УДК 512.53

FREE ABELIAN DIBANDS

Yurii ZHUCHOK

Luhansk Taras Shevchenko National University, Gogol Square, 1, 92703 Starobilsk, Ukraine e-mail: zhuchok.yu@gmail.com

We prove that varieties of abelian dibands and (ln, rn)-dibands coincide, and consider some properties of free abelian dibands.

Key words: dimonoid, abelian diband, free abelian diband, semigroup

1. Introduction. As is well-known the notion of a dimonoid was introduced by J.-L. Loday in [1]. Recall that a nonempty set D with two binary associative operations \dashv and \vdash is called a *dimonoid* if for all $x, y, z \in D$ the following conditions hold:

- $(D_1) \qquad (x \dashv y) \dashv z = x \dashv (y \vdash z),$
- $(D_2) \qquad (x \vdash y) \dashv z = x \vdash (y \dashv z),$
- $(D_3) \qquad (x \dashv y) \vdash z = x \vdash (y \vdash z).$

It is not hard to see that a dimonoid becomes a semigroup if the two dimonoid operations coincide. Dimonoids and in particular dialgebras play a prominent role in the theory of Leibniz algebras, these structures and related algebras have been studied by many authors (see e.g., [2, 3, 4, 5]).

J.-L. Loday [1] constructed a free associative dialgebra and a free dimonoid. Later on, free dimonoids and free commutative dimonoids were investigated in detail in [6] and [7], respectively. Free abelian dimonoids (this class does not coincide with the class of commutative dimonoids) were described in [8]. The structure of free normal dibands and other relatively free dimonoids was considered in [9, 10]. In this paper we study free abelian idempotent dimonoids.

The paper is organized as follows. In Section 2 we present necessary definitions and examples of abelian idempotent dimonoids. In Section 3 we give necessary and sufficient conditions under which a dimonoid is an abelian diband, and find a free abelian idempotent dimonoid. In addition, we consider some properties of free abelian dibands.

2. Examples of abelian dibands. A nonempty class H of algebraic systems is a *variety* if the Cartesian product of any sequence of H-systems is a H-system, every subsystem of an arbitrary H-system is a H-system and any homomorphic image of an arbitrary H-system is a H-system [11].

²⁰¹⁰ Mathematics Subject Classification: 08B20, 17A30, 08A30 © Zhuchok, Yu., 2017

A dimonoid (D, \dashv, \vdash) is called *abelian* [8] if for all $x, y \in D$,

$$x \dashv y = y \vdash x.$$

Recall that a *band* is a semigroup whose elements are idempotents. If for a dimonoid (D, \dashv, \vdash) the semigroups (D, \dashv) and (D, \vdash) are bands, then this dimonoid is called *idempotent* (or simply a *diband*).

The class of all abelian idempotent dimonoids satisfies the conditions of Birkhoff's theorem and therefore it is a variety. A dimonoid which is free in the variety of abelian dibands will be called a *free abelian idempotent dimonoid*.

Consider some examples of abelian dibands.

- (i) It is obvious that a non-singleton left zero and right zero dimonoid (D, ⊣, ⊢) i.e., (D, ⊣) is a left zero semigroup and (D, ⊢) is a right zero semigroup, is an abelian diband but not commutative [7].
- (ii) Let (S, \circ) be an arbitrary semigroup. A semigroup (S, *), where $x * y = y \circ x$ for all $x, y \in S$, is called a *dual semigroup* to (S, \circ) .

A semigroup (S, \circ) is called *left commutative* (respectively, *right commutative*) if it satisfies the identity $x \circ y \circ a = y \circ x \circ a$ (respectively, $a \circ x \circ y = a \circ y \circ x$).

Proposition 1. Let (S, \circ) be an arbitrary right commutative band and (S, *) a dual semigroup to (S, \circ) . Then the algebra $(S, \circ, *)$ is an abelian diband.

Proof. The proof follows from Proposition 3 of [8].

Proposition 2. Let (S, *) be an arbitrary left commutative band and (S, \circ) a dual semigroup to (S, *). Then the algebra $(S, \circ, *)$ is an abelian diband.

Proof. The proof follows from Proposition 4 of [8].

(iii) An idempotent semigroup S is called a *left regular band* if aba = ab for all $a, b \in S$. If instead of the last identity, aba = ba holds, then S is a *right regular band*.

A dimonoid (D, \dashv, \vdash) is called an (lr, rr)-diband [10] if (D, \dashv) is a left regular band and (D, \vdash) is a right regular band.

Let X be a nonempty set and FS(X) the free semilattice of all nonempty finite subsets of X with respect to the operation of the set theoretical union. Define two binary operations \dashv and \vdash on the set $B_{lz,rz}(X) = \{(a, A) \in X \times FS(X) | a \in A\}$ as follows:

$$(x, A) \dashv (y, B) = (x, A \cup B),$$

 $(x, A) \vdash (y, B) = (y, A \cup B).$

Proposition 3. [10] The algebra $(B_{lz,rz}(X), \dashv, \vdash)$ is a free (lr, rr)-diband.

It is obvious that the diband $(B_{lz,rz}(X), \dashv, \vdash)$ is abelian. We will denote this diband simply by $B_{lz,rz}(X)$.

Further we show that there are examples of abelian dimonoids which are not idempotent and, conversely, there are idempotent dimonoids which are not abelian.

(iv) For a nonempty set X, define two binary operations \dashv and \vdash on the direct product of X and FS(X) (see example (iii) above) by the rule:

$$(x, A) \dashv (y, B) = (x, A \cup \{y\} \cup B),$$
$$(x, A) \vdash (y, B) = (y, A \cup \{x\} \cup B).$$

Proposition 4. The algebra $(X \times FS(X), \dashv, \vdash)$, where $|X| \neq 1$, is an abelian dimonoid but not idempotent one.

Proof. The fact that $(X \times FS(X), \dashv, \vdash)$ is an abelian dimonoid is proved analogously as Proposition 2 of [8]. This dimonoid is not idempotent since

$$(x, A) \dashv (x, A) = (x, A \cup \{x\}) \neq (x, A),$$

when $x \notin A$.

(v) Let X_1, X_2, \ldots, X_n $(n \ge 3)$ be nonempty sets. Fix a natural number α such that $[0, 5n] < \alpha < n$, where [0, 5n] is the integer part of 0,5n, and take arbitrary $x = (x_1, x_2, \ldots, x_n), y = (y_1, y_2, \ldots, y_n) \in \prod_{i=1}^n X_i$. Define two binary operations \dashv_{α} and \vdash_{α} on $\prod_{i=1}^n X_i$ by

$$x \dashv_{\alpha} y = (x_1, \dots, x_{\alpha}, y_{\alpha+1}, \dots, y_n),$$
$$x \vdash_{\alpha} y = (x_1, \dots, x_{n-\alpha}, y_{n-\alpha+1}, \dots, y_n)$$

Proposition 5. The algebraic system $(\prod_{i=1}^{n} X_i, \dashv_{\alpha}, \vdash_{\alpha})$ is a diband.

 $= x \vdash_{\alpha} (y \vdash_{\alpha} z).$

Proof. For all $x, y, z \in \prod_{i=1}^{n} X_i$ we have

$$(x \dashv_{\alpha} y) \dashv_{\alpha} z = (x_{1}, \dots, x_{\alpha}, y_{\alpha+1}, \dots, y_{n}) \dashv_{\alpha} (z_{1}, z_{2}, \dots, z_{n}) = = (x_{1}, \dots, x_{\alpha}, z_{\alpha+1}, \dots, z_{n}) = = (x_{1}, x_{2}, \dots, x_{n}) \dashv_{\alpha} (y_{1}, \dots, y_{\alpha}, z_{\alpha+1}, \dots, z_{n}) = = x \dashv_{\alpha} (y \dashv_{\alpha} z), (x \vdash_{\alpha} y) \vdash_{\alpha} z = (x_{1}, \dots, x_{n-\alpha}, y_{n-\alpha+1}, \dots, y_{n}) \vdash_{\alpha} (z_{1}, z_{2}, \dots, z_{n}) = = (x_{1}, \dots, x_{n-\alpha}, z_{n-\alpha+1}, \dots, z_{n}) = = (x_{1}, x_{2}, \dots, x_{n}) \vdash_{\alpha} (y_{1}, \dots, y_{n-\alpha}, z_{n-\alpha+1}, \dots, z_{n}) =$$

Therefore, operations \dashv_{α} and \vdash_{α} are associative. Show that axioms (D_1) – (D_3) hold:

$$\begin{aligned} (x \dashv_{\alpha} y) \dashv_{\alpha} z &= (x_{1}, \dots, x_{\alpha}, z_{\alpha+1}, \dots, z_{n}) = \\ &= (x_{1}, x_{2}, \dots, x_{n}) \dashv_{\alpha} (y_{1}, \dots, y_{n-\alpha}, z_{n-\alpha+1}, \dots, z_{n}) = \\ &= x \dashv_{\alpha} (y \vdash_{\alpha} z), \end{aligned} \\ (x \vdash_{\alpha} y) \dashv_{\alpha} z &= (x_{1}, \dots, x_{n-\alpha}, y_{n-\alpha+1}, \dots, y_{n}) \dashv_{\alpha} (z_{1}, z_{2}, \dots, z_{n}) = \\ &= (x_{1}, \dots, x_{n-\alpha}, y_{n-\alpha+1}, \dots, y_{\alpha}, z_{\alpha+1}, \dots, z_{n}) = \\ &= (x_{1}, x_{2}, \dots, x_{n}) \vdash_{\alpha} (y_{1}, \dots, y_{\alpha}, z_{\alpha+1}, \dots, z_{n}) = \\ &= x \vdash_{\alpha} (y \dashv_{\alpha} z), \end{aligned}$$
$$(x \dashv_{\alpha} y) \vdash_{\alpha} z = (x_{1}, \dots, x_{\alpha}, y_{\alpha+1}, \dots, y_{n}) \vdash_{\alpha} (z_{1}, z_{2}, \dots, z_{n}) = \\ &= (x_{1}, \dots, x_{n-\alpha}, z_{n-\alpha+1}, \dots, z_{n}) = \\ &= x \vdash_{\alpha} (y \vdash_{\alpha} z). \end{aligned}$$

So, $(\prod_{i=1}^{n} X_i, \dashv_{\alpha}, \vdash_{\alpha})$ is a dimonoid, in addition, it is clear that this dimonoid is idempotent.

We note that if for example $|X_1| > 1$, then $(\prod_{i=1}^n X_i, \exists_{\alpha}, \vdash_{\alpha})$ is not abelian. Indeed, for $x, y \in \prod_{i=1}^n X_i$ with distinct x_1 and y_1 we obtain

 $x\dashv_{\alpha} y = (x_1,...,x_{\alpha},y_{\alpha+1},...,y_n) \neq (y_1,...,y_{n-\alpha},x_{n-\alpha+1},...,x_n) = y\vdash_{\alpha} x.$

3. The free abelian diband.

An idempotent semigroup S is called a *left* (respectively, *right*) *normal band* if it is right (respectively, left) commutative (see Section 2).

A dimonoid (D, \dashv, \vdash) is called an (ln, rn)-diband [10] if (D, \dashv) is a left normal band and (D, \vdash) is a right normal band.

It is well-known that every left (right) normal band is left (right) regular. The converse statement is not true in general.

As is known (see Corollary 1 of [10]), the variety of (ln, rn)-dibands and the variety of (lr, rr)-dibands coincide.

Now we give necessary and sufficient conditions under which an arbitrary dimonoid is an abelian diband.

Theorem 1. A dimonoid (D, \dashv, \vdash) is abelian idempotent if and only if (D, \dashv, \vdash) is an (ln, rn)-diband.

Proof. Let (D, \dashv, \vdash) be an abelian idempotent dimonoid. Using dimonoid axioms of (D_1) and (D_3) , the property of abelianity for (D, \dashv, \vdash) and associativity of \dashv, \vdash , for all $a, b \in D$ we have

$$(a \dashv b) \dashv a = a \dashv (b \vdash a) = a \dashv (a \dashv b) = (a \dashv a) \dashv b = a \dashv b,$$

 $a \vdash (b \vdash a) = (a \dashv b) \vdash a = (b \vdash a) \vdash a = b \vdash (a \vdash a) = b \vdash a.$

It means that (D, \dashv) is a left regular band and (D, \vdash) is a right regular band, therefore (D, \dashv, \vdash) is an (lr, rr)-diband.

By Corollary 1 of [10], (D, \dashv, \vdash) is an (ln, rn)-diband.

Now let (D, \dashv, \vdash) be an (ln, rn)-diband, then for all $x, y, a \in D$,

 $a \dashv x \dashv y = a \dashv y \dashv x, \qquad x \vdash y \vdash a = y \vdash x \vdash a.$

Using dimonid axioms, idempotency of \neg, \vdash , and the fact that (D, \neg) (respectively, (D, \vdash)) is a left (respectively, right) normal band, we obtain

$$\begin{array}{l} x \dashv y = (x \dashv y) \vdash (x \dashv y) = \\ = x \vdash (y \vdash (x \dashv y)) = \\ = x \vdash ((y \vdash x) \dashv y) = \\ = (x \vdash (y \vdash x)) \dashv y = \\ = (y \vdash x) \dashv y = \\ = y \vdash (x \dashv y) = \\ = y \vdash ((x \dashv y) \dashv x) = \\ = (y \vdash (x \dashv y)) \dashv x = \\ = ((y \vdash x) \dashv y) \dashv x = \\ = ((y \vdash x) \dashv y) \dashv x = \\ = (y \vdash x) \dashv (y \vdash x) = \\ = y \vdash x. \end{array}$$

Thus, (D, \dashv, \vdash) is an abelian diband.

It should be noted that the sufficiency of this theorem follows also from Corollary 1 of [10] and the necessity of Theorem 1 of [10]. From Theorem 1 we immediately obtain

Corollary 1. The variety of abelian dibands and the variety of (ln, rn)-dibands coincide.

Let $B_{lz,rz}(X)$ be a dimonoid from Proposition 3 (see Section 2).

Corollary 2. $B_{lz,rz}(X)$ is the free abelian diband.

Proof. According to Proposition 3, $B_{lz,rz}(X)$ is the an (lr,rr)-diband. By Corollary 1 and Corollary 1 of [10], $B_{lz,rz}(X)$ is a free abelian diband.

Observe that the cardinality of X is the rank of the free abelian diband $B_{lz,rz}(X)$ and this diband is uniquely determined up to an isomorphism by |X|.

It is clear that operations of the free abelian diband $B_{lz,rz}(X)$ coincide if and only if the rank of this diband is equal to 1.

The following two statements are obvious.

Proposition 6. The semigroups $(B_{lz,rz}(X), \dashv)$ and $(B_{lz,rz}(X), \vdash)$ are anti-isomorphic.

We denote the automorphism group of an algebra \mathfrak{A} by $\mathbf{Aut}(\mathfrak{A})$. The symmetric group on X is denoted by S(X).

Proposition 7. $\operatorname{Aut}(B_{lz,rz}(X)) \cong S(X).$

Let $(Fd(X), \prec, \succ)$ be a free dimonoid on X (see, e.g., [3]). For every $w \in Fd(X)$,

where $w = (w_1, \ldots, \widetilde{w}_l, \ldots, w_k)$, we assume $c(w) = \bigcup_{i=1}^k \{w_i\}$. Define a binary relation σ on Fd(X) as follows: $u = (u_1, \ldots, \widetilde{u}_i, \ldots, u_n)$ and $v = (v_1, \ldots, \widetilde{v_j}, \ldots, v_m)$ are σ -equivalent if

$$c(u) = c(v)$$
 and $u_i = v_j$.

A congruence ρ on a dimonoid (D, \dashv, \vdash) is called *abelian idempotent* if $(D, \dashv, \vdash)/\rho$ is an abelian diband. The notion of an (lr, rr)-congruence is defined analogously.

By Theorem 6 of [12], σ is the least (lr, rr)-congruence on $(Fd(X), \prec, \succ)$. From Corollary 1 and Corollary 1 of [10] we obtain

Proposition 8. The binary relation σ is the least abelian idempotent congruence on the free dimonoid $(Fd(X), \prec, \succ)$.

Finally we count the cardinality of the free abelian idempotent dimonoid for a finite case.

As usual, we denote the number of all k-element subsets of an n-element set by C_n^k .

Proposition 9. Let X be an arbitrary nonempty finite set with |X| = n. Then

$$|B_{lz,rz}(X)| = n \cdot 2^{n-1}.$$

19 Proof. Let A be an arbitrary nonempty subset of X. Obviously, we can choose A exactly by $2^n - 1$ ways, in addition, for every set A there exist |A| elements of $B_{lz,rz}(X)$ of the form $(a, A), a \in A$. Therefore,

$$|B_{lz,rz}(X)| = \sum_{A \subseteq X, A \neq \emptyset} |A| =$$

= $\sum_{i=1}^{n} C_{n}^{i} \cdot i =$
= $\sum_{i=1}^{n} n \cdot \frac{(n-1)!}{((i-1)! \cdot (n-1) - (i-1))!} =$
= $n \cdot \sum_{i=1}^{n} C_{n-1}^{i-1} =$
= $n \cdot \sum_{j=0}^{n-1} C_{n-1}^{j} =$
= $n \cdot 2^{n-1}.$

References

- 1. J.-L. Loday. *Dialgebras, in: Dialgebras and related operads*, Lect. Notes Math. **1763**, Springer-Verlag, Berlin (2001), 7–66.
- 2. M. K. Kinyon. Leibniz algebras, Lie racks, and digroups, J. Lie Theory 17 (2007), no. 1, 99-114.
- 3. Yu. V. Zhuchok. Representations of ordered dimonoids by binary relations, Asian-Eur. J. Math. 7 (2014), 1450006.
- Yu. V. Zhuchok. The endomorphism monoid of a free troid of rank 1, Algebra Univers. 76 (2016), no. 3, 355-366.
- E. Burgunder, P.-L. Curien, and M. Ronco. Free algebraic structures on the permutohedra, J. Algebra 487 (2017), 20-59.
- 6. A. V. Zhuchok. Free dimonoids, Ukr. Math. J. 63 (2011), no. 2, 196–208.
- A. V. Zhuchok. Free commutative dimonoids, Algebra Discrete Math. 9 (2010), no. 1, 109– 119.
- 8. Yu. V. Zhuchok. Free abelian dimonoids, Algebra Discrete Math. 20 (2015), no. 2, 330-342.
- 9. A. V. Zhuchok. Free normal dibands, Algebra Discrete Math. 12 (2011), no. 2, 112–127.
- 10. A. V. Zhuchok. Free (lr, rr)-dibands, Algebra Discrete Math. 15 (2013), no. 2, 295-304.
- G. Birkhoff. On the structure of abstract algebras, Proc. Cambr. Phil. Soc. 31 (1935), no. 4, 433-454.
- A. V. Zhuchok. Decompositions of free dimonoids, Uchen. zap. Kazan. univ. Ser. Phys. and Math. 154 (2012), no. 2, 93-100 (in Russian).

Стаття: надійшла до редколегії 15.10.2017 прийнята до друку 24.04.2018

ВІЛЬНІ АБЕЛЕВІ ДІСПОЛУКИ

Юрій ЖУЧОК

Луганський національний університет імені Тараса Шевченка, м. Старобільськ, 92703, плоша Гоголя, 1 e-mail: zhuchok.yu@gmail.com

Доведено, що многовиди абелевих дісполук і (ln, rn)-дісполук збігаються. Розглянуто деякі властивості вільних абелевих дісполук.

Ключові слова: дімоноїд, абелева дісполука, вільна абелева дісполука, напівгрупа.