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An optimal control problem for systems described by Fourier problem
(problem without initial conditions) for weakly nonlinear evolution variational
inequalities is studied. A control function occurs in the coefficients of the vari-
ational inequality which describes the state of control system. Different types
of observation are considered. The existence of the optimal control is proved.
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1. INTRODUCTION

Optimal control problems for systems governed by variational inequalities are quite
popular nowadays. A large number of such problems were considered in the monograph
[3] and other publications (see, e.g., [1 10l 16}, [17]).

In particular, in [I] an optimal control problem for a parabolic variational inequality
is considered. Existence and necessary conditions for the optimal control are established.

In [I6] the optimal control of parabolic variational inequalities is studied in the case
where the spatial domain is not necessarily bounded. An optimal control problem with
the control appearing in the coefficient of the leading term is investigated and a first
order optimality system in a Lagrangian framework is derived. In [I7] the author proves
an existence result for optimal control problem in coefficients of a nonlinear elliptic vari-
ational inequality using the direct method of calculus of variation and the compensated
compactness lemma.

In this paper, we study an optimal control problem for systems whose states are
described by problems without initial conditions for evolutionary variational inequalities.
A particular case of the problem for the evolution variational inequalities is a problem
for evolutionary equations. The research of the problem without initial conditions for the
evolution equations and variational inequalities were conducted in the papers [9, [13], [15]
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18, [19] 20} 22| [26] and others. In particular, R.E. Showalter [25] proved the existence of
a unique solution u € e*W12(—c0,0; H), where H is a Hilbert space, of the problem
without initial condition

u'(t) + pu(t) + A(u(t)) 2 f(t), t€(—00,0),

for every w + p > 0 and f € e Wh%(—o00,0; H), in case when A : H — 2% is
maximal monotone operator such that 0 € A(0). Moreover, if A = Oy, where ¢ :
H — (—o0,400] is proper, convex, and lower-semi-continuous functional such that
©(0) = 0 = min{e(v) : v € H}, then this problem is uniquely solvable for each p > 0,
f € L?(~00,0;H) and w = 0.

Note that the uniqueness of the solutions of such problem for linear parabolic equati-
ons and variational inequalities is possible only under some restrictions on the behavior
of solutions when ¢ — —oo. For the first time in the case of heat equation it was stri-
ctly justified by A.N. Tikhonov [27]. However, as it was shown by M.M. Bokalo [9], the
problem without initial conditions for some nonlinear parabolic equations has a unique
solution in the class of functions with arbitrary behavior when ¢ — —oo. Similar results
were also obtained for evolutionary variational inequalities in [9].

Previously, optimal control problems of evolution equations without initial conditi-
ons were studied by the authors (see., e.g., [8,[7]). But as far as we know, optimal control
problems for variational inequalities without initial conditions were not considered yet,
which serves as one of the motivations for the study of such problems.

The outline of this paper is as follows. In Section 1, we provide notations, definitions
of function spaces and auxiliary results. In Section 2, we formulate the optimal control
problem. In Section 3, we prove existence and uniqueness of the solutions of problem
without initial conditions which describe the state of control system. Furthermore, we
obtain estimates for the solutions of the state equations. Finally, the existence of the
optimal control is presented in Section 4.

2. PRELIMINARIES

Set S := (—00,0]. Let V and H be separable Hilbert spaces with the scalar products
(-, )v, (+,-) and norms ||-||, |-|, respectively. Suppose that V' C H with continuous injection
and V is dense and compact in H, i.e., the closure of V' in H coincides with H, and there
exists a constant A > 0 such that

Aol < Jlof* Vo eV, (1)

and for every bounded sequence {wy};°, in V there exist an element w € H and a
subsequence {wy, }32; of sequence {wy}32; such that wy;, — w strongly in H.
Jj—o0

Let V' and H' be the dual spaces to V and H, respectively. We suppose (after
appropriate identification of functionals), that the space H' is a subspace of V’. Identifyi-
ng (by the Riesz—Fréchet representation theorem) spaces H and H’, we obtain continuous
and dense embeddings

VcHCV. (2)

Note, that in this case (g,v)y = (g,v) for every v € V, g € H, where (-,-)y is the scalar
product for the duality V', V. Therefore, further we use the notation (-,-) instead of



OPTIMAL CONTROL IN PROBLEMS WITHOUT INITIAL CONDITIONS ...

ISSN 2078-3744. Bicank JIbpi. yr-1y. Cepis mex.-mat. 2016. Brumyck 82 77
(-,-)v. Also we use the notation || - ||« for the norm in V’. Note that
ARl < |hl* Vhe H, (3)
where A is the constant from the equality . Indeed, under we have
Ihle = sup |(ho)l < sup [h|lv] < ATVZ|A].
veV,|lv||=1 veV,|v]|=1

We introduce some spaces of functions and distributions. Let X be an arbitrary
Hilbert space with the scalar product (-,-)x and the norm || - |x. Under C(S;X) we
mean the linear space of continuous functions defined on S with values in X. We say that
Zm — Z in C(S,X) if for each t1,t2 € S (tl < tz) we have ||Z_ZmHC([t17t2];X) — 0.

m—0o0 m—o0

Let g € [1,00], ¢’ be dual to g, i.e., 1/g+ 1/¢' = 1. Denote by L2 (S;X) the linear
space of measurable functions defined on S with values in X, whose restrictions to any
segment [t1,t2] C S belong to the space L1(t1,12; X). We say that a sequence {z,,} is
bounded (respectively, strongly, weakly or -weakly convergent to z) in L{ (S; X), if for
each t1,t2 € S (t; < t2) the sequence of restrictions of {z,,} to the segment [t1,?2] is
bounded (respectively, strongly, weakly or x-weakly convergent to the restrictions of z to
this segment) in L9(tq,tq; X).

Let v € R. Put by definition

L(8:X) 1= { € Lh(8:) | [ 2 5(0) e < oc}.
s
This space is a Hilbert space with the scalar product

(f,9)r2(s:x) :/6_2”t(f(t)7g(t))x dt
S

and the corresponding norm

1/2
lzzcsy = ([ 00l d)

5
Also we introduce the space L°(S; X) := {f € L>(5; X) | esssup [e || f(t)||x] < oo}
tesS

Under D’(—o0,0;V,) we mean the space of defined on D(—o0,0) with values in V'
distributions, i.e., the space of continuous linear functionals on D(—o00,0) with values
in V| (hereafter D(—o0,0) is the space of test functions, that is, the space of infinitely
differentiable on (—o0,0) functions with compact support, equipped with corresponding
topology, and V;, is the linear space V' equipped with weak topology). It is easy to see
(using ), that the spaces L .(S; V), L2 .(S; H), L .(S; V') can be identified with the
corresponding subspaces of D'(—o0,0; V,,). This, in particular, allows us to talk about the
derivatives 2’ of the functions z from L2 (S; V) or L2 (S; H) in the sense of distributions
D'(—00,0; V) and belonging of such derivatives to LZ (S; H) or LE .(S; V).

Denote by HL_(S;H) the space of functions z € L2 _(S;H) such that 2/ €
L% (S; H). Let us define the space
WQ,IOC(S) = {Z € LIQOC(S; V) | 2 e LIZOC(S; V/)} (4)
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From known results (see., for example, [14, P. 177-179]) it follows that HL _(S;H) C
C(S;H) and Wa10c(S) C C(S; H). Moreover, for every z in W 10c(S) or in Hlloc(S;H)
function ¢ — |z(¢)|? is absolutely continuous on any segment of the ray S and the following
equality holds

%|Z(t)|2 =2(Z'(t),2(t)) forae. te€S. (5)
Denote
H)(S):={2€ L}(S;H) |2 € L}(S;H)}, veER. (6)

In this paper we use the following well-known facts.

Proposition 1 (Cauchy-Schwarz inequality [14] p. 158]). Suppose that t1, ta € R (t1 <
t2), and X is a Hilbert space with the scalar product (-,-)x. Then, if v € L?(t1,t2; X)
and w € L?(t1,t2; X), we have (w(-),v(:))x € L*(t1,t2) and

to
/t (w(t), 0(8)) x dt < [0l]z20n 1m0 1] 22 en s
1

Proposition 2 ([28, p. 173,179]). Let X be a Banach space with the norm || - || x, and
{vk}32, be the sequence of elements of X which is weakly or x-weakly convergent to v
in X. Then lim |vl[x = [v]/x.

k—o0

Proposition 3 ([2, Aubin theorem], [4, p. 393]). Suppose that ¢ > 1,7 > 1, t1,t2 €

R (t; < t2), and W, L,B are Banach spaces such that WCEL O B (here C means
compact embedding and O means continuous embedding). Then

(€ Lty to; W) | 2 € L7 (t1,t2: B)} & (Lq(tl,tg;ﬁ) N C’([tl,tg];B)). (7)

Remark 1. We understand embedding (7)) as follows: if a sequence {z,,} is bounded in the
space Li(t1,t2; W) and the sequence {z/,}meny is bounded in the space
L7 (ty1,ta; B), then there exist a function z € C([t1, ta]; B)NL%(t1, t2; £) and a subsequence
{zm,;} of the sequence {z,} such that z,, jjo z in C([t1,t2]; B) and strongly in

Lq(thtg;ﬁ).

Proposition 4. If a sequence {z,,} is bounded in the space L}, (S; V) and the sequence

{z],} is bounded in the space L2 (S;H), then there exist a function z € L% _(S;V),

2" € L} (S;H) and a subsequence {zp,} of the sequence {zn,} such that z,, jjoz in

C(S; H) and weakly in L}, (S;V), and 2, = 2 weakly in L (S; H).

Proof. Proposition B when ¢ =2, r =2, W =V, L = B = H yields, for every t1,t; €
S (t1 < t2) from the sequence of restrictions of the elements of {z,,} to the segment
[t1,t2] one can choose subsequence which is convergent in C([t1,¢2]; H) and weakly in
L?(t1,t2; V), and the sequence of derivatives of elements of this subsequence is weakly
convergent in L?(t1,to; H). For each k € N we choose a subsequence {Zm(k.g) 1521 of
a given sequence, which is convergent in C([—k,0]; H) and weakly in L?(—k,0;V) to
some function 2 € C([—k,0]; H)NL?(—k,0; V), and the sequence {2k, F521 1s weakly
convergent to the derivative z}, in L?(—Fk,0; H). Making this choice we ensure that the



OPTIMAL CONTROL IN PROBLEMS WITHOUT INITIAL CONDITIONS ...
ISSN 2078-3744. Bicuuk JIbBiB. yu-Ty. Cepis mex.-mat. 2016. Bumyck 82 79

sequence {zm (k41,5 721 be a subsequence of the sequence {21 j)}72;. Now, according
to the diagonal process we select the desired subsequence as {z,(; j)}721, and we define
the function z as follows: for each k € N we take z(t) := Z(t) for t € (=k,—k+1]. O

Let ® : V — (—o0, +00] be a proper functional, which satisfies the conditions:
(A1) @(av+ (1 - a)w)< a®(v) + (1 - a)®(w) Yv,weV, Vae0,1],

i.e., the functional ® is converz,
(Az): v v inV = lim ®(vx) > ®(v),
—00

k—o0
i.e., the functional ® is lower semicontinuous.

Denote by dom(®) :={v € V: ®(v) < +oo} the effective domain of the functional .

Recall that the subdifferential of a functional ® is a mapping 0P : V — 2V’ defined
as follows

Ob(v) = {v* e V' | ®(w) = ®() + (v, w—v) YweV}, veV,
and the domain of the subdifferential 0P is the set D(0®) := {v € V| 9P(v) # &}. We
identify the subdifferential & with its graph assuming that [v,v*] € 0® if and only if
v* € 0P(v), i.e., 0P = {[v,v*] | v € D(OP), v* € OP(v))}. Rockafellar in |23 Theorem A]
proves that the subdifferential 0® is a mazimal monotone operator, that is,
(v] —v3,v1 —v2) 20V [vg,0]], [v2,v5] € 0D
and for every element [vq,vf] € V x V' we have the implication
(v —v3,v1 —v2) 20 V[vg,v3] €0P = [v1,v]] € 9D.
Additionally, assume that the following conditions hold:
(As): there exist constant Ky > 0 such that
®(v) = Ki||v]|* Vv e dom(d);
moreover, $(0) = 0;
(A4): there exists a constant Ko > 0 such that
(vF — V3,01 — 1) = Kalvy —va|? VY [v1,0]], [va,v}] € 0D,
Remark 2. Condition (Asz) implies that ®(v) > ®(0)+(0,v—0) Vv € V, hence 0 € 99(0).
From this and condition (.44) we have
(v*,v) = Ka|v|? V[v,v*] € 0. (8)
Let us consider the evolutionary variational inequality

Y () +02(y(t) +u(t)y(t) > f(t), teS, (9)
where f: S — V' and v : S — R are given measurable functions.

Definition 1. Let conditions (Ay), (A2) hold and v € L$.(S), f € L (S;V’). A
function y is called a solution of variational inequality @D, if it satisfies the following
conditions:

1) y € Wa0c(5);

2) y(t) € D(O®) for a.e. t € S;
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3) there exists a function g € L2 (S;V’) such that for a.e. t € S we have g(t) €
0P (y(t)) and

y'(t) +g(t) +ut)y(t) = f(t) inV".
For variational inequality @D consider the problem: find its solution which satisfies
the condition
Jim e ()] =0, (10)

where v € R is given.

The problem of finding a solution of variational inequality @D for given @, u, f,
satisfying the condition for given ~, is called the problem without initial conditions
for the evolution variational inequality @D or, in short, the problem P(®,u, f,v), and
the function y is called its solution.

Remark 3. The problem P(®, u, f,~) can be replaced by the following problem. Let K be
a convex and closed set in V, A: V — V'’ be a monotone, bounded and semi-continuous
operator such that (A(v),v) = Ki|v||? Vv € V, where K; = const > 0. The problem is
to find a function y € W 10.(5), satistying the condition and for a.e. t € S

y(t) € K and (¥ (t) + Ay(t) + u(®)y(t),v —y(t)) = (f(t),v —y(t)) VveK.
Theorem 1. Let conditions (Ay) — (A4) hold. Suppose that

(F): —oco<m:= esésibpfu(t) Sesssupu(t) = M < +o0, f€ L2(S; H),
€ tes

where v € R is a constant which satisfies the inequality
Ko+m—+~v>0. (11)

Then the problem P(®,u, f,v) has a unique solution, it belongs to the space
L°(S; V)N L2(S; V) N H)(S; H) and satisfies the estimate:

T T

e y(r)|? + / ey ()2 dt + / ey (1)2 di
<G / eI f(B)2dt, TeS (12)

where C is a positive constant which depends on K1, Ks, v, A and m, M only.

The proof of this theorem is given in Section 3.

3. STATEMENT OF THE MAIN PROBLEM AND RESULTS
Let U be a closed linear subspace of L*°(.S), for example, U := L*°(S) or U := {u €
L>(S) | u(t) =0 for a.e. t € S\ [t*,0]}, where t* < 0 is arbitrary fixed. Assume that U

is the space of controls and for given constants m, M € R the set Uy := {u eU ’ m <

u(t) < M forae te S} is the set of admissible controls.

We assume that the state of the investigated evolutionary system y(u) = y(-;u) for
a given control u € Uy is described by a solution of a problem P(®,u, f,~), when the
following condition holds:
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(P) @ satisfies conditions (A1) — (A4), f € L2(S; H) and
K2+m+'y>0. (13)

From Theorem [1| we infer that there exists a unique function y(u) = y(t;u), t € S
which is the solution of problem P(®,u, f,v), and this function belongs to the space
oo ( Q. 2(q. .
LX(S;V)NL2(S; V)N HI(S; H).
Let G: C(S; H) — R be a functional which satisfies condition:

(G) G is lower semi-continuous in C'(S; H) and, moreover, ér(lg i G(z) > —o0.
ze H

We assume that the cost functional J : U — R has the form
J(u) == Gy(u) + pllullf, wel, (14)
where 1 > 0 is a constant.

We consider the following optimal control problem: find a control u* € Uy such
that

J(u*) = uienli; J(u). (15)

We briefly call this problem , and its solutions will be called the optimal controls.
The main result of this paper is the following theorem.

Theorem 2. Let conditions (P) and (G) hold. Then problem has a solution.

The proof of this theorem is given in Section 4.

4. WELL-POSEDNESS OF THE PROBLEM WITHOUT INITIAL CONDITIONS FOR WEAKLY
NONLINEAR VARIATIONAL INEQUALITY

We now turn to the question of existence and uniqueness of the solution of the
problem P(®, u, f,~).

First, we define the functional &y : H — Ry by the rule: &y (v) := P(v), if
v € V, and ®p(v) := +oo otherwise. Note that conditions (A;), (Az2), Lemma IV.5.2
and Proposition IV.5.2 of the monograph [24] imply that ® g is proper, convex, and lower-
semi-continuous functional on H, dom(®y) = dom(®) C V and 0@y = 9P N (V x H),
where 0@y : H — 2 is the subdifferential of the functional ®;. Moreover, condition
(A3) yields 0 € 9P (0).

Proposition 5 ([24, Lemma IV.4.3]). Assume that z € H(a,b; H) (—00o < a < b <
+00), and there exists g € L?(a,b; H) such that g(t) € 0® (2(t)) for a.e. t € (a,b). Then
the function ®y (z(-)) is absolutely continuous on the interval |a,b] and for any function
h:[a,b] — H such that h(t) € 0Py (2(t)) the following equality holds

d

@(I)H (2(t)) = (h(t),2'(t)) for a.e. t € (a,b).

Proposition 6 (12 Proposition 3.12|, [24, Proposition IV.5.2]). Suppose that T > 0,
f € L*0,T;H) and zy € dom(®). Then there exists a unique function z € H*(0,T; H)
such that z(0) = zo and for a.e. t € (0,T) we have z(t) € D(0®y) and

Z'(t)+ 0Py (2(t)) > f(t) in H. (16)
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Proposition 7. Suppose that T > 0, f~e L2(0,T; H),u € L*>(0,T) and zy € dom(®).
Then there exists a unique function z € H'(0,T; H) such that z(0) = 2o and for a.e.
t € (0,7) we have z(t) € D(0®y) and

2 (t) + 0Py (2(t)) +a(t)2(t) > f(t) in H. (17)
Proof. Let o > 0 be an arbitrary fixed number and let

p(z1, 22) = tgﬁ’:ﬁ] [eiat|zl(t) - 22(75)”7 21,29 € C([0,T]; H),

be a metric on C([0,T]; H). It is obvious that the space C(]0,T]; H) with this metric
is complete. Now let us consider an operator A : C([0,T); H) — C([0,T]; H) defined as
follows: to any given function z € C([0,T]; H), it assigns a function z € H*(0,T; H) C
C([0,T]; H) such that z(0) = zp and for a.e. t € (0,T) the following inclusions hold:
z(t) € D(®y) and

() + 00y (2(t) 5 f(t) —u(t)Z(t) in H. (18)
Clearly, variational inequality coincides with variational inequality after repla-
cing ]7 by f, uz, thus using Proposition |§| we get that the operator A is well-defined.
Let us show that the operator A is a contraction. Indeed, let z7, zo be arbitrary function
from C([0,T]; H) and 2 := Az, zo = AZ3. According to there exist functions g
and go from L?(0,T; H) such that for every k € {1,2} and for a.e. t € (0,T) we have
gk(t) € 0Py (Zx(t)) and

2, (1) + gk (t) = f(t) — u(t)Zk(t), (19)
while 2 (0) = 2o.
Subtracting identity with k£ = 2 from identity with k& = 1, and, for a.e.
t € (0,7), multiplying the obtained identity by 21 (t) — 22(t), we get
((Z(t) = 22(1)), 21 (t) — 22(1)) + (G1(t) — G2(1), Z1(t) — Z2(1))
= —u(t)(z1(t) — 22(t), z1(t) — 22(t)) for a.e. t€ (0,7),
z1(0) — z2(0) = 0. (20)

We integrate equality by ¢ from 0 to 7 € (0,7}, taking into account that for a.e.
t € (0,7) we have

~ ~ ~ ~ 1d . ~
((ZL() = 22(0)), 21(t) = 22(8) = 5 — 21 (t) — 2 (1)
As a result we get the equality

1

350 - 20F + [ @O - 50,50 - 20)d

_ /0 u(t)(ZL(t) — Z2(t), 21 (t) — Za(t)) dt. (21)

Taking into account condition (A4), for a.e. t € (0,T") we have the inequality

(G1(t) = G2(8), 21(1) — 22(1)) > Ka|Z1(t) — 22(1)) . (22)
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Since u € L*°(0,T) then there exists a constant M > 0 such that [a(t)| < M for a.e.
t € (0,7). From this, taking into account the Cauchy inequality, for a.e. t € (0,T) we
obtain

(1) (21(1) = (), 21(1) — 22(0) | < MIZ () — Z(8)[[20(1) — 22(0)]

7 i o
< 5 1a) =20 + 12 0) - 201 (23)

where € > 0 is arbitrary.

From , according to and , we have
131(7) — Ba(r) P+ (2K, — £A) /0 31(t) — Ba(0)[2 dt < M /OT B(8) — B (0) 2 db. (24)
Choosing ¢ > 0 such that 2K, — eM > 0, from we obtain
121(7) — Z2(7) > < Oy /OT |Z1(t) — Z2(t)|? dt, 7€ (0,T], (25)

where C > 0 is a constant.
After multiplying inequality by e~2%7 we obtain

-
e 29|21 (1) — Za(T) > < C’ge_%”/ e2te™20% 71 (1) — Zo(t))* dt
0

gc —2aTt —2at |y ) — o (t 2 / 2atdt
2e max [e72*Z1(t) — Z2(1) ] €
= e B) < 2 (1 R) T T (20
From it easily follows that
p(z1,22) < V/C2/(20)p(Z1, 22).
From this, choosing o > 0 such that the inequality Cs/(2c) < 1 holds, we obtain that
the operator A is a contraction. Hence, we may apply the Banach fixed-point theorem

(the contraction mapping principle) [11, Theorem 5.7] and deduce that there exists a
unique function z € C([0,T); H) such that Az = z. Thus, Proposition [7|is proved. O

Now let us prove Theorem

Proof. The uniqueness of the solution. Assume the opposite. Let 41, y> be two solutions of
the problem P(®, u, f,~). Then for every i € {1,2} there exists a function g; € L2 _(S; V')
such that for a.e. t € S we have g;(t) € 9% (y;(t)) and

Yi(t) + gi(t) +u(t)yi(t) = f(t) in V" (27)
Denote z := y; — yo. From equalities for a.e. t € S we obtain
2'(t) + g1(t) — g2(t) +u(t)z(t) =0 in V' (28)

From it follows that the following condition holds

6727t|2(t)‘2 —0 as t— —oo. (29)
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Multiplying equality for almost every t € S on z(t), we obtain

(2'(1), 2(t) + (91(t) — g2(), y1 () — ya(t)) + u(®)|2(1)]> = 0.
According to equality (5)), condition (A4) and the fact that g;(t) € 0®(y;(t)) (i = 1,2)
for a.e. t € S, we obtain the differential inequality
Ld|z(t)?
2 dt
Let us take arbitrary numbers 71,79 € S (11 < 72). Multiplying inequality by

e~ 27t integrating from 7, to 7> and using the integration-by-parts formula, we obtain

+ (Ko +m)|z(t)]> <0 forae. tcb. (31)

+ (K2+77L+7)/e_2’”|z(t)|2dt <. (32)

T1

L o 2|™
— t
L ()

T1

Since condition hold, then from we obtain
e P 2(n) P < e ()] (33)

In we fix 75 and pass to the limit as ;1 — —o0. According to condition we
obtain the equality e=2772|z(72)|? = 0. Since 75 € S is an arbitrary number, we have
z(t) =0 for a. e. t € S, that is, y1(t) = y2(¢) for a. e. t € S. The resulting contradiction
proves the uniqueness of the solution of problem .

The existence of the solution. We divide the proof into three steps.
Step 1 (Solution approzimation). We construct a sequence of functions which, in
some sense, approximate the solution of the problem P(®,u, f,~).

Let fk(t) = f(¢t) for t € Sk := [k, 0], where k € N. For each k € N let us consider
the problem of finding a function 7, € H'(Sk; H) := {z € L*(Sk; H) | 2’ € L*(Sk; H)}
such that for a.e. t € Sy we have 7 (t) € D(0®p) and
U (t) + 0% g (Uk(t)) + w(t)yu(t) 2 fr(t) in H, (34a)
uk(—k) = 0. (34b)
Variational inequality ) means that there exists a function gy € L?(Sy; H) such that
for a.e. t € Sy, we have gi(t) € 0Py (ux(t)) and

Ur(t) + Gi(t) + u()u(t) = fu(t) in H. (35)
Note that D(0®p) C dom(®y), therefore gy (t) € V for a.e. t € S. According to
the definition of the subdifferential of a functional and the fact that g (¢) € 0P (y(t)) for
a.e. t € Si, we have
D(0) = P(Yr(t)) + (9x(¢),0 — gi(t)) for ae. € Sk.
Using this and condition (Aj3) we obtain
(x(8), Tk () = @(Fi(1)) > K1llgu(t)|* for ace. t € S (36)
Since the left side of this chain of inequalities belongs to L'(Sy), then 7 belongs to
L2(Sy; V).
For each k € N we extend the functions fx, yx and g by zero over the entire interval

S, and denote these extensions by fx,yr and gi respectively. From the above it follows
that for each k € N the function yj belongs to L?(S;V), its derivative y}, belongs to
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L?(S; H) and for a.e. t € S the inclusion gi(t) € 0%y (yx(t)) and the following equality
hold (see (35))
Y + () +ut)yr = fr(t) in H. (37)
In order to show the convergence of {yx}/>; to the solution of the problem
P(®,u, f,v) we need some estimates of the functions y; (k € N).

Step 2 (Estimates of approzimating solutions).
Multiplying identity (37), for a.e. t € S, by e~?"'y,(t) and integrating if from 71 to
79 (11,72 € S are arbitrary numbers, 71 < 72), we obtain

T2

[ e @ as [ e o0, m)

T1 T1

+ /T2 e u(t)|yx(t)|* dt = /” eI (fu(t), yx(t)) dt.

1 T1

From this, taking into account and using the integration-by-parts formula, we obtain

ey ()]

T2

Ty / P ()] dt + 2 / T (gu(t)ye() dt (38)

T1 T1

T2

+2 / S e ()t di = 2 / e (fi (1), yu (1)) db.

1 T1

According to the definition of y; and (B6), we obtain

(908 9e(8) > B (1) > K llge(0)]2 for ae. t € S. (39)

Let us estimate the third term on the left-hand side of inequality . From and
for arbitrary ¢ € (0,1), we obtain

T2

2 [Tt a0 de =26+ (1= 0) [ e 0, uele)

1 T1
T2

T2
>25K2/ 6*27t|yk(t)|2dt+(1—§)K1/ ey ()| dt

1 T1

+(1-95) / Yoty v) dt. (40)

1

Using the Cauchy inequality we estimate the right-hand side of (8], as follows

2 | P e 1), 1)) dit < € [ ertmopase | '

1 T1 T1

T2

LR 0P (41)

where € > 0 is arbitrary.
From , taking into account , and the notation m := gngu(t), we obtain
€

T2

20K+ 47) — o] / 2y ()2 dt

T1

2t 2|™
ey (t)]

T1

T2

Ha=aF: [T P -0 [ e () a

1 T1

< 5*1/ e fu(®)*dt, §€(0,1), € > 0. (42)

1
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Since K1 > 0, Ko+m+~ > 0and 6 € (0,1),e > 0 are arbitrary, then we first choose
0 such that 6K5 +m + v > 0, and then we choose ¢ such that 2(6Ks +m + ) —e > 0.
As a result we obtain the estimate

e ()] +/ 6‘2'*t||yk(t)||2dt+/ e (yi (1)) dt < 03/

1 T1 T1

T

S (1) .
(43)

where Cj3 is a positive constant depending on K7, K5, m and ~ only.
We take 75 = 7, when 7 € S is arbitrary, and pass to the limit in as 7 — —oo.
Taking into account (F) and the definition of y; and fx, we obtain

T

TR B PACT

+/ e 21D (yx(t)) dt < 03/ e M f()|?dt, T€S. (44)

Since 7 € S is arbitrary, from it follows that
sequence {e~ 7y ()}, is bounded in L*°(S; H) and in L*(S;V), (45)
sequence {e™ 7' ® (yy()) ::{ is bounded in L'(S). (46)
Now let us find estimates of yj,(¢). For almost every ¢ € S we multiply equality

by e~?7ty; (t) and integrate the resulting equality from 7 to 72 (11,72 € S are arbitrary

numbers, 71 < 72). Then we obtain

/ e‘”tlyfc(t)IthJr/ e (gr(t), yi(t)) dt

1 T1
N /T2 e 2 (fr(t), yi, (1)) dt — /72 e 21 u(t) (ye (1), i (1)) dt. (47)
™ ™
From using the Cauchy-Schwarz inequality and the fact that ilelg u(t) =: M < oo we
obtain
[ etipa [ et .o
- "
<M / e (1)l (0] di + / e ) k(0] . (48)
n Tl

Since gr € L?(r1,72; H), Statement [5| implies that the function @H(yk()) is
absolutely continuous on [11, 2] and

%@H (ye(t)) = (g1(1),yx(t)) for a.e. t € (11,72). (49)

Taking into account , we estimate the second term on the left side of as follows

/:2 e (gr(t), yi (1)) dt = /Tz efzvt%q)H(yk(t)) dt

1 T1

= e "0y (yk(t))

" + 2y / e 2Py (yx(t)) dt. (50)

T 1
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Using the Cauchy inequality to the right-hand side of and estimate , we
obtain

T2

g / Ty ()l (0)] dt + / €2 fi (1) [yl (1)

T1
T2

—~ T2 1
< [P [ e R d

T1 T1

T2 1 T2
[ Cemin@Pa g [ e R

1 T1

. T2 1 T2
O [Cetp@Pas s [ e goPas [Cen@Pd 61

T1 T1 T1

From , taking into account , , we obtain

T2

T2

1 /™
3 [ TP d+ e o (1)
T1

T1

T

_ T2 T2 2
<O [P an] [ e ealnn)dr [ e A@R L (52)
T T1

1 T1

Taking into account the definitions of y; and f, condition (Aj3), and (44), we pass
to the limit as 7y — —oo in . As a result, taking 72 = 7 € S, we obtain

T T

™Dy (yi(7)) +/ e |y ()] dt < 04/ e | fu(t)]* dt, (53)

—0o0 — 00

where C} is a positive constant depending on Ki,~, A and m, M only.
According to the definitions of the functional ® and the function fj, and condition
(As) (recall that yi(t) € V for a.e. t € S), we obtain

T T

eIyl dt < Cs / e fu () dt, (54)

— 00

)P+ [

—0Q0

where C5 > 0 is a constant depending on K7, v, A and m, M only.
Estimate and the definition of fj imply that

the sequence {yk}::; is bounded in L3 (S; V), (55)

the sequence {y,’g}:z is bounded in L2 (S; H). (56)
From , , , (F) and the definition of f; we obtain

the sequence {g};>; is bounded in L?Y(S; H). (57)

Step 8 (Passing to the limit). Since V and H are Hilbert spaces, and V embeds
in H with compact injection, then (45), (55)-(57) and Statement [4] imply that there
exist functions y € L(S;V) N L2(S;V)NHL(S;H) € C(S;H), g € L2(S;H) and a
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subsequence of sequence {yk,gk}z;“i (still denoted by {y, gk}'k";“{) such that

Yk Y x-weakly in Lo (S;V), weakly in L%(S; V) and weakly in Hi(S; H), (58)

ye —y in O(S; H), (59)
k—o0
gr — g weakly in Lg(S; H). (60)
k—o0
Note that and imply
u — vy, Y — ¥, gr — g weaklyin L2 (S;H). (61)
k—»00 k—00 k—r o0

Let v € H,p € D(—00,0) be arbitrary. For a.e. t € S we multiply equality by
v, and then we multiply the obtained equality by ¢ and integrate in ¢ on S. As a result,
we obtain the equality

/ (v (), viplt)) dt + / (g1 (), vip(t)) it + / ut) (e (). vp(t)) dit

S S S

~ [Guo.vpt)at. ken. (62)
S

We pass to the limit in as k — oo, taking into account and convergence
{fx} to fin L2 (S;H). As a result, since v € H,p € D(—00,0) are arbitrary, for a.e.

loc

t € S, we obtain the equality
y'(t) +9(t) +ult)y(t) = f(t) in H.
In order to complete the proof of the theorem it remains only to show that y(t) €
D(9®) and g(t) € 0P(y(t)) for ae. t € S.

Let k € N be an arbitrary number. Since gi(t) € 0 (y(t)) for every t € S\ Sk,

where S, C S is a set of measure  zero, applying the monotonicity of subdifferential 0® i
we obtain that for every ¢t € S\ S the following equality holds:

(gr(t) — v, yk(t) —v) =0 V[v,v*] € 0Dy. (63)
Let 7 € S, h > 0 be arbitrary numbers. We integrate on (1 — h;7):

/ (gx(t) — v, yk(t) —v)dt 20 V[v,0*] € 0Ppy. (64)
T—h

Now according to and we pass to the limit in as k — oo. As a result we
obtain

OS/ (gr(T)—v" yg(t)—v) dt — (gt)—v5y(t)—v)dt 20 Vv,v*] € 0Py. (65)
—h k—o0 T—h

The monograph [28, Theorem 2, P. 192] and imply that for every [v,v*] € 0Py
there exists a set Ry, ,,] C S of measure zero such that for all 7 € S'\ Ry, ,,] we have

1

0< lim o /T_h (9(t) —v*,y(t) —v) dt = (g(1) —v*,y(1) —v). (66)
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Let us show that there exists a set of measure zero R C S such that for every 7 € S\ R
the following inequality holds

(g(T) — ", y(r) — v) >0 Vv,v'] €ody. (67)

Since V and H are separable spaces, there exists a countable set ' C 9Py, which is

dense in 0®y. Let us denote R := : U] FR[”’”*]' Since the set F' is countable, and
v,0*| €

countable union of sets of measure zero is a set of measure zero, R is a set of measure
zero. Therefore, for any 7 € S\ R inequality holds for every [v,v*] € F. Let [v,7%]
be an arbitrary element from 0®p. Since F' is dense in 0®p, we have the existence of
the sequence {[v;, v/]};2, such that v; - v in V, v — v* in H and for every 7 € S\ R
we have
(9(r) —v,y(r) —w) 20 VIEN. (68)

So, passing to the limit in this equality as I — oo, we get (g(7) —v*,y(7) —¥) > 0. Thus,
for a.e. 7 € S inequality holds. From this, according to maximal monotonicity of
0%y, we obtain that [y(t), g(t)] € 0Py for a.e. t € S.

Estimate (12]) of the solution of the problem P (®, u*, f, ) follows directly from ,
, and (p9), and Proposition [2| From , , according to we have

T

e |ye()P < O / 1 f(0)]2 dt.

— 00

From this we obtain that y satisfies condition . O

5. PROOF OF THE MAIN RESULT

Proof of Theorem[4 Let {uy} be a minimizing sequence for functional J in Up:
J(up) — inf J(w). According to the definition of Uy we obtain that

k—oou€lUs
the sequence {uy}72; is bounded in L*°(S). (69)

Assume that for every k € N the function y := y(ug) is a solution of the problem
P(®,ug, f,7), that is, the following variational inequality and condition at the infinity
hold

Y1) + 0% (g (1)) + un (1) > F(1), te S, (70)
Jim ey (6)] = 0. (71)

According to Definition [1| and Theorem (1} taking into account (F), for every k € N we
have y, € L3°(S;V)NLE(S; V)N HA(S; H) € C(S; H), y(t) € D(0®) for ae. t € S, and
the existence of a function gz € L2(S; H) such that for a.e. t € S, gi(t) € d®(yx(t)), and

k() + gu(t) + ue(Byr(t) = f(t) in H (72)

and condition holds.
Moreover, for arbitrary k € N and 7 € S the following estimate holds

T T
T

el ()2 + / ey (1) |2 di+ / ey (B dt < Cy / e f(1)[2 dt, (73)

— 00
—00 —00

where C is a positive constant depending on Ki, Ks, v, A and m, M ounly.
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Estimate (73) implies that

the sequence {e™ 7 yx(-)}72, is bounded in L>(S; V), (74)
the sequence {yi}5~; is bounded in Li(S; V), (75)
the sequence {y;}7>; is bounded in Li (S; H). (76)
From , taking into account , , we obtain that
the sequence {gi}72; is bounded in Li(S; H). (77)

Since V and H are reflexive spaces, and V' embeds in H densely, continuously
and compactly, then (69), (74)—(77), taking into account Statement [3] imply that there
exist a subsequence of the sequence {ug, yx, gx }7>; (still denoted by {ug, vk, gr}72,) and
functions u* € Up, y € L(S;V)NL2(S;V) N HL(S; H) € C(S; H) and g € L2(S; H)
such that

u u*  #-weakly in  L*°(S5), (78)
—00

Yk Y x-weakly in LS (S;V), weakly in L%(S; V) and weakly in Hi(S; H), (79)
—o0

yr —>y in C(S; H), (80)
k—o0

gr — g weakly in Li(S;H). (81)
k—o0

Similarly, as in the proof of Theorem [1f for a.e. ¢t € S we multiply equality by v, and
then multiply the resulting equality by ¢ and integrate on .S, where v € H, p € D(—00,0)
are arbitrary. As a result, we obtain the equality

/ (Wl (), volt)) dt + / (g0(), (1)) dt + / ik (8) (e (), vp(t)) dt

S S S

Let us show that and yield

[ @)t = [wOuo.vem)a et ¥ e D). (69
S S

Indeed, let ¢1,t5 € S be such that supp ¢ C [t1, t2]. Then we have

to

/ (1) (e (1), vp(t)) dt = / ik (£) (e (1) — (t) + y(t), vp(t)) dt
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From , and the Cauchy-Schwarz inequality it follows

’juk(t)(yk(t)—y(t),mp(t))dt‘ <

" " (85)
m( [ totoat) ([t - vl i) — 0.
Since (4(-),v)¢() € Lo (S), @) implies
/ OO, [ O ve0) (56)

From (84)), taking into account (85) and (86, we obtaln )
Taklng into account (79), (81) and ) we pass to the limit in as k — o0o. As
a result, for a.e. t € S we obtain the equality

y'(t) +g(t) +u(y(t) = f(t) in H.

Similarly, as in the proof of Theorem we show that y(t) € D(9P) and
g(t) € 0®(y(t)) for ae. t € S. From (1), and we have e-277lv(MI* <
CiA™t [T e " f(t)|?dt, 7 € S. This means that condition holds. Thus, the
function y is a solution of the problem P(®, u*, f,~).

It remains to show that «* is a minimizing element of the functional J. Indeed, since
the functional G is lower semicontinuous in C(S; H), then implies that

lim G(yx) > G(y). (87)
k—o0
Also and Proposition [2| yield
lim (fugllo = [Ju”v- (88)
k—o0

From (87, (88) we obtain that 1nf J(u) = hm J(ug) = lim G(yk)+

o lim ||uk||U > J( *). Thus, we have shown that u* is a solutlon of problem 1.) ie.,
k—o00
the optimal control. O
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OIITNMAJIBHE KEPYBAHHZ{ B 3AJJAYAX BE3
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eya. Yuieepcumemcovra, 1, Jlveis, 79000
e-mail: mm.bokalo@gmail.com, amtseb@gmail.com

BHB“I&GMO 3aJa4y OIITHUMAJIbHOTO KepyBaHHA CUCTEMaMHU, dKa OIIUCYETHCA
3amauero Pyp'e mis crabko HETIHINHUX €BOJIIOIMINHUX BapiamiitHUX HEpiBHO-
creii. KepyBanus € koedimieHTOM y HEPIBHOCTI, MO OMMCYE CTAaH KEPOBAHOL
CHUCTEMMU. rZl;OBe,ZLeHO iCHyBaHHH OIITUMAJIbHOI'O KEPYBAaHHHA.

Karowoet caoea: onrtuMasibHe KEPYBAHHS, 33/a4a 0e3 IOYATKOBUX yMOB,
BapiaIiiiHa HePiBHICTB.
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