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We prove the correctness of an inverse problem for a time fractional sub-
di�usion equation. This problem is to �nd a solution of direct problem, which
is classical in time with values in the space of periodic spatial distributions, its
initial data and a source term of the equation. We show that the same kind
time integral over-determination conditions may be used.
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Inverse Cauchy and boundary-value problems for a time fractional di�usion equati-
ons with di�erent unknown quantities and under di�erent over-determination conditions
are actively studied in connection with their applications (see, for instance, [1]�[9]).

We study the inverse problem for a time fractional di�usion equation. This problem
is to �nd a solution for direct problem, classical in time with values in the space of
periodic spatial distributions, its initial data and a source term of the equation. We use
the time integral over-determination conditions. Such kind of conditions generalise the
multi-point conditions. Space integral over-determination conditions have been used, for
instance, in [4, 10, 11] for study the inverse problems.

Note that the su�cient conditions of classical solvability of fractional Cauchy and
boundary-value problems were obtained, for example, in [12]�[17], the existence and uni-
queness theorems to the boundary-value problems for partial di�erential equations in
Sobolev spaces were obtained by Yu. Berezansky, V. I. Gorbachuk and M. L. Gorbachuk,
Ya. Roitberg, J.-L. Lions, E. Magenes, V. A. Mikhailets, A. A. Murach and others (see
[18] and references therein), and in [19] the existence and uniqueness theorems to the
space fractional Cauchy problem in Schwartz spaces were proved. The solvability of
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some nonclassical direct problems for partial di�erential equations with integral initi-
al conditions, in particular, in the space of periodic spatial variable functions, have been
established, for example, in [20, 21], the multi-point non-local problem for parabolic
pseudo-di�erential equations with non-smooth symbols has been investigated in [22].
The inverse problem on determination only the initial data of the solution (classical in
time with values in the space of periodic spatial distributions) of a time fractional di-
�usion equation, or only a source term of a such type equation, were studied in [8] and
[9], respectively.

1. Auxiliary de�nitions. Assume that N is a set of natural numbers, Z+ = N∪{0},
D(R) is the space of in�nitely di�erentiable functions with compact supports, S(R) is
the space of rapidly decreasing in�nitely di�erentiable functions [23, p. 90], while D′(R)
and S ′(R) are the spaces of linear continuous functionals (distributions) over D(R) and
S(R), respectively, and the symbol (f, ϕ) stands for the value of the distribution f on
the test function ϕ. Note that S ′(R) is the space of slowly increasing distributions.

Recall that the Caputo derivative (or the Caputo-Djrbashian derivative) of order
α ∈ (0, 1) is de�ned by

cDα
t v(x, t) =

1

Γ(1− α)

[ ∂
∂t

t∫
0

v(x, τ)

(t− τ)α
dτ − v(x, 0)

tα

]
.

Let Xk(x) = sin kx, k ∈ N. Similarly to [23, p. 120], we denote by D′2π(R) the space
of periodic distributions, i.e., the space of v ∈ D′(R) such that

v(x+ 2π) = v(x) = −v(−x) ∀x ∈ R.

The formal series

(1)

∞∑
k=1

vkXk(x), x ∈ R

is the Fourier series of the distribution v ∈ D′2π(R), and numbers

vk =
2

π
(v,Xk)2π =

2

π
(v, hXk)

are its Fourier coe�cients. Here h(x) is an even function from D(R) possessing the
properties:

h(x) =

{
1, x ∈ (−π + ε, π − ε)
0, x ∈ R \ (−π, π)

, 0 ≤ h(x) ≤ 1.

Note that

vk = 2
π

∫ π
0
v(x)Xk(x)dx for v ∈ D′2π(R) ∩ L1

loc(R),

and then the series (1) is the classical Fourier series of v by the system Xk, k ∈ N.
As it is known (see [23, p. 123]) D′2π(R) ⊂ S ′(R), the series (1) of v ∈ D′2π(R)

converges in S ′(R) to v, and for the Fourier coe�cients the estimates hold

(1 + k)−m|vk| ≤ C(v,m) ∀k ∈ N

with some m ∈ Z+ where C(v,m) is the positive constant, the same for all k ∈ N.
We use the following: for γ ∈ R
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Hγ(R) =
{
v ∈ D′2π(R) : ‖v‖Hγ(R) = sup

k∈N
|vk|(1 + k)γ < +∞

}
(note that Hγ+ε(R) ⊂ Hγ(R) for all ε > 0, γ ∈ R),

C
(
[0, T ];Hγ(R)

)
is the space of continuous in t ∈ [0, T ] functions v(x, t) with values

v(·, t) ∈ Hγ(R) endowed with the norm ‖v‖
C
(

[0,T ];Hγ(R)
) = max

t∈[0,T ]
‖v(·, t)‖Hγ(R),

Cb
(
(0, T ];Hγ(R)

)
is the space of continuous in t ∈ (0, T ] functions v(x, t) with values

v(·, t) ∈ Hγ(R) endowed with the norm ‖v‖
Cb

(
(0,T ];Hγ(R)

) = sup
t∈(0,T ]

‖v(·, t)‖Hγ(R),

C2,α

(
[0, T ];Hγ(R)

)
=
{
v ∈ C

(
[0, T ];H2+γ(R)

)
:c Dαv ∈ Cb

(
(0, T ];Hγ(R)

)}
is its

subspace endowed with the norm

‖v‖
C2,α

(
[0,T ];Hγ(R)

) = max
{
‖v‖

C
(

[0,T ];H2+γ(R)
), ‖cDαv‖

Cb

(
(0,T ];Hγ(R)

)}.
2. The inverse problem. We study the inverse problem

(2) cDα
t u− uxx = F0(x), (x, t) ∈ QT := R× (0, T ],

(3) u(x, 0) = F1(x), x ∈ R,

(4)

t0∫
0

u(x, t)dt = Φ0(x),

t1∫
0

u(x, t)dt = Φ1(x), x ∈ R, t0, t1 ∈ (0, T ]

where α ∈ (0, 1), Φ0,Φ1 are given functions, T is a given positive number, u, F0, F1 are
unknown functions.

Let the following assumption holds:

(A) γ ∈ R, Φ0,Φ1 ∈ Hγ+4(R), t0, t1 ∈ (0, T ], t0 6= t1.

Expand the functions Fj(x), Φj(x), j ∈ {0, 1}, in the formal Fourier series by the
system Xk(x), k ∈ N:

(5) Fj(x) =

∞∑
k=1

FjkXk(x), x ∈ R,

(6) Φj(x) =

∞∑
k=1

ΦjkXk(x), x ∈ R, j = 0, 1.

De�nition 1. The vector-function

(u, F0, F1) ∈Mα,γ := C2,α

(
[0, T ];Hγ(R)

)
×Hγ(R)×Hγ+2(R)

given by the series

(7) u(x, t) =

∞∑
k=1

uk(t)Xk(x), (x, t) ∈ QT

and (5), satisfying the equation (2) in S ′(R) for every t ∈ (0, T ] and the conditions (3),
(4), is called a solution of the problem (2)�(4).
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Substituting the function (7) in the equation (2) and the conditions (3), (4), we
obtain the problems

(8) cDα
t uk + k2uk = F0k, t ∈ (0, T ], uk(0) = F1k,

(9)

t0∫
0

uk(t)dt = Φ0k,

t1∫
0

uk(t)dt = Φ1k, k ∈ N,

for the unknown uk(t), t ∈ [0, T ] and Fjk, j = 0, 1, k ∈ N.
So, the vector-functions (uk(t), F0k, F1k) (k ∈ N) of the Fourier coe�cients of the

solution satisfy the inverse problems (8), (9).

We use the Mittag�Le�er function Eα,µ(x) =
∑∞
p=0

xp

Γ(pα+µ) .

The function Eα,µ(−x) (x > 0) is in�nitely di�erentiable for α ∈ (0, 1], µ > 0 and
compactly monotonic. We have 0 < Eα,µ(−k2tα) < 1 for all t > 0, µ ≥ α,

Eα,µ(−x) ≤ rα,µ
1 + x

, x > 0, where rα,µ is a positive constant,

and the asymptotic behavior [12]

Eα,µ(−x) = O
( 1

x

)
, x→ +∞.

Theorem 1. Assume that γ ∈ R, F0 ∈ Hγ(R), F1 ∈ Hγ+2(R). Then there exists a
unique solution u ∈ C2,α

(
[0, T ];Hγ(R)

)
to the direct problem (2), (3). It is given by (7)

where

(10) uk(t) = F0kk
−2
[
1− Eα,1(−k2tα)

]
+ F1kEα,1(−k2tα), t ∈ [0, T ], k ∈ N.

The solution depends continuously on the data (F0, F1), and the following inequality
holds:

(11) ||u||
C2,α

(
[0,T ];Hγ(R)

) ≤ a0||F0||Hγ(R) + a1||F1||Hγ+2(R),

where aj, j ∈ {0, 1} are positive constants independent of data.

Proof. It follows from the theorem 1 in [8] that there exists the unique solution u ∈
C2,α

(
[0, T ];Hγ(R)

)
to the problem (2), (3) under the theorem's conditions, that it is

given by (7) where

uk(t) = F0k

t∫
0

τα−1Eα,α(−k2τα)dτ + F1kEα,1(−k2tα), t ∈ [0, T ], k ∈ N.

By the link

λ

t∫
0

τα−1Eα,α(−λτα)dτ = 1− Eα,1(−λtα),

we obtain the formulas (10) and, using [8, th.1], we obtain (11). This inequality implies
that a solution of the problem is unique and depends continuously on the data. �
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Theorem 2. Assume that (A) holds. Then there exists a unique solution (u, F0, F1) ∈
Mα,γ of the inverse problem (2)�(4). It is given by the Fourier series (7) and (6) where
uk(t) are de�ned by (10),

(12) F0k =
[Φ0k

t0
Eα,2(−k2tα1 )− Φ1k

t1
Eα,2(−k2tα0 )

]
k2 G−1

k ,

F1k =
[Φ1k

t1

(
1− Eα,2(−k2tα0 )

)
− Φ0k

t0

(
1− Eα,2(−k2tα1 )

)]
G−1
k ,

Gk = Eα,2(−k2tα1 )− Eα,2(−k2tα0 ), k ∈ N.
The solution depends continuously on the data Φ0, Φ1 and the following inequality holds:

||u||
C2,α

(
[0,T ];Hγ(R)

) + ||F0||Hγ(R) + ||F1||Hγ+2(R)

(13) ≤ b0||Φ0||Hγ+4(R) + b1||Φ1||Hγ+4(R),

where bj, j ∈ {0, 1} are positive constants independent of data.

Proof. Using (10), we write the conditions (9) as follows

F0kk
−2

t0∫
0

[
1− Eα,1(−k2tα)

]
dt+ F1k

t0∫
0

Eα,1(−k2tα)dt = Φ0k,

F0kk
−2

t1∫
0

[
1− Eα,1(−k2tα)

]
dt+ F1k

t1∫
0

Eα,1(−k2tα)dt = Φ1k,

k ∈ N. Note that [8]
tj∫

0

Eα,1(−k2tα)dt = tjEα,2(−k2tj
α), j = 0, 1, k ∈ N.

From here, according to the assumption (A), we �nd the expressions (12) for the
unknown Fourier coe�cients Fjk, k ∈ N, j = 0, 1. The numbers Gk 6= 0 for all k ∈ N by
the mentioned monotonic property of the Mittag�Le�er function.

Let us show that the founded solution belongs toMα,γ .
Taking the behavior of the Mittag�Le�er function for large k and the formulas (12)

into account, one obtains

(1 + k)γ |F0k| ≤ c0
[
|Φ0k|(1 + k)γ+2 + |Φ1k|(1 + k)γ+2

]
,

(1 + k)γ+2|F1k| ≤ c0
[
|Φ0k|(1 + k)γ+4 + |Φ1k|(1 + k)γ+4

]
, k ∈ N,

where c0 is a positive constant, and therefore,

||F0||Hγ(R) ≤ c0
[
||Φ0||Hγ+2(R) + ||Φ1||Hγ+2(R)

]
,

||F1||Hγ+2(R) ≤ c0
[
||Φ0||Hγ+4(R) + ||Φ1||Hγ+4(R)

]
.
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So, under the theorem's assumptions, F0 ∈ Hγ(R), F1 ∈ Hγ+2(R). Then, using
(11), we obtain the inequality (13). The inequality (13) implies that a solution of the
problem is unique and depends continuously on the problem's data. �

3. Remarks. 1. The obtained result can be transferred to the case of the boundary
value problem for a time fractional di�usion equation

cDα
t u−A(x,D)u = F0(x),

where A(x,D) is an elliptic di�erential expression of the second order with in�nitely di-
�erentiable coe�cients and when the corresponding Sturm�Liouville problem has positive
eigenvalues.

2. In the case α ∈ (1, 2)

cDα
t v(x, t) =

1

Γ(2− α)

t∫
0

vττ (x, τ)

(t− τ)α−1
dτ =

1

Γ(2− α)

[ ∂
∂t

t∫
0

vτ (x, τ)

(t− τ)α−1
dτ − vt(x, 0)

tα−1

]
and we may study the inverse problem

(14) cDα
t u− uxx = F0(x), (x, t) ∈ QT := R× (0, T ],

(15) u(x, 0) = F1(x), ut(x, 0) = F2(x), x ∈ R,

(16)

t0∫
0

u(x, t)dt = Φ0(x),

t1∫
0

u(x, t)dt = Φ1(x), x ∈ R,

where Φ0,Φ1, F2 are the given functions, T is a given positive number, u, F0, F1 are
unknown functions, t0, t1 ∈ (0, T ], t0 6= t1.

By [8, th.1], assuming γ ∈ R, θ ∈ (0, 1), F0 ∈ Hγ+2θ(R), Fj ∈ Hγ+2(R), j = 1, 2, we
obtain the existence of the unique solution u ∈ C2,α

(
[0, T ];Hγ(R)

)
to the direct problem

(14), (15). It is given by (7) where
(17)
uk(t) = F0kk

−2
[
1−Eα,1(−k2tα)

]
+F1kEα,1(−k2tα)+F2ktEα,2(−k2tα), t ∈ [0, T ], k ∈ N.

The solution depends continuously on the data (F0, F1, F2), and the following inequality
holds:

(18) ||u||
C2,α

(
[0,T ];Hγ(R)

) ≤ a0||F0||Hγ+2θ(R) +

2∑
j=1

aj ||Fj ||Hγ+2(R),

where aj , j ∈ {0, 1, 2} are positive constants independent of data.
Using (17), we write the conditions (16) as follows

F0kk
−2

t0∫
0

[
1− Eα,1(−k2tα)

]
dt+ F1k

t0∫
0

Eα,1(−k2tα)dt+ F2k

t0∫
0

tEα,2(−k2tα)dt = Φ0k,

F0kk
−2

t1∫
0

[
1− Eα,1(−k2tα)

]
dt+ F1k

t1∫
0

Eα,1(−k2tα)dt+ F2k

t1∫
0

tEα,2(−k2tα)dt = Φ1k,
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k ∈ N. Note that

tj∫
0

tEα,2(−k2tα)dt =
1

αk4/α

k2tj
α∫

0

Eα,2(−z)z 2
α−1dz = t2jEα,3(−k2tj

α),

k ∈ N and we have

F0kk
−2t0

[
1− Eα,2(−k2tα0 )

]
+ F1kt0Eα,2(−k2tα0 )dt = Φ0k − F2kt

2
0Eα,3(−k2tα0 ),

F0kk
−2t1

[
1− Eα,2(−k2tα1 )

]
+ F1kt1Eα,2(−k2tα1 ) = Φ1k − F2kt

2
1Eα,3(−k2tα1 ),

k ∈ N. From here if

Gk := Eα,2(−k2tα1 )− Eα,2(−k2tα0 ) 6= 0 ∀k ∈ N
we may �nd the expressions

(19)

F0k =
[(Φ0k

t0
− F2kt0Eα,3(−k2tα0 )

)
Eα,2(−k2tα1 )−

−
(Φ1k

t1
− F2kt1Eα,3(−k2tα1 )

)
Eα,2(−k2tα0 )

]
k2 G−1

k ,

F1k =
[(Φ1k

t1
− F2kt1Eα,3(−k2tα1 )

)(
1− Eα,2(−k2tα0 )

)
−

−
(Φ0k

t0
− F2kt0Eα,3(−k2tα0 )

)(
1− Eα,2(−k2tα1 )

)]
G−1
k

which imply the inequalities

||F0||Hγ+2θ(R) ≤
1∑
j=0

cj ||Φj ||Hγ+2+2θ(R) + c2||F2||Hγ+2θ(R),

||F1||Hγ+2(R) ≤
1∑
j=0

cj ||Φj ||Hγ+4(R) + c2||F2||Hγ+2(R),

and, by using (18),

||u||
C2,α

(
[0,T ];Hγ(R)

) ≤ 1∑
j=0

cj ||Φj ||Hγ+4(R) + c2||F2||Hγ+2(R),

where cj , j ∈ {0, 1, 2} are positive constants independent of problem's data.
In the case α ∈ (1, 2), the function Eα,2(−z) does not monotonic. But it has a �nite

number of real positive zeroes. So, assuming Φ0,Φ1 ∈ Hγ+4(R), F2 ∈ Hγ+2(R), under
severe constraints of existing t0, t1 ∈ (0, T ] such that t0 6= t1 and Gk 6= 0 for all k ∈ N we
obtain that there exists the unique solution

(u, F0, F1) ∈Mα,γ,θ := C2,α

(
[0, T ];Hγ(R)

)
×Hγ+2θ(R)×Hγ+2(R)

of the inverse problem (14)�(16) for all θ ∈ (0, 1), that it is given by the Fourier series
(7) and (5) with uk de�ned by (17), F0k, F1k de�ned by (19) and depends continuously
on the data Φ0,Φ1, F2.

4. Conclusion. For a time fractional sub-di�usion equation we prove the correctness
of the inverse problem which is to �nd a classical in time with values in the space of
periodic spatial distributions solution for the direct problem, its initial data and a source
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term of the equation under the same kind time integral over-determination conditions.
More complicated situation is for a time fractional super-di�usion equation. The numbers
t1, t2 can not be arbitrarily taken from (0, T ] in such type over-determination conditions.
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