S;H) or L2
loc

(S;V ′).
Denote by H1

loc(S;H) the space of functions z ∈ L2
loc(S;H) such that z′ ∈

L2
loc(S;H). Let us de�ne the space

W2,loc(S) := {z ∈ L2
loc(S;V )

∣∣ z′ ∈ L2
loc(S;V ′)}. (4)
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From known results (see., for example, [14, P. 177-179]) it follows that H1
loc(S;H) ⊂

C(S;H) and W2,loc(S) ⊂ C(S;H). Moreover, for every z in W2,loc(S) or in H1
loc(S;H)

function t→ |z(t)|2 is absolutely continuous on any segment of the ray S and the following
equality holds

d

dt
|z(t)|2 = 2(z′(t), z(t)) for a.e. t ∈ S. (5)

Denote

H1
ν (S) := {z ∈ L2

ν(S;H)
∣∣ z′ ∈ L2

ν(S;H)}, ν ∈ R. (6)

In this paper we use the following well-known facts.

Proposition 1 (Cauchy-Schwarz inequality [14, p. 158]). Suppose that t1, t2 ∈ R (t1 <
t2), and X is a Hilbert space with the scalar product (·, ·)X . Then, if v ∈ L2(t1, t2;X)
and w ∈ L2(t1, t2;X), we have (w(·), v(·))X ∈ L1

(
t1, t2

)
and∫ t2

t1

(w(t), v(t))X dt 6 ‖w‖L2(t1,t2;X)‖v‖L2(t1,t2;X).

Proposition 2 ([28, p. 173,179]). Let X be a Banach space with the norm ‖ · ‖X , and
{vk}∞k=1 be the sequence of elements of X which is weakly or ∗-weakly convergent to v
in X. Then lim

k→∞
‖vk‖X > ‖v‖X .

Proposition 3 ([2, Aubin theorem], [4, p. 393]). Suppose that q > 1, r > 1, t1, t2 ∈
R (t1 < t2), and W,L,B are Banach spaces such that W

c
⊂L 	 B (here

c
⊂ means

compact embedding and 	 means continuous embedding). Then

{z ∈ Lq(t1, t2;W) | z′ ∈ Lr(t1, t2;B)}
c
⊂
(
Lq(t1, t2;L) ∩ C([t1, t2];B)

)
. (7)

Remark 1. We understand embedding (7) as follows: if a sequence {zm} is bounded in the
space Lq(t1, t2;W) and the sequence {z′m}m∈N is bounded in the space
Lr(t1, t2;B), then there exist a function z ∈ C([t1, t2];B)∩Lq(t1, t2;L) and a subsequence
{zmj} of the sequence {zm} such that zmj −→

j→∞
z in C([t1, t2];B) and strongly in

Lq(t1, t2;L).

Proposition 4. If a sequence {zm} is bounded in the space L2
loc(S;V ) and the sequence

{z′m} is bounded in the space L2
loc(S;H), then there exist a function z ∈ L2

loc(S;V ),
z′ ∈ L2

loc(S;H) and a subsequence {zmj} of the sequence {zm} such that zmj −→
j→∞

z in

C(S;H) and weakly in L2
loc(S;V ), and z′mj −→j→∞ z

′ weakly in L2
loc(S;H).

Proof. Proposition 3 when q = 2, r = 2, W = V , L = B = H yields, for every t1, t2 ∈
S (t1 < t2) from the sequence of restrictions of the elements of {zm} to the segment
[t1, t2] one can choose subsequence which is convergent in C([t1, t2];H) and weakly in
L2(t1, t2;V ), and the sequence of derivatives of elements of this subsequence is weakly
convergent in L2(t1, t2;H). For each k ∈ N we choose a subsequence {zm(k,j)}∞j=1 of

a given sequence, which is convergent in C([−k, 0];H) and weakly in L2(−k, 0;V ) to
some function ẑk ∈ C([−k, 0];H)∩L2(−k, 0;V ), and the sequence {z′m(k,j)}

∞
j=1 is weakly

convergent to the derivative ẑ′k in L2(−k, 0;H). Making this choice we ensure that the
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sequence {zm(k+1,j)}∞j=1 be a subsequence of the sequence {zm(k,j)}∞j=1. Now, according
to the diagonal process we select the desired subsequence as {zm(j,j)}∞j=1, and we de�ne
the function z as follows: for each k ∈ N we take z(t) := ẑk(t) for t ∈ (−k,−k + 1]. �

Let Φ : V → (−∞,+∞] be a proper functional, which satis�es the conditions:

(A1): Φ
(
αv + (1− α)w

)
6 αΦ(v) + (1− α)Φ(w) ∀ v, w ∈ V, ∀α ∈ [0, 1],

i.e., the functional Φ is convex,
(A2): vk −→

k→∞
v in V =⇒ lim

k→∞
Φ(vk) > Φ(v),

i.e., the functional Φ is lower semicontinuous.

Denote by dom(Φ) := {v ∈ V : Φ(v) < +∞} the e�ective domain of the functional Φ.

Recall that the subdi�erential of a functional Φ is a mapping ∂Φ : V → 2V
′
, de�ned

as follows

∂Φ(v) := {v∗ ∈ V ′ | Φ(w) > Φ(v) + (v∗, w − v) ∀ w ∈ V }, v ∈ V,
and the domain of the subdi�erential ∂Φ is the set D(∂Φ) := {v ∈ V | ∂Φ(v) 6= ∅}. We
identify the subdi�erential ∂Φ with its graph assuming that [v, v∗] ∈ ∂Φ if and only if
v∗ ∈ ∂Φ(v), i.e., ∂Φ = {[v, v∗] | v ∈ D(∂Φ), v∗ ∈ ∂Φ(v))}. Rockafellar in [23, Theorem A]
proves that the subdi�erential ∂Φ is a maximal monotone operator, that is,

(v∗1 − v∗2 , v1 − v2) > 0 ∀ [v1, v
∗
1 ], [v2, v

∗
2 ] ∈ ∂Φ

and for every element [v1, v
∗
1 ] ∈ V × V ′ we have the implication

(v∗1 − v∗2 , v1 − v2) > 0 ∀ [v2, v
∗
2 ] ∈ ∂Φ =⇒ [v1, v

∗
1 ] ∈ ∂Φ.

Additionally, assume that the following conditions hold:

(A3): there exist constant K1 > 0 such that

Φ(v) > K1‖v‖2 ∀ v ∈ dom(Φ);

moreover, Φ(0) = 0;
(A4): there exists a constant K2 > 0 such that

(v∗1 − v∗2 , v1 − v2) > K2|v1 − v2|2 ∀ [v1, v
∗
1 ], [v2, v

∗
2 ] ∈ ∂Φ.

Remark 2. Condition (A3) implies that Φ(v) > Φ(0)+(0, v−0) ∀v ∈ V , hence 0 ∈ ∂Φ(0).
From this and condition (A4) we have

(v∗, v) > K2|v|2 ∀ [v, v∗] ∈ ∂Φ. (8)

Let us consider the evolutionary variational inequality

y′(t) + ∂Φ
(
y(t)

)
+ u(t)y(t) 3 f(t), t ∈ S, (9)

where f : S → V ′ and u : S → R are given measurable functions.

De�nition 1. Let conditions (A1), (A2) hold and u ∈ L∞loc(S), f ∈ L2
loc(S;V ′). A

function y is called a solution of variational inequality (9), if it satis�es the following
conditions:

1) y ∈W2,loc(S);
2) y(t) ∈ D(∂Φ) for a.e. t ∈ S;
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3) there exists a function g ∈ L2
loc(S;V ′) such that for a.e. t ∈ S we have g(t) ∈

∂Φ
(
y(t)

)
and

y′(t) + g(t) + u(t)y(t) = f(t) in V ′.

For variational inequality (9) consider the problem: �nd its solution which satis�es
the condition

lim
t→−∞

e−γt|y(t)| = 0, (10)

where γ ∈ R is given.
The problem of �nding a solution of variational inequality (9) for given Φ, u, f ,

satisfying the condition (10) for given γ, is called the problem without initial conditions
for the evolution variational inequality (9) or, in short, the problem P(Φ, u, f, γ), and
the function y is called its solution.

Remark 3. The problem P(Φ, u, f, γ) can be replaced by the following problem. Let K be
a convex and closed set in V , A : V → V ′ be a monotone, bounded and semi-continuous

operator such that (A(v), v) > K̃1‖v‖2 ∀v ∈ V , where K̃1 = const > 0. The problem is
to �nd a function y ∈W2,loc(S), satisfying the condition (10) and for a.e. t ∈ S

y(t) ∈ K and (y′(t) +A(y(t)) + u(t)y(t), v − y(t)) > (f(t), v − y(t)) ∀ v ∈ K.
Theorem 1. Let conditions (A1) � (A4) hold. Suppose that

(F): −∞ < m̃ := ess inf
t∈S

u(t) 6 ess sup
t∈S

u(t) =: M̃ < +∞, f ∈ L2
γ(S;H),

where γ ∈ R is a constant which satis�es the inequality

K2 + m̃+ γ > 0. (11)

Then the problem P(Φ, u, f, γ) has a unique solution, it belongs to the space
L∞γ (S;V ) ∩ L2

γ(S;V ) ∩H1
γ(S;H) and satis�es the estimate:

e−2γτ‖y(τ)‖2 +

τ∫
−∞

e−2γt‖y(t)‖2 dt+

τ∫
−∞

e−2γt|y′(t)|2 dt

6 C1

∫ τ

−∞
e−2γt|f(t)|2 dt, τ ∈ S (12)

where C1 is a positive constant which depends on K1, K2, γ, λ and m̃, M̃ only.

The proof of this theorem is given in Section 3.

3. Statement of the main problem and results

Let U be a closed linear subspace of L∞(S), for example, U := L∞(S) or U := {u ∈
L∞(S) | u(t) = 0 for a.e. t ∈ S \ [t∗, 0]}, where t∗ < 0 is arbitrary �xed. Assume that U

is the space of controls and for given constants m,M ∈ R the set U∂ :=
{
u ∈ U

∣∣∣m 6
u(t) 6M for a.e. t ∈ S

}
is the set of admissible controls.

We assume that the state of the investigated evolutionary system y(u) = y(·;u) for
a given control u ∈ U∂ is described by a solution of a problem P(Φ, u, f, γ), when the
following condition holds:
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(P) Φ satis�es conditions (A1) � (A4), f ∈ L2
γ(S;H) and

K2 +m+ γ > 0. (13)

From Theorem 1 we infer that there exists a unique function y(u) = y(t;u), t ∈ S
which is the solution of problem P(Φ, u, f, γ), and this function belongs to the space
L∞γ (S;V ) ∩ L2

γ(S;V ) ∩H1
γ(S;H).

Let G : C(S;H)→ R be a functional which satis�es condition:

(G) G is lower semi-continuous in C(S;H) and, moreover, inf
z∈C(S;H)

G(z) > −∞.

We assume that the cost functional J : U → R has the form

J(u) := G(y(u)) + µ‖u‖2U , u ∈ U, (14)

where µ > 0 is a constant.

We consider the following optimal control problem: �nd a control u∗ ∈ U∂ such
that

J(u∗) = inf
u∈U∂

J(u). (15)

We brie�y call this problem (15), and its solutions will be called the optimal controls.
The main result of this paper is the following theorem.

Theorem 2. Let conditions (P) and (G) hold. Then problem (15) has a solution.

The proof of this theorem is given in Section 4.

4. Well-posedness of the problem without initial conditions for weakly

nonlinear variational inequality

We now turn to the question of existence and uniqueness of the solution of the
problem P(Φ, u, f, γ).

First, we de�ne the functional ΦH : H → R∞ by the rule: ΦH(v) := Φ(v), if
v ∈ V , and ΦH(v) := +∞ otherwise. Note that conditions (A1), (A2), Lemma IV.5.2
and Proposition IV.5.2 of the monograph [24] imply that ΦH is proper, convex, and lower-
semi-continuous functional on H, dom(ΦH) = dom(Φ) ⊂ V and ∂ΦH = ∂Φ ∩ (V ×H),
where ∂ΦH : H → 2H is the subdi�erential of the functional ΦH . Moreover, condition
(A3) yields 0 ∈ ∂ΦH(0).

Proposition 5 ([24, Lemma IV.4.3]). Assume that z ∈ H1(a, b;H) (−∞ < a < b <
+∞), and there exists g ∈ L2(a, b;H) such that g(t) ∈ ∂ΦH

(
z(t)

)
for a.e. t ∈ (a, b). Then

the function ΦH
(
z(·)
)
is absolutely continuous on the interval [a, b] and for any function

h : [a, b]→ H such that h(t) ∈ ∂ΦH
(
z(t)

)
the following equality holds

d

dt
ΦH
(
z(t)

)
= (h(t), z′(t)) for a.e. t ∈ (a, b).

Proposition 6 ([12, Proposition 3.12], [24, Proposition IV.5.2]). Suppose that T > 0,

f̃ ∈ L2(0, T ;H) and z0 ∈ dom(Φ). Then there exists a unique function z ∈ H1(0, T ;H)
such that z(0) = z0 and for a.e. t ∈ (0, T ) we have z(t) ∈ D(∂ΦH) and

z′(t) + ∂ΦH
(
z(t)

)
3 f̃(t) in H. (16)
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Proposition 7. Suppose that T > 0, f̃ ∈ L2(0, T ;H), ũ ∈ L∞(0, T ) and z0 ∈ dom(Φ).
Then there exists a unique function z ∈ H1(0, T ;H) such that z(0) = z0 and for a.e.
t ∈ (0, T ) we have z(t) ∈ D(∂ΦH) and

z′(t) + ∂ΦH
(
z(t)

)
+ ũ(t)z(t) 3 f̃(t) in H. (17)

Proof. Let α > 0 be an arbitrary �xed number and let

ρ(z1, z2) = max
t∈[0,T ]

[
e−αt|z1(t)− z2(t)|

]
, z1, z2 ∈ C([0, T ];H),

be a metric on C([0, T ];H). It is obvious that the space C([0, T ];H) with this metric
is complete. Now let us consider an operator A : C([0, T ];H) → C([0, T ];H) de�ned as
follows: to any given function z̃ ∈ C([0, T ];H), it assigns a function ẑ ∈ H1(0, T ;H) ⊂
C([0, T ];H) such that ẑ(0) = z0 and for a.e. t ∈ (0, T ) the following inclusions hold:
ẑ(t) ∈ D(ΦH) and

ẑ′(t) + ∂ΦH(ẑ(t)) 3 f̃(t)− ũ(t)z̃(t) in H. (18)

Clearly, variational inequality (18) coincides with variational inequality (16) after repla-

cing f̃ by f̃ − ũz̃, thus using Proposition 6 we get that the operator A is well-de�ned.
Let us show that the operator A is a contraction. Indeed, let z̃1, z̃2 be arbitrary function
from C([0, T ];H) and ẑ1 := Az̃1, ẑ2 = Az̃2. According to (18) there exist functions g̃1
and g̃2 from L2(0, T ;H) such that for every k ∈ {1, 2} and for a.e. t ∈ (0, T ) we have
g̃k(t) ∈ ∂ΦH(ẑk(t)) and

ẑ′k(t) + g̃k(t) = f̃(t)− ũ(t)z̃k(t), (19)

while ẑk(0) = z0.
Subtracting identity (19) with k = 2 from identity (19) with k = 1, and, for a.e.

t ∈ (0, T ), multiplying the obtained identity by ẑ1(t)− ẑ2(t), we get(
(ẑ1(t)− ẑ2(t))′, ẑ1(t)− ẑ2(t)

)
+ (g̃1(t)− g̃2(t), ẑ1(t)− ẑ2(t))

= −ũ(t)(z̃1(t)− z̃2(t), ẑ1(t)− ẑ2(t)) for a.e. t ∈ (0, T ),

ẑ1(0)− ẑ2(0) = 0. (20)

We integrate equality (20) by t from 0 to τ ∈ (0, T ], taking into account that for a.e.
t ∈ (0, T ) we have(

(ẑ1(t)− ẑ2(t))′, ẑ1(t)− ẑ2(t)
)

=
1

2

d

dt
|ẑ1(t)− ẑ2(t)|2.

As a result we get the equality

1

2
|ẑ1(t)− ẑ2(t)|2 +

∫ τ

0

(g̃1(t)− g̃2(t), ẑ1(t)− ẑ2(t)) dt

= −
∫ τ

0

ũ(t)(z̃1(t)− z̃2(t), ẑ1(t)− ẑ2(t)) dt. (21)

Taking into account condition (A4), for a.e. t ∈ (0, T ) we have the inequality

(g̃1(t)− g̃2(t), ẑ1(t)− ẑ2(t)) > K2|ẑ1(t)− ẑ2(t))|2. (22)
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Since ũ ∈ L∞(0, T ) then there exists a constant M̃ > 0 such that |ũ(t)| 6 M̃ for a.e.
t ∈ (0, T ). From this, taking into account the Cauchy inequality, for a.e. t ∈ (0, T ) we
obtain ∣∣ũ(t)

(
z̃1(t)− z̃2(t), ẑ1(t)− ẑ2(t)

)∣∣ 6 M̃ |z̃1(t)− z̃2(t)||ẑ1(t)− ẑ2(t)|

6
εM̃

2
|ẑ1(t)− ẑ2(t)|2 +

M̃

2ε
|z̃1(t)− z̃2(t)|2, (23)

where ε > 0 is arbitrary.
From (21), according to (22) and (23), we have

|ẑ1(τ)− ẑ2(τ)|2+(2K2 − εM̃)

∫ τ

0

|ẑ1(t)− ẑ2(t)|2 dt 6 M̃ε−1
∫ τ

0

|z̃1(t)− z̃2(t)|2 dt. (24)

Choosing ε > 0 such that 2K2 − εM̃ > 0, from (24) we obtain

|ẑ1(τ)− ẑ2(τ)|2 6 C2

∫ τ

0

|z̃1(t)− z̃2(t)|2 dt, τ ∈ (0, T ], (25)

where C2 > 0 is a constant.
After multiplying inequality (25) by e−2ατ we obtain

e−2ατ |ẑ1(τ)− ẑ2(τ)|2 6 C2e
−2ατ

∫ τ

0

e2αte−2αt|z̃1(t)− z̃2(t)|2 dt

6 C2e
−2ατ max

t∈[0,T ]

[
e−2αt|z̃1(t)− z̃2(t)|2

] ∫ τ

0

e2αt dt

=
C2

2α
(1− e−2ατ )

(
ρ(z̃1, z̃2)

)2
6
C2

2α

(
ρ(z̃1, z̃2)

)2
, τ ∈ [0, T ]. (26)

From (26) it easily follows that

ρ(ẑ1, ẑ2) 6
√
C2/(2α)ρ(z̃1, z̃2).

From this, choosing α > 0 such that the inequality C2/(2α) < 1 holds, we obtain that
the operator A is a contraction. Hence, we may apply the Banach �xed-point theorem
(the contraction mapping principle) [11, Theorem 5.7] and deduce that there exists a
unique function z ∈ C([0, T ];H) such that Az = z. Thus, Proposition 7 is proved. �

Now let us prove Theorem 1.

Proof. The uniqueness of the solution. Assume the opposite. Let y1, y2 be two solutions of
the problem P(Φ, u, f, γ). Then for every i ∈ {1, 2} there exists a function gi ∈ L2

loc(S;V ′)
such that for a.e. t ∈ S we have gi(t) ∈ ∂Φ

(
yi(t)

)
and

y′i(t) + gi(t) + u(t)yi(t) = f(t) in V ′. (27)

Denote z := y1 − y2. From equalities (27) for a.e. t ∈ S we obtain

z′(t) + g1(t)− g2(t) + u(t)z(t) = 0 in V ′. (28)

From (10) it follows that the following condition holds

e−2γt|z(t)|2 → 0 as t→ −∞. (29)
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Multiplying equality (28) for almost every t ∈ S on z(t), we obtain

(z′(t), z(t)) + (g1(t)− g2(t), y1(t)− y2(t)) + u(t)|z(t)|2 = 0. (30)

According to equality (5), condition (A4) and the fact that gi(t) ∈ ∂Φ(yi(t)) (i = 1, 2)
for a.e. t ∈ S, we obtain the di�erential inequality

1

2

d|z(t)|2

dt
+ (K2 + m̃)|z(t)|2 6 0 for a.e. t ∈ S. (31)

Let us take arbitrary numbers τ1, τ2 ∈ S (τ1 < τ2). Multiplying inequality (31) by
e−2γt, integrating from τ1 to τ2 and using the integration-by-parts formula, we obtain

1

2
e−2γt|z(t)|2

∣∣∣τ2
τ1

+ (K2 + m̃+ γ)

τ2∫
τ1

e−2γt|z(t)|2 dt 6 0. (32)

Since condition (11) hold, then from (32) we obtain

e−2γτ2 |z(τ2)|2 6 e−2γτ1 |z(τ1)|2. (33)

In (33) we �x τ2 and pass to the limit as τ1 → −∞. According to condition (29) we
obtain the equality e−2γτ2 |z(τ2)|2 = 0. Since τ2 ∈ S is an arbitrary number, we have
z(t) = 0 for a. e. t ∈ S, that is, y1(t) = y2(t) for a. e. t ∈ S. The resulting contradiction
proves the uniqueness of the solution of problem (15).

The existence of the solution. We divide the proof into three steps.
Step 1 (Solution approximation). We construct a sequence of functions which, in

some sense, approximate the solution of the problem P(Φ, u, f, γ).

Let f̂k(t) := f(t) for t ∈ Sk := [−k, 0], where k ∈ N. For each k ∈ N let us consider
the problem of �nding a function ŷk ∈ H1(Sk;H) :=

{
z ∈ L2(Sk;H)

∣∣ z′ ∈ L2(Sk;H)
}

such that for a.e. t ∈ Sk we have ŷk(t) ∈ D(∂ΦH) and

ŷ ′k(t) + ∂ΦH
(
ŷk(t)

)
+ u(t)ŷk(t) 3 f̂k(t) in H, (34a)

ŷk(−k) = 0. (34b)

Variational inequality (34a) means that there exists a function ĝk ∈ L2(Sk;H) such that
for a.e. t ∈ Sk we have ĝk(t) ∈ ∂ΦH(ûk(t)) and

ŷ ′k(t) + ĝk(t) + u(t)ŷk(t) = f̂k(t) in H. (35)

Note that D(∂ΦH) ⊂ dom(ΦH), therefore ŷk(t) ∈ V for a.e. t ∈ Sk. According to
the de�nition of the subdi�erential of a functional and the fact that ĝk(t) ∈ ∂Φ(ŷ(t)) for
a.e. t ∈ Sk, we have

Φ(0) > Φ(ŷk(t)) + (ĝk(t), 0− ŷk(t)) for a.e. t ∈ Sk.
Using this and condition (A3) we obtain

(ĝk(t), ŷk(t)) > Φ(ŷk(t)) > K1‖ŷk(t)‖2 for a.e. t ∈ Sk. (36)

Since the left side of this chain of inequalities belongs to L1(Sk), then ŷk belongs to
L2(Sk;V ).

For each k ∈ N we extend the functions f̂k, ŷk and ĝk by zero over the entire interval
S, and denote these extensions by fk, yk and gk respectively. From the above it follows
that for each k ∈ N the function yk belongs to L2(S;V ), its derivative y′k belongs to
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L2(S;H) and for a.e. t ∈ S the inclusion gk(t) ∈ ∂ΦH
(
yk(t)

)
and the following equality

hold (see (35)
y′k + gk(t) + u(t)yk = fk(t) in H. (37)

In order to show the convergence of {yk}+∞k=1 to the solution of the problem
P(Φ, u, f, γ) we need some estimates of the functions yk (k ∈ N).

Step 2 (Estimates of approximating solutions).
Multiplying identity (37), for a.e. t ∈ S, by e−2γtyk(t) and integrating if from τ1 to

τ2 (τ1, τ2 ∈ S are arbitrary numbers, τ1 < τ2), we obtain∫ τ2

τ1

e−2γt(y′k(t), yk(t)) dt+

∫ τ2

τ1

e−2γt(gk(t), yk(t)) dt

+

∫ τ2

τ1

e−2γtu(t)|yk(t)|2 dt =

∫ τ2

τ1

e−2γt(fk(t), yk(t)) dt.

From this, taking into account (5) and using the integration-by-parts formula, we obtain

e−2γt|yk(t)|2
∣∣∣τ2
τ1

+ 2γ

∫ τ2

τ1

e−2γt|yk(t)|2 dt+ 2

∫ τ2

τ1

e−2γt(gk(t), yk(t)) dt (38)

+ 2

∫ τ2

τ1

e−2γtu(t)|yk(t)|2 dt = 2

∫ τ2

τ1

e−2γt(fk(t), yk(t)) dt.

According to the de�nition of yk and (36), we obtain

(gk(t), yk(t)) > Φ
(
yk(t)

)
> K1‖yk(t)‖2 for a.e. t ∈ S. (39)

Let us estimate the third term on the left-hand side of inequality (38). From (8) and (39)
for arbitrary δ ∈ (0, 1), we obtain

2

∫ τ2

τ1

e−2γt(gk(t), yk(t)) dt = 2(δ + (1− δ))
∫ τ2

τ1

e−2γt(gk(t), yk(t)) dt

> 2δK2

∫ τ2

τ1

e−2γt|yk(t)|2 dt+ (1− δ)K1

∫ τ2

τ1

e−2γt‖yk(t)‖2 dt

+(1− δ)
∫ τ2

τ1

e−2γtΦ
(
yk(t)

)
dt. (40)

Using the Cauchy inequality we estimate the right-hand side of (38), as follows

2

∫ τ2

τ1

e−2γt(fk(t), yk(t)) dt 6 ε
∫ τ2

τ1

e−2γt|yk(t)|2 dt+ ε−1
∫ τ2

τ1

e−2γt|fk(t)|2 dt, (41)

where ε > 0 is arbitrary.
From (38), taking into account (40), (41) and the notation m̃ := inf

t∈S
u(t), we obtain

e−2γt|yk(t)|2
∣∣∣τ2
τ1

+ [2(δK2 + m̃+ γ)− ε]
∫ τ2

τ1

e−2γt|yk(t)|2 dt

+ (1− δ)K1

∫ τ2

τ1

e−2γt‖yk(t)‖2 dt+ (1− δ)
∫ τ2

τ1

e−2γtΦ
(
yk(t)

)
dt

6 ε−1
∫ τ2

τ1

e−2γt|fk(t)|2 dt, δ ∈ (0, 1), ε > 0. (42)
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Since K1 > 0, K2+m̃+γ > 0 and δ ∈ (0, 1), ε > 0 are arbitrary, then we �rst choose
δ such that δK2 +m+ γ > 0, and then we choose ε such that 2(δK2 +m+ γ)− ε > 0.
As a result we obtain the estimate

e−2γt|yk(t)|2
∣∣∣τ2
τ1

+

∫ τ2

τ1

e−2γt‖yk(t)‖2 dt+

∫ τ2

τ1

e−2γtΦ
(
yk(t)

)
dt 6 C3

∫ τ2

τ1

e−2γt|fk(t)|2 dt,

(43)

where C3 is a positive constant depending on K1,K2, m̃ and γ only.
We take τ2 = τ , when τ ∈ S is arbitrary, and pass to the limit in (43) as τ1 → −∞.

Taking into account (F) and the de�nition of yk and fk, we obtain

e−2γτ |yk(τ)|2 +

∫ τ

−∞
e−2γt‖yk(t)‖2 dt

+

∫ τ

−∞
e−2γtΦ

(
yk(t)

)
dt 6 C3

∫ τ

−∞
e−2γt|fk(t)|2 dt, τ ∈ S. (44)

Since τ ∈ S is arbitrary, from (44) it follows that

sequence {e−γ·yk(·)}+∞k=1 is bounded in L∞(S;H) and in L2(S;V ), (45)

sequence
{
e−2γ·Φ

(
yk(·)

)}+∞
k=1

is bounded in L1(S). (46)

Now let us �nd estimates of y′k(t). For almost every t ∈ S we multiply equality (37)
by e−2γty′k(t) and integrate the resulting equality from τ1 to τ2 (τ1, τ2 ∈ S are arbitrary
numbers, τ1 < τ2). Then we obtain∫ τ2

τ1

e−2γt|y′k(t)|2 dt+

∫ τ2

τ1

e−2γt(gk(t), y′k(t)) dt

=

∫ τ2

τ1

e−2γt(fk(t), y′k(t)) dt−
∫ τ2

τ1

e−2γtu(t)(yk(t), y′k(t)) dt. (47)

From (47) using the Cauchy-Schwarz inequality and the fact that sup
t∈S

u(t) =: M̃ <∞ we

obtain ∫ τ2

τ1

e−2γt|y′k(t)|2 dt+

∫ τ2

τ1

e−2γt(gk(t), y′k(t)) dt

6 M̃
∫ τ2

τ1

e−2γt|yk(t)||y′k(t)| dt+

∫ τ2

τ1

e−2γt|fk(t)||y′k(t)| dt. (48)

Since gk ∈ L2(τ1, τ2;H), Statement 5 implies that the function ΦH
(
yk(·)

)
is

absolutely continuous on [τ1, τ2] and

d

dt
ΦH
(
yk(t)

)
= (gk(t), y′k(t)) for a.e. t ∈ (τ1, τ2). (49)

Taking into account (49), we estimate the second term on the left side of (48) as follows∫ τ2

τ1

e−2γt(gk(t), y′k(t)) dt =

∫ τ2

τ1

e−2γt
d

dt
ΦH
(
yk(t)

)
dt

= e−2γtΦH
(
yk(t)

)∣∣∣τ2
τ1

+ 2γ

∫ τ2

τ1

e−2γtΦH
(
yk(t)

)
dt. (50)
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Using the Cauchy inequality to the right-hand side of (48) and estimate (44), we
obtain

M̃

∫ τ2

τ1

e−2γt|yk(t)||y′k(t)| dt+

∫ τ2

τ1

e−2γt|fk(t)||y′k(t)| dt

6 M̃2

∫ τ2

τ1

e−2γt|yk(t)|2 dt+
1

4

∫ τ2

τ1

e−2γt|y′k(t)|2 dt

+

∫ τ2

τ1

e−2γt|fk(t)|2 dt+
1

4

∫ τ2

τ1

e−2γt|y′k(t)|2 dt

6 M̃2

∫ τ2

τ1

e−2γt|yk(t)|2 dt+
1

2

∫ τ2

τ1

e−2γt|y′k(t)|2 dt+

∫ τ2

τ1

e−2γt|fk(t)|2 dt. (51)

From (48), taking into account (50), (51), we obtain

1

2

∫ τ2

τ1

e−2γt|y′k(t)|2 dt+ e−2γtΦH
(
yk(t)

)∣∣∣τ2
τ1

6 M̃2

∫ τ2

τ1

e−2γt|yk(t)|2 dt+ 2|γ|
∫ τ2

τ1

e−2γtΦH
(
yk(t)

)
dt+

∫ τ2

τ1

e−2γt|fk(t)|2 dt. (52)

Taking into account the de�nitions of yk and fk, condition (A3), (1) and (44), we pass
to the limit as τ1 → −∞ in (52). As a result, taking τ2 = τ ∈ S, we obtain

e−2γτΦH
(
yk(τ)

)
+

∫ τ

−∞
e−2γt|y′k(t)|2 dt 6 C4

∫ τ

−∞
e−2γt|fk(t)|2 dt, (53)

where C4 is a positive constant depending on K1, γ, λ and m̃, M̃ only.
According to the de�nitions of the functional ΦH and the function fk, and condition

(A3) (recall that yk(t) ∈ V for a.e. t ∈ S), we obtain

e−2γτ‖yk(τ)‖2 +

∫ τ

−∞
e−2γt|y′k(t)|2 dt 6 C5

∫ τ

−∞
e−2γt|fk(t)|2 dt, (54)

where C5 > 0 is a constant depending on K1, γ, λ and m̃, M̃ only.
Estimate (54) and the de�nition of fk imply that

the sequence
{
yk
}+∞
k=1

is bounded in L∞γ (S;V ), (55)

the sequence
{
y′k
}+∞
k=1

is bounded in L2
γ(S;H). (56)

From (37), (44), (56), (F) and the de�nition of fk we obtain

the sequence {gk}+∞k=1 is bounded in L2
γ(S;H). (57)

Step 3 (Passing to the limit). Since V and H are Hilbert spaces, and V embeds
in H with compact injection, then (45), (55)�(57) and Statement 4 imply that there
exist functions y ∈ L∞γ (S;V ) ∩ L2

γ(S;V ) ∩ H1
γ(S;H) ⊂ C(S;H), g ∈ L2

γ(S;H) and a
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subsequence of sequence {yk, gk}+∞k=1 (still denoted by {yk, gk}+∞k=1) such that

yk −→
k→∞

y ∗-weakly in L∞loc(S;V ), weakly in L2
γ(S;V ) and weakly in H1

γ(S;H), (58)

yk −→
k→∞

y in C(S;H), (59)

gk −→
k→∞

g weakly in L2
γ(S;H). (60)

Note that (58) and (60) imply

yk −→
k→∞

y, y′k −→
k→∞

y′, gk −→
k→∞

g weakly in L2
loc

(S;H). (61)

Let v ∈ H,ϕ ∈ D(−∞, 0) be arbitrary. For a.e. t ∈ S we multiply equality (37) by
v, and then we multiply the obtained equality by ϕ and integrate in t on S. As a result,
we obtain the equality∫

S

(y′k(t), vϕ(t)) dt+

∫
S

(gk(t), vϕ(t)) dt+

∫
S

u(t)(yk(t), vϕ(t)) dt

=

∫
S

(fk(t), vϕ(t)) dt, k ∈ N. (62)

We pass to the limit in (62) as k → ∞, taking into account (61) and convergence
{fk} to f in L2

loc(S;H). As a result, since v ∈ H,ϕ ∈ D(−∞, 0) are arbitrary, for a.e.
t ∈ S, we obtain the equality

y′(t) + g(t) + u(t)y(t) = f(t) in H.

In order to complete the proof of the theorem it remains only to show that y(t) ∈
D(∂Φ) and g(t) ∈ ∂Φ

(
y(t)

)
for a.e. t ∈ S.

Let k ∈ N be an arbitrary number. Since gk(t) ∈ ∂ΦH
(
yk(t)

)
for every t ∈ S \ S̃k,

where S̃k ⊂ S is a set of measure zero, applying the monotonicity of subdi�erential ∂ΦH
we obtain that for every t ∈ S \ S̃k the following equality holds:

(gk(t)− v∗, yk(t)− v) > 0 ∀ [v, v∗] ∈ ∂ΦH . (63)

Let τ ∈ S, h > 0 be arbitrary numbers. We integrate (63) on (τ − h; τ):∫ τ

τ−h
(gk(t)− v∗, yk(t)− v) dt > 0 ∀ [v, v∗] ∈ ∂ΦH . (64)

Now according to (59) and (60) we pass to the limit in (64) as k → ∞. As a result we
obtain

06
∫ τ

τ−h
(gk(τ)−v∗, yk(t)−v) dt −→

k→∞

∫ τ

τ−h
(g(t)−v∗, y(t)−v) dt > 0 ∀ [v, v∗] ∈ ∂ΦH . (65)

The monograph [28, Theorem 2, P. 192] and (65) imply that for every [v, v∗] ∈ ∂ΦH
there exists a set R[v,v∗] ⊂ S of measure zero such that for all τ ∈ S \R[v,v∗] we have

0 6 lim
h→+0

1

h

∫ τ

τ−h

(
g(t)− v∗, y(t)− v

)
dt =

(
g(τ)− v∗, y(τ)− v

)
. (66)
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Let us show that there exists a set of measure zero R ⊂ S such that for every τ ∈ S \R
the following inequality holds(

g(τ)− v∗, y(τ)− v
)
> 0 ∀[v, v∗] ∈ ∂ΦH . (67)

Since V and H are separable spaces, there exists a countable set F ⊂ ∂ΦH , which is
dense in ∂ΦH . Let us denote R := ∪

[v,v∗]∈F
R[v,v∗]. Since the set F is countable, and

countable union of sets of measure zero is a set of measure zero, R is a set of measure
zero. Therefore, for any τ ∈ S \ R inequality (67) holds for every [v, v∗] ∈ F . Let [v̂, v̂∗]
be an arbitrary element from ∂ΦH . Since F is dense in ∂ΦH , we have the existence of
the sequence {[vl, v∗l ]}∞l=1 such that vl → v̂ in V , v∗l → v̂∗ in H and for every τ ∈ S \ R
we have

(g(τ)− v∗l , y(τ)− vl) > 0 ∀ l ∈ N. (68)

So, passing to the limit in this equality as l→∞, we get (g(τ)− v̂∗, y(τ)− v̂) > 0. Thus,
for a.e. τ ∈ S inequality (67) holds. From this, according to maximal monotonicity of
∂ΦH , we obtain that [y(t), g(t)] ∈ ∂ΦH for a.e. t ∈ S.

Estimate (12) of the solution of the problem P(Φ, u∗, f, γ) follows directly from (44),
(54), (58) and (59), and Proposition 2. From (44), (59), (12) according to (1) we have

e−2γτ |yk(τ)|2 6 C1

∫ τ

−∞
e−2γt|f(t)|2 dt.

From this we obtain that y satis�es condition (10). �

5. Proof of the main result

Proof of Theorem 2. Let {uk} be a minimizing sequence for functional J in U∂ :
J(uk) −→

k→∞
inf
u∈U∂

J(u). According to the de�nition of U∂ we obtain that

the sequence {uk}∞k=1 is bounded in L∞(S). (69)

Assume that for every k ∈ N the function yk := y(uk) is a solution of the problem
P(Φ, uk, f, γ), that is, the following variational inequality and condition at the in�nity
hold

y′k(t) + ∂Φ
(
yk(t)

)
+ uk(t)yk(t) 3 f(t), t ∈ S, (70)

lim
t→−∞

e−γt|yk(t)| = 0. (71)

According to De�nition 1 and Theorem 1, taking into account (F), for every k ∈ N we
have yk ∈ L∞γ (S;V )∩L2

γ(S;V )∩H1
γ(S;H) ⊂ C(S;H), yk(t) ∈ D(∂Φ) for a.e. t ∈ S, and

the existence of a function gk ∈ L2
γ(S;H) such that for a.e. t ∈ S, gk(t) ∈ ∂Φ(yk(t)), and

y′k(t) + gk(t) + uk(t)yk(t) = f(t) in H (72)

and condition (71) holds.
Moreover, for arbitrary k ∈ N and τ ∈ S the following estimate holds

e−2γτ‖yk(τ)‖2+

τ∫
−∞

e−2γt‖yk(t)‖2 dt+
τ∫

−∞

e−2γt|y′k(t)|2 dt 6 C1

∫ τ

−∞
e−2γt|f(t)|2 dt, (73)

where C1 is a positive constant depending on K1, K2, γ, λ and m, M only.
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Estimate (73) implies that

the sequence {e−γ·yk(·)}∞k=1 is bounded in L∞(S;V ), (74)

the sequence {yk}∞k=1 is bounded in L2
γ(S;V ), (75)

the sequence {y′k}∞k=1 is bounded in L2
γ(S;H). (76)

From (72), taking into account (69), (75), (76) we obtain that

the sequence {gk}∞k=1 is bounded in L2
γ(S;H). (77)

Since V and H are re�exive spaces, and V embeds in H densely, continuously
and compactly, then (69), (74)�(77), taking into account Statement 3, imply that there
exist a subsequence of the sequence {uk, yk, gk}∞k=1 (still denoted by {uk, yk, gk}∞k=1) and
functions u∗ ∈ U∂ , y ∈ L∞γ (S;V ) ∩ L2

γ(S;V ) ∩ H1
γ(S;H) ⊂ C(S;H) and g ∈ L2

γ(S;H)
such that

uk −→
k→∞

u∗ ∗-weakly in L∞(S), (78)

yk −→
k→∞

y ∗-weakly in L∞loc(S;V ), weakly in L2
γ(S;V ) and weakly in H1

γ(S;H), (79)

yk −→
k→∞

y in C(S;H), (80)

gk −→
k→∞

g weakly in L2
γ(S;H). (81)

Similarly, as in the proof of Theorem 1, for a.e. t ∈ S we multiply equality (72) by v, and
then multiply the resulting equality by ϕ and integrate on S, where v ∈ H,ϕ ∈ D(−∞, 0)
are arbitrary. As a result, we obtain the equality∫

S

(y′k(t), vϕ(t)) dt+

∫
S

(gk(t), vϕ(t)) dt+

∫
S

uk(t)(yk(t), vϕ(t)) dt

=

∫
S

(f(t), vϕ(t)) dt, k ∈ N. (82)

Let us show that (78) and (80) yield∫
S

uk(t)(yk(t), vϕ(t)) dt −→
k→∞

∫
S

u∗(t)(y(t), vϕ(t)) dt ∀v ∈ H, ∀ϕ ∈ D(−∞, 0). (83)

Indeed, let t1, t2 ∈ S be such that suppϕ ⊂ [t1, t2]. Then we have

∫
S

uk(t)(yk(t), vϕ(t)) dt =

t2∫
t1

uk(t)(yk(t)− y(t) + y(t), vϕ(t)) dt

=

t2∫
t1

uk(t)(y(t), vϕ(t)) dt+

t2∫
t1

uk(t)(yk(t)− y(t), vϕ(t)) dt. (84)
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From (69), (80) and the Cauchy-Schwarz inequality it follows∣∣∣ t2∫
t1

uk(t)(yk(t)−y(t), vϕ(t)) dt
∣∣∣ 6

6M
( t2∫
t1

|ϕ(t)v|2 dt
)1/2( t2∫

t1

|yk(t)− y(t)|2 dt
)1/2

−→
k→∞

0.

(85)

Since (y(·), v)ϕ(·) ∈ L1
loc(S), (78) implies

t2∫
t1

uk(t)(y(t), vϕ(t)) dt −→
k→∞

t2∫
t1

u∗(t)(y(t), vϕ(t)) dt. (86)

From (84), taking into account (85) and (86), we obtain (83).
Taking into account (79), (81) and (83) we pass to the limit in (82) as k → ∞. As

a result, for a.e. t ∈ S we obtain the equality

y′(t) + g(t) + u∗(t)y(t) = f(t) in H.

Similarly, as in the proof of Theorem 1, we show that y(t) ∈ D(∂Φ) and

g(t) ∈ ∂Φ
(
y(t)

)
for a.e. t ∈ S. From (1), (73) and (80) we have e−2γτ |y(τ)|

2

6
C1λ

−1 ∫ τ
−∞ e−2γt|f(t)|2 dt, τ ∈ S. This means that condition (10) holds. Thus, the

function y is a solution of the problem P(Φ, u∗, f, γ).
It remains to show that u∗ is a minimizing element of the functional J . Indeed, since

the functional G is lower semicontinuous in C(S;H), then (80) implies that

lim
k→∞

G(yk) > G(y). (87)

Also (78) and Proposition 2 yield

lim
k→∞

‖uk‖U > ‖u∗‖U . (88)

From (14), (87), (88) we obtain that inf
u∈U∂

J(u) = lim
k→∞

J(uk) > lim
k→∞

G(yk)+

µ lim
k→∞

‖uk‖U > J(u∗). Thus, we have shown that u∗ is a solution of problem (15), i.e.,

the optimal control. �
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