RESTORATION OF A SOLUTION'S INITIAL DATA AND A SOURCE OF THE FRACTIONAL DIFFUSION EQUATION IN THE SPACE OF PERIODIC DISTRIBUTIONS

Halyna LOPUSHANSKA ${ }^{1}$, Olga MYAUS ${ }^{2}$
${ }^{1}$ Ivan Franko National University of Lviv
1, Universitetska Str., 79000, Lviv, Ukraine e-mail: lhp@ukr.net,
${ }^{2}$ National University "Lviv Polytechnic" 12, Bandera Str., 79001, Lviv, Ukraine
e-mail: myausolya@mail.ru

Abstract

We prove the correctness of an inverse problem for a time fractional subdiffusion equation. This problem is to find a solution of direct problem, which is classical in time with values in the space of periodic spatial distributions, its initial data and a source term of the equation. We show that the same kind time integral over-determination conditions may be used.

Key words: fractional derivative, inverse problem, periodic distribution, time integral over-determination condition.

Inverse Cauchy and boundary-value problems for a time fractional diffusion equations with different unknown quantities and under different over-determination conditions are actively studied in connection with their applications (see, for instance, [1]-[9]).

We study the inverse problem for a time fractional diffusion equation. This problem is to find a solution for direct problem, classical in time with values in the space of periodic spatial distributions, its initial data and a source term of the equation. We use the time integral over-determination conditions. Such kind of conditions generalise the multi-point conditions. Space integral over-determination conditions have been used, for instance, in $[4,10,11]$ for study the inverse problems.

Note that the sufficient conditions of classical solvability of fractional Cauchy and boundary-value problems were obtained, for example, in [12]-[17], the existence and uniqueness theorems to the boundary-value problems for partial differential equations in Sobolev spaces were obtained by Yu. Berezansky, V. I. Gorbachuk and M. L. Gorbachuk, Ya. Roitberg, J.-L. Lions, E. Magenes, V. A. Mikhailets, A. A. Murach and others (see [18] and references therein), and in [19] the existence and uniqueness theorems to the space fractional Cauchy problem in Schwartz spaces were proved. The solvability of

2010 Mathematics Subject Classification: 35S15
(C) Lopushanska H., Myaus O., 2017
some nonclassical direct problems for partial differential equations with integral initial conditions, in particular, in the space of periodic spatial variable functions, have been established, for example, in [20, 21], the multi-point non-local problem for parabolic pseudo-differential equations with non-smooth symbols has been investigated in [22]. The inverse problem on determination only the initial data of the solution (classical in time with values in the space of periodic spatial distributions) of a time fractional diffusion equation, or only a source term of a such type equation, were studied in [8] and [9], respectively.

1. Auxiliary definitions. Assume that \mathbb{N} is a set of natural numbers, $\mathbb{Z}_{+}=\mathbb{N} \cup\{0\}$, $\mathcal{D}(\mathbb{R})$ is the space of infinitely differentiable functions with compact supports, $\mathcal{S}(\mathbb{R})$ is the space of rapidly decreasing infinitely differentiable functions [23, p. 90], while $\mathcal{D}^{\prime}(\mathbb{R})$ and $\mathcal{S}^{\prime}(\mathbb{R})$ are the spaces of linear continuous functionals (distributions) over $\mathcal{D}(\mathbb{R})$ and $\mathcal{S}(\mathbb{R})$, respectively, and the symbol (f, φ) stands for the value of the distribution f on the test function φ. Note that $\mathcal{S}^{\prime}(\mathbb{R})$ is the space of slowly increasing distributions.

Recall that the Caputo derivative (or the Caputo-Djrbashian derivative) of order $\alpha \in(0,1)$ is defined by

$$
{ }^{c} D_{t}^{\alpha} v(x, t)=\frac{1}{\Gamma(1-\alpha)}\left[\frac{\partial}{\partial t} \int_{0}^{t} \frac{v(x, \tau)}{(t-\tau)^{\alpha}} d \tau-\frac{v(x, 0)}{t^{\alpha}}\right]
$$

Let $X_{k}(x)=\sin k x, k \in \mathbb{N}$. Similarly to [23, p. 120], we denote by $\mathcal{D}_{2 \pi}^{\prime}(\mathbb{R})$ the space of periodic distributions, i.e., the space of $v \in \mathcal{D}^{\prime}(\mathbb{R})$ such that

$$
v(x+2 \pi)=v(x)=-v(-x) \quad \forall x \in \mathbb{R}
$$

The formal series

$$
\begin{equation*}
\sum_{k=1}^{\infty} v_{k} X_{k}(x), \quad x \in \mathbb{R} \tag{1}
\end{equation*}
$$

is the Fourier series of the distribution $v \in \mathcal{D}_{2 \pi}^{\prime}(\mathbb{R})$, and numbers

$$
v_{k}=\frac{2}{\pi}\left(v, X_{k}\right)_{2 \pi}=\frac{2}{\pi}\left(v, h X_{k}\right)
$$

are its Fourier coefficients. Here $h(x)$ is an even function from $\mathcal{D}(\mathbb{R})$ possessing the properties:

$$
h(x)=\left\{\begin{array}{ll}
1, & x \in(-\pi+\varepsilon, \pi-\varepsilon) \\
0, & x \in \mathbb{R} \backslash(-\pi, \pi)
\end{array}, \quad 0 \leq h(x) \leq 1\right.
$$

Note that

$$
v_{k}=\frac{2}{\pi} \int_{0}^{\pi} v(x) X_{k}(x) d x \quad \text { for } \quad v \in \mathcal{D}_{2 \pi}^{\prime}(\mathbb{R}) \cap L_{l o c}^{1}(\mathbb{R})
$$

and then the series (1) is the classical Fourier series of v by the system $X_{k}, k \in \mathbb{N}$.
As it is known (see [23, p. 123]) $\mathcal{D}_{2 \pi}^{\prime}(\mathbb{R}) \subset \mathcal{S}^{\prime}(\mathbb{R})$, the series (1) of $v \in \mathcal{D}_{2 \pi}^{\prime}(\mathbb{R})$ converges in $\mathcal{S}^{\prime}(\mathbb{R})$ to v, and for the Fourier coefficients the estimates hold

$$
(1+k)^{-m}\left|v_{k}\right| \leq C(v, m) \quad \forall k \in \mathbb{N}
$$

with some $m \in \mathbb{Z}_{+}$where $C(v, m)$ is the positive constant, the same for all $k \in \mathbb{N}$.
We use the following: for $\gamma \in \mathbb{R}$
$H^{\gamma}(\mathbb{R})=\left\{v \in \mathcal{D}_{2 \pi}^{\prime}(\mathbb{R}):\|v\|_{H^{\gamma}(\mathbb{R})}=\sup _{k \in \mathbb{N}}\left|v_{k}\right|(1+k)^{\gamma}<+\infty\right\}$
(note that $H^{\gamma+\varepsilon}(\mathbb{R}) \subset H^{\gamma}(\mathbb{R})$ for all $\varepsilon>0, \gamma \in \mathbb{R}$),
$C\left([0, T] ; H^{\gamma}(\mathbb{R})\right)$ is the space of continuous in $t \in[0, T]$ functions $v(x, t)$ with values $v(\cdot, t) \in H^{\gamma}(\mathbb{R})$ endowed with the norm $\|v\|_{C\left([0, T] ; H^{\gamma}(\mathbb{R})\right)}=\max _{t \in[0, T]}\|v(\cdot, t)\|_{H^{\gamma}(\mathbb{R})}$,
$C_{b}\left((0, T] ; H^{\gamma}(\mathbb{R})\right)$ is the space of continuous in $t \in(0, T]$ functions $v(x, t)$ with values $v(\cdot, t) \in H^{\gamma}(\mathbb{R})$ endowed with the norm $\|v\|_{C_{b}\left((0, T] ; H^{\gamma}(\mathbb{R})\right)}=\sup _{t \in(0, T]}\|v(\cdot, t)\|_{H^{\gamma}(\mathbb{R})}$,
$C_{2, \alpha}\left([0, T] ; H^{\gamma}(\mathbb{R})\right)=\left\{v \in C\left([0, T] ; H^{2+\gamma}(\mathbb{R})\right):^{c} D^{\alpha} v \in C_{b}\left((0, T] ; H^{\gamma}(\mathbb{R})\right)\right\}$ is its subspace endowed with the norm

$$
\|v\|_{C_{2, \alpha}\left([0, T] ; H^{\gamma}(\mathbb{R})\right)}=\max \left\{\|v\|_{C\left([0, T] ; H^{2+\gamma}(\mathbb{R})\right)},\left\|^{c} D^{\alpha} v\right\|_{C_{b}\left((0, T] ; H^{\gamma}(\mathbb{R})\right)}\right\} .
$$

2. The inverse problem. We study the inverse problem

$$
\begin{equation*}
{ }^{c} D_{t}^{\alpha} u-u_{x x}=F_{0}(x), \quad(x, t) \in Q_{T}:=\mathbb{R} \times(0, T], \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
u(x, 0)=F_{1}(x), \quad x \in \mathbb{R} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{t_{0}} u(x, t) d t=\Phi_{0}(x), \int_{0}^{t_{1}} u(x, t) d t=\Phi_{1}(x), \quad x \in \mathbb{R}, t_{0}, t_{1} \in(0, T] \tag{4}
\end{equation*}
$$

where $\alpha \in(0,1), \Phi_{0}, \Phi_{1}$ are given functions, T is a given positive number, u, F_{0}, F_{1} are unknown functions.

Let the following assumption holds:
(A) $\gamma \in \mathbb{R}, \Phi_{0}, \Phi_{1} \in H^{\gamma+4}(\mathbb{R}), t_{0}, t_{1} \in(0, T], t_{0} \neq t_{1}$.

Expand the functions $F_{j}(x), \Phi_{j}(x), j \in\{0,1\}$, in the formal Fourier series by the system $X_{k}(x), k \in \mathbb{N}$:

$$
\begin{gather*}
F_{j}(x)=\sum_{k=1}^{\infty} F_{j k} X_{k}(x), \quad x \in \mathbb{R}, \tag{5}\\
\Phi_{j}(x)=\sum_{k=1}^{\infty} \Phi_{j k} X_{k}(x), \quad x \in \mathbb{R}, \quad j=0,1 .
\end{gather*}
$$

Definition 1. The vector-function

$$
\left(u, F_{0}, F_{1}\right) \in \mathcal{M}_{\alpha, \gamma}:=C_{2, \alpha}\left([0, T] ; H^{\gamma}(\mathbb{R})\right) \times H^{\gamma}(\mathbb{R}) \times H^{\gamma+2}(\mathbb{R})
$$

given by the series

$$
\begin{equation*}
u(x, t)=\sum_{k=1}^{\infty} u_{k}(t) X_{k}(x), \quad(x, t) \in Q_{T} \tag{7}
\end{equation*}
$$

and (5), satisfying the equation (2) in $\mathcal{S}^{\prime}(\mathbb{R})$ for every $t \in(0, T]$ and the conditions (3), (4), is called a solution of the problem (2)-(4).

Substituting the function (7) in the equation (2) and the conditions (3), (4), we obtain the problems

$$
\begin{equation*}
{ }^{c} D_{t}^{\alpha} u_{k}+k^{2} u_{k}=F_{0 k}, t \in(0, T], \quad u_{k}(0)=F_{1 k} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{t_{0}} u_{k}(t) d t=\Phi_{0 k}, \quad \int_{0}^{t_{1}} u_{k}(t) d t=\Phi_{1 k}, \quad k \in \mathbb{N} \tag{9}
\end{equation*}
$$

for the unknown $u_{k}(t), t \in[0, T]$ and $F_{j k}, j=0,1, k \in \mathbb{N}$.
So, the vector-functions $\left(u_{k}(t), F_{0 k}, F_{1 k}\right)(k \in \mathbb{N})$ of the Fourier coefficients of the solution satisfy the inverse problems (8), (9).

We use the Mittag-Leffler function $\quad E_{\alpha, \mu}(x)=\sum_{p=0}^{\infty} \frac{x^{p}}{\Gamma(p \alpha+\mu)}$.
The function $E_{\alpha, \mu}(-x)(x>0)$ is infinitely differentiable for $\alpha \in(0,1], \mu>0$ and compactly monotonic. We have $0<E_{\alpha, \mu}\left(-k^{2} t^{\alpha}\right)<1$ for all $t>0, \mu \geq \alpha$,

$$
E_{\alpha, \mu}(-x) \leq \frac{r_{\alpha, \mu}}{1+x}, \quad x>0, \quad \text { where } r_{\alpha, \mu} \text { is a positive constant, }
$$

and the asymptotic behavior [12]

$$
E_{\alpha, \mu}(-x)=O\left(\frac{1}{x}\right), \quad x \rightarrow+\infty
$$

Theorem 1. Assume that $\gamma \in \mathbb{R}, F_{0} \in H^{\gamma}(\mathbb{R}), F_{1} \in H^{\gamma+2}(\mathbb{R})$. Then there exists a unique solution $u \in C_{2, \alpha}\left([0, T] ; H^{\gamma}(\mathbb{R})\right)$ to the direct problem (2), (3). It is given by (7) where
(10)

$$
u_{k}(t)=F_{0 k} k^{-2}\left[1-E_{\alpha, 1}\left(-k^{2} t^{\alpha}\right)\right]+F_{1 k} E_{\alpha, 1}\left(-k^{2} t^{\alpha}\right), \quad t \in[0, T], \quad k \in \mathbb{N} .
$$

The solution depends continuously on the data $\left(F_{0}, F_{1}\right)$, and the following inequality holds:

$$
\begin{equation*}
\|u\|_{C_{2, \alpha}\left([0, T] ; H^{\gamma}(\mathbb{R})\right)} \leq a_{0}\left\|F_{0}\right\|_{H^{\gamma}(\mathbb{R})}+a_{1}\left\|F_{1}\right\|_{H^{\gamma+2}(\mathbb{R})} \tag{11}
\end{equation*}
$$

where $a_{j}, j \in\{0,1\}$ are positive constants independent of data.
Proof. It follows from the theorem 1 in [8] that there exists the unique solution $u \in$ $C_{2, \alpha}\left([0, T] ; H^{\gamma}(\mathbb{R})\right)$ to the problem (2), (3) under the theorem's conditions, that it is given by (7) where

$$
u_{k}(t)=F_{0 k} \int_{0}^{t} \tau^{\alpha-1} E_{\alpha, \alpha}\left(-k^{2} \tau^{\alpha}\right) d \tau+F_{1 k} E_{\alpha, 1}\left(-k^{2} t^{\alpha}\right), \quad t \in[0, T], \quad k \in \mathbb{N}
$$

By the link

$$
\lambda \int_{0}^{t} \tau^{\alpha-1} E_{\alpha, \alpha}\left(-\lambda \tau^{\alpha}\right) d \tau=1-E_{\alpha, 1}\left(-\lambda t^{\alpha}\right)
$$

we obtain the formulas (10) and, using [8, th.1], we obtain (11). This inequality implies that a solution of the problem is unique and depends continuously on the data.

Theorem 2. Assume that (A) holds. Then there exists a unique solution $\left(u, F_{0}, F_{1}\right) \in$ $\mathcal{M}_{\alpha, \gamma}$ of the inverse problem (2)-(4). It is given by the Fourier series (7) and (6) where $u_{k}(t)$ are defined by (10),

$$
\begin{gather*}
F_{0 k}=\left[\frac{\Phi_{0 k}}{t_{0}} E_{\alpha, 2}\left(-k^{2} t_{1}^{\alpha}\right)-\frac{\Phi_{1 k}}{t_{1}} E_{\alpha, 2}\left(-k^{2} t_{0}^{\alpha}\right)\right] k^{2} G_{k}^{-1} \tag{12}\\
F_{1 k}=\left[\frac{\Phi_{1 k}}{t_{1}}\left(1-E_{\alpha, 2}\left(-k^{2} t_{0}^{\alpha}\right)\right)-\frac{\Phi_{0 k}}{t_{0}}\left(1-E_{\alpha, 2}\left(-k^{2} t_{1}^{\alpha}\right)\right)\right] G_{k}^{-1} \\
G_{k}=E_{\alpha, 2}\left(-k^{2} t_{1}^{\alpha}\right)-E_{\alpha, 2}\left(-k^{2} t_{0}^{\alpha}\right), \quad k \in \mathbb{N}
\end{gather*}
$$

The solution depends continuously on the data Φ_{0}, Φ_{1} and the following inequality holds:

$$
\begin{gather*}
\|u\|_{C_{2, \alpha}}\left([0, T] ; H^{\gamma}(\mathbb{R})\right) \\
\leq b_{0}\left\|\Phi_{0}\right\|_{H^{\gamma+4}(\mathbb{R})}+\left\|_{H^{\gamma}(\mathbb{R})}+\right\| F_{1}\left\|_{H^{\gamma+2}(\mathbb{R})}\right\|_{H^{\gamma+4}(\mathbb{R})} \tag{13}
\end{gather*}
$$

where $b_{j}, j \in\{0,1\}$ are positive constants independent of data.
Proof. Using (10), we write the conditions (9) as follows

$$
\begin{aligned}
& F_{0 k} k^{-2} \int_{0}^{t_{0}}\left[1-E_{\alpha, 1}\left(-k^{2} t^{\alpha}\right)\right] d t+F_{1 k} \int_{0}^{t_{0}} E_{\alpha, 1}\left(-k^{2} t^{\alpha}\right) d t=\Phi_{0 k} \\
& F_{0 k} k^{-2} \int_{0}^{t_{1}}\left[1-E_{\alpha, 1}\left(-k^{2} t^{\alpha}\right)\right] d t+F_{1 k} \int_{0}^{t_{1}} E_{\alpha, 1}\left(-k^{2} t^{\alpha}\right) d t=\Phi_{1 k}
\end{aligned}
$$

$k \in \mathbb{N}$. Note that [8]

$$
\int_{0}^{t_{j}} E_{\alpha, 1}\left(-k^{2} t^{\alpha}\right) d t=t_{j} E_{\alpha, 2}\left(-k^{2} t_{j}^{\alpha}\right), \quad j=0,1, \quad k \in \mathbb{N} .
$$

From here, according to the assumption (A), we find the expressions (12) for the unknown Fourier coefficients $F_{j k}, k \in \mathbb{N}, j=0,1$. The numbers $G_{k} \neq 0$ for all $k \in \mathbb{N}$ by the mentioned monotonic property of the Mittag-Leffler function.

Let us show that the founded solution belongs to $\mathcal{M}_{\alpha, \gamma}$.
Taking the behavior of the Mittag-Leffler function for large k and the formulas (12) into account, one obtains

$$
\begin{gathered}
(1+k)^{\gamma}\left|F_{0 k}\right| \leq c_{0}\left[\left|\Phi_{0 k}\right|(1+k)^{\gamma+2}+\left|\Phi_{1 k}\right|(1+k)^{\gamma+2}\right] \\
(1+k)^{\gamma+2}\left|F_{1 k}\right| \leq c_{0}\left[\left|\Phi_{0 k}\right|(1+k)^{\gamma+4}+\left|\Phi_{1 k}\right|(1+k)^{\gamma+4}\right], \quad k \in \mathbb{N}
\end{gathered}
$$

where c_{0} is a positive constant, and therefore,

$$
\begin{aligned}
&\left\|F_{0}\right\|_{H^{\gamma}(\mathbb{R})} \leq c_{0}\left[\left\|\Phi_{0}\right\|_{H^{\gamma+2}(\mathbb{R})}+\left\|\Phi_{1}\right\|_{H^{\gamma+2}(\mathbb{R})}\right] \\
&\left\|F_{1}\right\|_{H^{\gamma+2}(\mathbb{R})} \leq c_{0}\left[\left\|\Phi_{0}\right\|_{H^{\gamma+4}(\mathbb{R})}+\left\|\Phi_{1}\right\|_{H^{\gamma+4}(\mathbb{R})}\right]
\end{aligned}
$$

So, under the theorem's assumptions, $F_{0} \in H^{\gamma}(\mathbb{R}), F_{1} \in H^{\gamma+2}(\mathbb{R})$. Then, using (11), we obtain the inequality (13). The inequality (13) implies that a solution of the problem is unique and depends continuously on the problem's data.
3. Remarks. 1. The obtained result can be transferred to the case of the boundary value problem for a time fractional diffusion equation

$$
{ }^{c} D_{t}^{\alpha} u-A(x, D) u=F_{0}(x)
$$

where $A(x, D)$ is an elliptic differential expression of the second order with infinitely differentiable coefficients and when the corresponding Sturm-Liouville problem has positive eigenvalues.
2. In the case $\alpha \in(1,2)$

$$
{ }^{c} D_{t}^{\alpha} v(x, t)=\frac{1}{\Gamma(2-\alpha)} \int_{0}^{t} \frac{v_{\tau \tau}(x, \tau)}{(t-\tau)^{\alpha-1}} d \tau=\frac{1}{\Gamma(2-\alpha)}\left[\frac{\partial}{\partial t} \int_{0}^{t} \frac{v_{\tau}(x, \tau)}{(t-\tau)^{\alpha-1}} d \tau-\frac{v_{t}(x, 0)}{t^{\alpha-1}}\right]
$$

and we may study the inverse problem

$$
\begin{gather*}
{ }^{c} D_{t}^{\alpha} u-u_{x x}=F_{0}(x), \quad(x, t) \in Q_{T}:=\mathbb{R} \times(0, T] \tag{14}\\
u(x, 0)=F_{1}(x), \quad u_{t}(x, 0)=F_{2}(x), \quad x \in \mathbb{R} \tag{15}\\
\int_{0}^{t_{0}} u(x, t) d t=\Phi_{0}(x), \quad \int_{0}^{t_{1}} u(x, t) d t=\Phi_{1}(x), \quad x \in \mathbb{R} \tag{16}
\end{gather*}
$$

where $\Phi_{0}, \Phi_{1}, F_{2}$ are the given functions, T is a given positive number, u, F_{0}, F_{1} are unknown functions, $t_{0}, t_{1} \in(0, T], t_{0} \neq t_{1}$.

By [8, th.1], assuming $\gamma \in \mathbb{R}, \theta \in(0,1), F_{0} \in H^{\gamma+2 \theta}(\mathbb{R}), F_{j} \in H^{\gamma+2}(\mathbb{R}), j=1,2$, we obtain the existence of the unique solution $u \in C_{2, \alpha}\left([0, T] ; H^{\gamma}(\mathbb{R})\right)$ to the direct problem (14), (15). It is given by (7) where
(17)
$u_{k}(t)=F_{0 k} k^{-2}\left[1-E_{\alpha, 1}\left(-k^{2} t^{\alpha}\right)\right]+F_{1 k} E_{\alpha, 1}\left(-k^{2} t^{\alpha}\right)+F_{2 k} t E_{\alpha, 2}\left(-k^{2} t^{\alpha}\right), t \in[0, T], k \in \mathbb{N}$.
The solution depends continuously on the data $\left(F_{0}, F_{1}, F_{2}\right)$, and the following inequality holds:

$$
\begin{equation*}
\|u\|_{C_{2, \alpha}\left([0, T] ; H^{\gamma}(\mathbb{R})\right)} \leq a_{0}\left\|F_{0}\right\|_{H^{\gamma+2 \theta}(\mathbb{R})}+\sum_{j=1}^{2} a_{j}\left\|F_{j}\right\|_{H^{\gamma+2}(\mathbb{R})} \tag{18}
\end{equation*}
$$

where $a_{j}, j \in\{0,1,2\}$ are positive constants independent of data.
Using (17), we write the conditions (16) as follows

$$
\begin{aligned}
& F_{0 k} k^{-2} \int_{0}^{t_{0}}\left[1-E_{\alpha, 1}\left(-k^{2} t^{\alpha}\right)\right] d t+F_{1 k} \int_{0}^{t_{0}} E_{\alpha, 1}\left(-k^{2} t^{\alpha}\right) d t+F_{2 k} \int_{0}^{t_{0}} t E_{\alpha, 2}\left(-k^{2} t^{\alpha}\right) d t=\Phi_{0 k} \\
& F_{0 k} k^{-2} \int_{0}^{t_{1}}\left[1-E_{\alpha, 1}\left(-k^{2} t^{\alpha}\right)\right] d t+F_{1 k} \int_{0}^{t_{1}} E_{\alpha, 1}\left(-k^{2} t^{\alpha}\right) d t+F_{2 k} \int_{0}^{t_{1}} t E_{\alpha, 2}\left(-k^{2} t^{\alpha}\right) d t=\Phi_{1 k}
\end{aligned}
$$

$k \in \mathbb{N}$. Note that $\int_{0}^{t_{j}} t E_{\alpha, 2}\left(-k^{2} t^{\alpha}\right) d t=\frac{1}{\alpha k^{4 / \alpha}} \int_{0}^{k^{2} t_{j}{ }^{\alpha}} E_{\alpha, 2}(-z) z^{\frac{2}{\alpha}-1} d z=t_{j}^{2} E_{\alpha, 3}\left(-k^{2} t_{j}{ }^{\alpha}\right)$, $k \in \mathbb{N}$ and we have

$$
\begin{gathered}
F_{0 k} k^{-2} t_{0}\left[1-E_{\alpha, 2}\left(-k^{2} t_{0}^{\alpha}\right)\right]+F_{1 k} t_{0} E_{\alpha, 2}\left(-k^{2} t_{0}^{\alpha}\right) d t=\Phi_{0 k}-F_{2 k} t_{0}^{2} E_{\alpha, 3}\left(-k^{2} t_{0}^{\alpha}\right), \\
F_{0 k} k^{-2} t_{1}\left[1-E_{\alpha, 2}\left(-k^{2} t_{1}^{\alpha}\right)\right]+F_{1 k} t_{1} E_{\alpha, 2}\left(-k^{2} t_{1}^{\alpha}\right)=\Phi_{1 k}-F_{2 k} t_{1}^{2} E_{\alpha, 3}\left(-k^{2} t_{1}^{\alpha}\right),
\end{gathered}
$$

$k \in \mathbb{N}$. From here if

$$
G_{k}:=E_{\alpha, 2}\left(-k^{2} t_{1}^{\alpha}\right)-E_{\alpha, 2}\left(-k^{2} t_{0}^{\alpha}\right) \neq 0 \forall k \in \mathbb{N}
$$

we may find the expressions

$$
\begin{gather*}
F_{0 k}=\left[\left(\frac{\Phi_{0 k}}{t_{0}}-F_{2 k} t_{0} E_{\alpha, 3}\left(-k^{2} t_{0}^{\alpha}\right)\right) E_{\alpha, 2}\left(-k^{2} t_{1}^{\alpha}\right)-\right. \\
\left.-\left(\frac{\Phi_{1 k}}{t_{1}}-F_{2 k} t_{1} E_{\alpha, 3}\left(-k^{2} t_{1}^{\alpha}\right)\right) E_{\alpha, 2}\left(-k^{2} t_{0}^{\alpha}\right)\right] k^{2} G_{k}^{-1}, \\
F_{1 k}=\left[\left(\frac{\Phi_{1 k}}{t_{1}}-F_{2 k} t_{1} E_{\alpha, 3}\left(-k^{2} t_{1}^{\alpha}\right)\right)\left(1-E_{\alpha, 2}\left(-k^{2} t_{0}^{\alpha}\right)\right)-\right. \tag{19}\\
\left.-\left(\frac{\Phi_{0 k}}{t_{0}}-F_{2 k} t_{0} E_{\alpha, 3}\left(-k^{2} t_{0}^{\alpha}\right)\right)\left(1-E_{\alpha, 2}\left(-k^{2} t_{1}^{\alpha}\right)\right)\right] G_{k}^{-1}
\end{gather*}
$$

which imply the inequalities

$$
\begin{aligned}
\left\|F_{0}\right\|_{H^{\gamma+2 \theta}(\mathbb{R})} & \leq \sum_{j=0}^{1} c_{j}\left\|\Phi_{j}\right\|_{H^{\gamma+2+2 \theta}(\mathbb{R})}+c_{2}\left\|F_{2}\right\|_{H^{\gamma+2 \theta}(\mathbb{R})} \\
\left\|F_{1}\right\|_{H^{\gamma+2}(\mathbb{R})} & \leq \sum_{j=0}^{1} c_{j}\left\|\Phi_{j}\right\|_{H^{\gamma+4}(\mathbb{R})}+c_{2}\left\|F_{2}\right\|_{H^{\gamma+2}(\mathbb{R})}
\end{aligned}
$$

and, by using (18),

$$
\|u\|_{C_{2, \alpha}\left([0, T] ; H^{\gamma}(\mathbb{R})\right)} \leq \sum_{j=0}^{1} c_{j}\left\|\Phi_{j}\right\|_{H^{\gamma+4}(\mathbb{R})}+c_{2}\left\|F_{2}\right\|_{H^{\gamma+2}(\mathbb{R})}
$$

where $c_{j}, j \in\{0,1,2\}$ are positive constants independent of problem's data.
In the case $\alpha \in(1,2)$, the function $E_{\alpha, 2}(-z)$ does not monotonic. But it has a finite number of real positive zeroes. So, assuming $\Phi_{0}, \Phi_{1} \in H^{\gamma+4}(\mathbb{R}), F_{2} \in H^{\gamma+2}(\mathbb{R})$, under severe constraints of existing $t_{0}, t_{1} \in(0, T]$ such that $t_{0} \neq t_{1}$ and $G_{k} \neq 0$ for all $k \in \mathbb{N}$ we obtain that there exists the unique solution

$$
\left(u, F_{0}, F_{1}\right) \in \mathcal{M}_{\alpha, \gamma, \theta}:=C_{2, \alpha}\left([0, T] ; H^{\gamma}(\mathbb{R})\right) \times H^{\gamma+2 \theta}(\mathbb{R}) \times H^{\gamma+2}(\mathbb{R})
$$

of the inverse problem $(14)-(16)$ for all $\theta \in(0,1)$, that it is given by the Fourier series (7) and (5) with u_{k} defined by (17), $F_{0 k}, F_{1 k}$ defined by (19) and depends continuously on the data $\Phi_{0}, \Phi_{1}, F_{2}$.
4. Conclusion. For a time fractional sub-diffusion equation we prove the correctness of the inverse problem which is to find a classical in time with values in the space of periodic spatial distributions solution for the direct problem, its initial data and a source
term of the equation under the same kind time integral over-determination conditions. More complicated situation is for a time fractional super-diffusion equation. The numbers t_{1}, t_{2} can not be arbitrarily taken from ($\left.0, T\right]$ in such type over-determination conditions.

References

1. J. Nakagawa, K. Sakamoto, and M. Yamamoto, Overview to mathematical analysis for fractional diffusion equation - new mathematical aspects motivated by industrial collaboration, J. Math-for-Ind. 2 (2010), no. A, 99-108.
2. Y. Zhang and X. Xu, Inverse source problem for a fractional diffusion equation, Inverse Probl. 27 (2011), no. 3, Art. ID 035010.
3. W. Rundell, X. Xu, and L. Zuo, The determination of an unknown boundary condition in fractional diffusion equation, Appl. Anal. 92 (2013), no. 7, 1511-1526.
4. T. S. Aleroev, M. Kirane, and S. A. Malik, Determination of a source term for a time fractional diffusion equation with an integral type over-determination condition, Electron. J. Differ. Equ. 2013 (2013), no. 270, 1-16.
5. Y. Hatano, J. Nakagawa, Sh. Wang, and M. Yamamoto, Determination of order in fractional diffusion equation, J. Math-for-Ind. 5 (2013), no. A, 51-57.
6. B. Jim and W. Rundell, A turorial on inverse problems for anomalous diffusion processes, Inverse Probl. 31 (2015), no. 3, Art. ID 035003.
7. Ja. Janno, Determination of the order of fractional derivative and a kernel in an inverse problem for a generalized time fractional diffusion equation, Electron. J. Differ. Equ. 2016 (2016), no. 199, 1-28.
8. H. Lopushanska, A. Lopushansky, and O. Myaus, Inverse problem in a space of periodic spatial distributions for a time fractional diffusion equation, Electron. J. Differ. Equ. 2016 (2016), no. 14, 1-14.
9. A. Lopushansky, H. Lopushanska, and O. Myaus, An inverse fractional source problem in a space of periodic spatial distributions, Frac. Diff. Calc. 6 (2016), no. 2, 267-274.
10. M. Hussein, D. Lesnic, and M. I. Ismailov, An inverse problem of finding the time-dependent diffusion coefficient from an integral condition, Math. Methods Appl. Sci. 39 (2016), no. 5, 963-980.
11. M. Ivanchov, Inverse problems for equations of parabolic type, Math. Studies, Monograph Ser., VNTL Publ., Lviv, 2003.
12. M. M. Djrbashian and A. B. Nersessyan, Fractional derivatives and Cauchy problem for differentials of fractional order, Izv. Akad. Nauk Arm. SSR, Mat. 3 (1968), no. 3, 3-29.
13. A.N. Kochubei, A Cauchy problem for evolution equations of fractional order, Dif. Eqs 25 (1989), no. 8, 967-974.
14. Yu. Luchko, Boundary value problem for the generalized time-fractional diffusion equation of distributed order, Fract. Calc. Appl. Anal. 12 (2009), no. 4, 409-422.
15. M. M. Meerschaert, E. Nane, and P. Vallaisamy, Fractional Cauchy problems on bounded domains, Ann. Probab. 37 (2009), no. 3, 979-1007.
16. A. A. Voroshylov and A. A. Kilbas, Existence conditions for a classical solution of the cauchy problem for the diffusion-wave equation with a partial Caputo derivative, Dokl. Math. $\mathbf{7 5}$ (2007), no. 3, 407-410.
17. Z. Li and M. Yamamoto, Initial boundary-value problems for linear diffusion equation with multiple time-fractional derivatives, arXiv: 1306.2778 v 1 .
18. V. A. Mikhailets and A. A. Murach, Hörmander spaces, interpolation, and elliptic problems, Birkhauser, Basel, 2014.
19. V. V. Gorodetsky and V. A. Litovchenko, The Cauchy problem for pseudo-differential equations in spaces of distributions of type S^{\prime}, Dop. Acad. Sci. Ukraine 10 (1992), no. 6, 5-9 (in Ukrainian).
20. R. Jebari, Solvability and positive solutions of a system of higher order fractional boundary value problem with integral conditions, Frac. Diff. Calc. 6 (2016), no. 2, 179-199.
21. B. Y. Ptashnyk, V. S. Ilkiv, I. Ya. Kmit, and V. M. Polishchuk, Nonlocal boundary-value problems for equations with partial derivatives, Naukova dumka, Kyiv, 2002 (in Ukrainian).
22. Ja. M. Drin', Classical solvability of multi-point non-local problem for parabolic pseudodifferential equation with non-smooth symbol, J. of Lviv Polytechnic Nat. Univ. "Phys. and Math. Sciences", 804 (2010), no. 21, 5-28 (in Ukrainian).
23. V. S. Vladimirov, Generelized functions in mathematical physycs, Nauka, Moskow, 1979 (in Russian).

$$
\begin{aligned}
& \text { Стаття: надійшла до редколегії 02.06.2017 } \\
& \text { доопрацъована З0.10.2017 } \\
& \text { прийнята до друку 13.11.2017 }
\end{aligned}
$$

ВІДНОВЛЕННЯ ПОЧАТКОВИХ ДАНИХ РОЗВ'ЯЗКУ ТА ПРАВОЇ ЧАСТИНИ РІВНЯННЯ ДРОБОВОЇ ДИФУЗІЇ В ПРОСТОРІ ПЕРІОДИЧНИХ УЗАГАЛЬНЕНИХ ФУНКЦІЙ

Галина ЛОПУШАНСЪКА ${ }^{1}$, Ольга М'ЯУС
${ }^{1}$ Львісъкий національний університет ім. Івана Франка вул. Університетська, 1, 79000, Львів e-mail: lhp@ukr.net Національний університет "Львівська політехніка"
вул. С. Бандери, 12, 79001, Лъвів
e-mail: myausolya@mail.ru

Доводимо коректність оберненої задачі для рівняння суб-дифузії з регуляризованою похідною дробового порядку за часом, що полягає у знаходженні розв'язку прямої задачі, класичного за часом зі значеннями в просторі періодичних узагальнених функцій, його невідомих початкових даних і правої частини рівняння. З'ясовуємо, що можна використовувати однакового вигляду інтегральні за часом умови перевизначення.

Ключові слова: похідна дробового порядку, обернена задача, періодична узагальнена функція, інтегральна за часом умова перевизначення.

