FREE ABELIAN DIBANDS

Yurii ZHUCHOK
Luhansk Taras Shevchenko National University, Gogol Square, 1, 92703 Starobilsk, Ukraine
e-mail: zhuchok.yu@gmail.com

We prove that varieties of abelian dibands and (ln,rn)-dibands coincide, and consider some properties of free abelian dibands.

Key words: dimonoid, abelian diband, free abelian diband, semigroup

1. Introduction. As is well-known the notion of a dimonoid was introduced by J.-L. Loday in [1]. Recall that a nonempty set D with two binary associative operations \dashv and \vdash is called a dimonoid if for all $x, y, z \in D$ the following conditions hold:

$$
\begin{array}{ll}
\left(D_{1}\right) & (x \dashv y) \dashv z=x \dashv(y \vdash z), \\
\left(D_{2}\right) & (x \vdash y) \dashv z=x \vdash(y \dashv z), \\
\left(D_{3}\right) & (x \dashv y) \vdash z=x \vdash(y \vdash z) .
\end{array}
$$

It is not hard to see that a dimonoid becomes a semigroup if the two dimonoid operations coincide. Dimonoids and in particular dialgebras play a prominent role in the theory of Leibniz algebras, these structures and related algebras have been studied by many authors (see e.g., $[2,3,4,5]$).
J.-L. Loday [1] constructed a free associative dialgebra and a free dimonoid. Later on, free dimonoids and free commutative dimonoids were investigated in detail in [6] and [7], respectively. Free abelian dimonoids (this class does not coincide with the class of commutative dimonoids) were described in [8]. The structure of free normal dibands and other relatively free dimonoids was considered in [9, 10]. In this paper we study free abelian idempotent dimonoids.

The paper is organized as follows. In Section 2 we present necessary definitions and examples of abelian idempotent dimonoids. In Section 3 we give necessary and sufficient conditions under which a dimonoid is an abelian diband, and find a free abelian idempotent dimonoid. In addition, we consider some properties of free abelian dibands.
2. Examples of abelian dibands. A nonempty class H of algebraic systems is a variety if the Cartesian product of any sequence of H-systems is a H-system, every subsystem of an arbitrary H-system is a H-system and any homomorphic image of an arbitrary H-system is a H-system [11].

[^0]A dimonoid (D, \dashv, \vdash) is called abelian $[8]$ if for all $x, y \in D$,

$$
x \dashv y=y \vdash x .
$$

Recall that a band is a semigroup whose elements are idempotents. If for a dimonoid (D, \dashv, \vdash) the semigroups (D, \dashv) and (D, \vdash) are bands, then this dimonoid is called idempotent (or simply a diband).

The class of all abelian idempotent dimonoids satisfies the conditions of Birkhoff's theorem and therefore it is a variety. A dimonoid which is free in the variety of abelian dibands will be called a free abelian idempotent dimonoid.

Consider some examples of abelian dibands.
(i) It is obvious that a non-singleton left zero and right zero dimonoid (D, \dashv, \vdash) i.e., (D, \dashv) is a left zero semigroup and (D, \vdash) is a right zero semigroup, is an abelian diband but not commutative [7].
(ii) Let (S, \circ) be an arbitrary semigroup. A semigroup $(S, *)$, where $x * y=y \circ x$ for all $x, y \in S$, is called a dual semigroup to (S, \circ).
A semigroup (S, \circ) is called left commutative (respectively, right commutative) if it satisfies the identity $x \circ y \circ a=y \circ x \circ a$ (respectively, $a \circ x \circ y=a \circ y \circ x$).
Proposition 1. Let (S, \circ) be an arbitrary right commutative band and $(S, *)$ a dual semigroup to (S, \circ). Then the algebra $(S, \circ, *)$ is an abelian diband.
Proof. The proof follows from Proposition 3 of [8].
Proposition 2. Let $(S, *)$ be an arbitrary left commutative band and (S, \circ) a dual semigroup to $(S, *)$. Then the algebra $(S, \circ, *)$ is an abelian diband.
Proof. The proof follows from Proposition 4 of [8].
(iii) An idempotent semigroup S is called a left regular band if $a b a=a b$ for all $a, b \in S$. If instead of the last identity, $a b a=b a$ holds, then S is a right regular band.
A dimonoid (D, \dashv, \vdash) is called an $(l r, r r)$-diband $[10]$ if (D, \dashv) is a left regular band and (D, \vdash) is a right regular band.

Let X be a nonempty set and $F S(X)$ the free semilattice of all nonempty finite subsets of X with respect to the operation of the set theoretical union. Define two binary operations \dashv and \vdash on the set $B_{l z, r z}(X)=\{(a, A) \in X \times F S(X) \mid a \in A\}$ as follows:

$$
\begin{aligned}
& (x, A) \dashv(y, B)=(x, A \cup B), \\
& (x, A) \vdash(y, B)=(y, A \cup B) .
\end{aligned}
$$

Proposition 3. [10] The algebra $\left(B_{l z, r z}(X), \dashv, \vdash\right)$ is a free (lr, rr)-diband.
It is obvious that the diband $\left(B_{l z, r z}(X), \dashv, \vdash\right)$ is abelian. We will denote this diband simply by $B_{l z, r z}(X)$.

Further we show that there are examples of abelian dimonoids which are not idempotent and, conversely, there are idempotent dimonoids which are not abelian.
(iv) For a nonempty set X, define two binary operations \dashv and \vdash on the direct product of X and $F S(X)$ (see example (iii) above) by the rule:

$$
\begin{aligned}
& (x, A) \dashv(y, B)=(x, A \cup\{y\} \cup B), \\
& (x, A) \vdash(y, B)=(y, A \cup\{x\} \cup B) .
\end{aligned}
$$

Proposition 4. The algebra $(X \times F S(X), \dashv, \vdash)$, where $|X| \neq 1$, is an abelian dimonoid but not idempotent one.

Proof. The fact that ($X \times F S(X), \dashv, \vdash)$ is an abelian dimonoid is proved analogously as Proposition 2 of [8]. This dimonoid is not idempotent since

$$
(x, A) \dashv(x, A)=(x, A \cup\{x\}) \neq(x, A),
$$

when $x \notin A$.
(v) Let $X_{1}, X_{2}, \ldots, X_{n}(n \geqslant 3)$ be nonempty sets. Fix a natural number α such that $[0,5 n]<\alpha<n$, where $[0,5 n]$ is the integer part of $0,5 n$, and take arbitrary $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \prod_{i=1}^{n} X_{i}$. Define two binary operations \dashv_{α} and \vdash_{α} on $\prod_{i=1}^{n} X_{i}$ by

$$
\begin{gathered}
x \dashv_{\alpha} y=\left(x_{1}, \ldots, x_{\alpha}, y_{\alpha+1}, \ldots, y_{n}\right), \\
x \vdash_{\alpha} y=\left(x_{1}, \ldots, x_{n-\alpha}, y_{n-\alpha+1}, \ldots, y_{n}\right) .
\end{gathered}
$$

Proposition 5. The algebraic system $\left(\prod_{i=1}^{n} X_{i}, \dashv_{\alpha}, \vdash_{\alpha}\right)$ is a diband.
Proof. For all $x, y, z \in \prod_{i=1}^{n} X_{i}$ we have

$$
\begin{aligned}
\left(x \dashv_{\alpha} y\right) \dashv_{\alpha} z & =\left(x_{1}, \ldots, x_{\alpha}, y_{\alpha+1}, \ldots, y_{n}\right) \dashv_{\alpha}\left(z_{1}, z_{2}, \ldots, z_{n}\right)= \\
& =\left(x_{1}, \ldots, x_{\alpha}, z_{\alpha+1}, \ldots, z_{n}\right)= \\
& =\left(x_{1}, x_{2}, \ldots, x_{n}\right) \dashv_{\alpha}\left(y_{1}, \ldots, y_{\alpha}, z_{\alpha+1}, \ldots, z_{n}\right)= \\
& =x \dashv_{\alpha}\left(y \dashv_{\alpha} z\right), \\
\left(x \vdash_{\alpha} y\right) \vdash_{\alpha} z= & \left(x_{1}, \ldots, x_{n-\alpha}, y_{n-\alpha+1}, \ldots, y_{n}\right) \vdash_{\alpha}\left(z_{1}, z_{2}, \ldots, z_{n}\right)= \\
& =\left(x_{1}, \ldots, x_{n-\alpha}, z_{n-\alpha+1}, \ldots, z_{n}\right)= \\
& =\left(x_{1}, x_{2}, \ldots, x_{n}\right) \vdash_{\alpha}\left(y_{1}, \ldots, y_{n-\alpha}, z_{n-\alpha+1}, \ldots, z_{n}\right)= \\
& =x \vdash_{\alpha}\left(y \vdash_{\alpha} z\right) .
\end{aligned}
$$

Therefore, operations \dashv_{α} and \vdash_{α} are associative. Show that axioms $\left(D_{1}\right)-\left(D_{3}\right)$ hold:

$$
\begin{aligned}
\left(x \dashv_{\alpha} y\right) \dashv_{\alpha} z & =\left(x_{1}, \ldots, x_{\alpha}, z_{\alpha+1}, \ldots, z_{n}\right)= \\
& =\left(x_{1}, x_{2}, \ldots, x_{n}\right) \dashv_{\alpha}\left(y_{1}, \ldots, y_{n-\alpha}, z_{n-\alpha+1}, \ldots, z_{n}\right)= \\
& =x \dashv_{\alpha}\left(y \vdash_{\alpha} z\right), \\
\left(x \vdash_{\alpha} y\right) \dashv_{\alpha} z= & \left(x_{1}, \ldots, x_{n-\alpha}, y_{n-\alpha+1}, \ldots, y_{n}\right) \dashv_{\alpha}\left(z_{1}, z_{2}, \ldots, z_{n}\right)= \\
& =\left(x_{1}, \ldots, x_{n-\alpha}, y_{n-\alpha+1}, \ldots, y_{\alpha}, z_{\alpha+1}, \ldots, z_{n}\right)= \\
& =\left(x_{1}, x_{2}, \ldots, x_{n}\right) \vdash_{\alpha}\left(y_{1}, \ldots, y_{\alpha}, z_{\alpha+1}, \ldots, z_{n}\right)= \\
= & x \vdash_{\alpha}\left(y \dashv_{\alpha} z\right), \\
\left(x \dashv_{\alpha} y\right) \vdash_{\alpha} z & =\left(x_{1}, \ldots, x_{\alpha}, y_{\alpha+1}, \ldots, y_{n}\right) \vdash_{\alpha}\left(z_{1}, z_{2}, \ldots, z_{n}\right)= \\
& =\left(x_{1}, \ldots, x_{n-\alpha}, z_{n-\alpha+1}, \ldots, z_{n}\right)= \\
& =x \vdash_{\alpha}\left(y \vdash_{\alpha} z\right) .
\end{aligned}
$$

So, $\left(\prod_{i=1}^{n} X_{i}, \dashv_{\alpha}, \vdash_{\alpha}\right)$ is a dimonoid, in addition, it is clear that this dimonoid is idempotent.

We note that if for example $\left|X_{1}\right|>1$, then $\left(\prod_{i=1}^{n} X_{i}, \dashv_{\alpha}, \vdash_{\alpha}\right)$ is not abelian. Indeed, for $x, y \in \prod_{i=1}^{n} X_{i}$ with distinct x_{1} and y_{1} we obtain

$$
x \dashv_{\alpha} y=\left(x_{1}, \ldots, x_{\alpha}, y_{\alpha+1}, \ldots, y_{n}\right) \neq\left(y_{1}, \ldots, y_{n-\alpha}, x_{n-\alpha+1}, \ldots, x_{n}\right)=y \vdash_{\alpha} x
$$

3. The free abelian diband.

An idempotent semigroup S is called a left (respectively, right) normal band if it is right (respectively, left) commutative (see Section 2).

A dimonoid (D, \dashv, \vdash) is called an $(l n, r n)$-diband $[10]$ if (D, \dashv) is a left normal band and (D, \vdash) is a right normal band.

It is well-known that every left (right) normal band is left (right) regular. The converse statement is not true in general.

As is known (see Corollary 1 of [10]), the variety of ($l n, r n$)-dibands and the variety of ($l r, r r$)-dibands coincide.

Now we give necessary and sufficient conditions under which an arbitrary dimonoid is an abelian diband.

Theorem 1. A dimonoid (D, \dashv, \vdash) is abelian idempotent if and only if (D, \dashv, \vdash) is an (ln, rn)-diband.

Proof. Let (D, \dashv, \vdash) be an abelian idempotent dimonoid. Using dimonoid axioms of $\left(D_{1}\right)$ and $\left(D_{3}\right)$, the property of abelianity for (D, \dashv, \vdash) and associativity of \dashv, \vdash, for all $a, b \in D$ we have

$$
\begin{aligned}
& (a \dashv b) \dashv a=a \dashv(b \vdash a)=a \dashv(a \dashv b)=(a \dashv a) \dashv b=a \dashv b, \\
& a \vdash(b \vdash a)=(a \dashv b) \vdash a=(b \vdash a) \vdash a=b \vdash(a \vdash a)=b \vdash a .
\end{aligned}
$$

It means that (D, \dashv) is a left regular band and (D, \vdash) is a right regular band, therefore (D, \dashv, \vdash) is an $(l r, r r)$-diband.

By Corollary 1 of [10], (D, \dashv, \vdash) is an (ln,rn)-diband.
Now let (D, \dashv, \vdash) be an (ln,rn)-diband, then for all $x, y, a \in D$,

$$
a \dashv x \dashv y=a \dashv y \dashv x, \quad x \vdash y \vdash a=y \vdash x \vdash a .
$$

Using dimonid axioms, idempotency of \dashv, \vdash, and the fact that (D, \dashv) (respectively, (D, \vdash)) is a left (respectively, right) normal band, we obtain

$$
\begin{aligned}
x \dashv y & =(x \dashv y) \vdash(x \dashv y)= \\
& =x \vdash(y \vdash(x \dashv y))= \\
& =x \vdash((y \vdash x) \dashv y)= \\
& =(x \vdash(y \vdash x)) \dashv y= \\
& =(y \vdash x) \dashv y= \\
& =y \vdash(x \dashv y)= \\
& =y \vdash((x \dashv y) \dashv x)= \\
& =(y \vdash(x \dashv y)) \dashv x= \\
& =((y \vdash x) \dashv y) \dashv x= \\
& =(y \vdash x) \dashv(y \vdash x)= \\
& =y \vdash x .
\end{aligned}
$$

Thus, (D, \dashv, \vdash) is an abelian diband.
It should be noted that the sufficiency of this theorem follows also from Corollary 1 of [10] and the necessity of Theorem 1 of [10].

From Theorem 1 we immediately obtain
Corollary 1. The variety of abelian dibands and the variety of (ln,rn)-dibands coincide.
Let $B_{l z, r z}(X)$ be a dimonoid from Proposition 3 (see Section 2).
Corollary 2. $B_{l z, r z}(X)$ is the free abelian diband.
Proof. According to Proposition 3, $B_{l z, r z}(X)$ is the an (lr,rr)-diband. By Corollary 1 and Corollary 1 of [10], $B_{l z, r z}(X)$ is a free abelian diband.

Observe that the cardinality of X is the rank of the free abelian diband $B_{l z, r z}(X)$ and this diband is uniquely determined up to an isomorphism by $|X|$.

It is clear that operations of the free abelian diband $B_{l z, r z}(X)$ coincide if and only if the rank of this diband is equal to 1 .

The following two statements are obvious.
Proposition 6. The semigroups $\left(B_{l z, r z}(X), \dashv\right)$ and $\left(B_{l z, r z}(X), \vdash\right)$ are anti-isomorphic.
We denote the automorphism group of an algebra \mathfrak{A} by $\operatorname{Aut}(\mathfrak{A})$. The symmetric group on X is denoted by $S(X)$.

Proposition 7. $\operatorname{Aut}\left(B_{l z, r z}(X)\right) \cong S(X)$.
Let $(F d(X), \prec, \succ)$ be a free dimonoid on X (see, e.g., [3]). For every $w \in F d(X)$, where $w=\left(w_{1}, \ldots, \widetilde{w}_{l}, \ldots, w_{k}\right)$, we assume $c(w)=\bigcup_{i=1}^{k}\left\{w_{i}\right\}$.

Define a binary relation σ on $F d(X)$ as follows: $u=\left(u_{1}, \ldots, \widetilde{u_{i}}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, \ldots, \widetilde{v_{j}}, \ldots, v_{m}\right)$ are σ-equivalent if

$$
c(u)=c(v) \quad \text { and } \quad u_{i}=v_{j}
$$

A congruence ρ on a dimonoid (D, \dashv, \vdash) is called abelian idempotent if $(D, \dashv, \vdash) / \rho$ is an abelian diband. The notion of an ($l r, r r$)-congruence is defined analogously.

By Theorem 6 of [12], σ is the least (lr, $r r$)-congruence on $(F d(X), \prec, \succ)$. From Corollary 1 and Corollary 1 of [10] we obtain

Proposition 8. The binary relation σ is the least abelian idempotent congruence on the free dimonoid ($F d(X), \prec, \succ$).

Finally we count the cardinality of the free abelian idempotent dimonoid for a finite case.

As usual, we denote the number of all k-element subsets of an n-element set by C_{n}^{k}.
Proposition 9. Let X be an arbitrary nonempty finite set with $|X|=n$. Then

$$
\left|B_{l z, r z}(X)\right|=n \cdot 2^{n-1}
$$

Proof. Let A be an arbitrary nonempty subset of X. Obviously, we can choose A exactly by $2^{n}-1$ ways, in addition, for every set A there exist $|A|$ elements of $B_{l z, r z}(X)$ of the form $(a, A), a \in A$. Therefore,

$$
\begin{aligned}
\left|B_{l z, r z}(X)\right| & =\sum_{A \subseteq X, A \neq \emptyset}|A|= \\
& =\sum_{i=1}^{n} C_{n}^{i} \cdot i= \\
& =\sum_{i=1}^{n} n \cdot \frac{(n-1)!}{((i-1)!\cdot(n-1)-(i-1))!}= \\
& =n \cdot \sum_{i=1}^{n} C_{n-1}^{i-1}= \\
& =n \cdot \sum_{j=0}^{n-1} C_{n-1}^{j}= \\
& =n \cdot 2^{n-1} .
\end{aligned}
$$

References

1. J.-L. Loday. Dialgebras, in: Dialgebras and related operads, Lect. Notes Math. 1763, Springer-Verlag, Berlin (2001), 7-66.
2. M. K. Kinyon. Leibniz algebras, Lie racks, and digroups, J. Lie Theory 17 (2007), no. 1, 99-114.
3. Yu. V. Zhuchok. Representations of ordered dimonoids by binary relations, Asian-Eur. J. Math. 7 (2014), 1450006.
4. Yu. V. Zhuchok. The endomorphism monoid of a free troid of rank 1, Algebra Univers. 76 (2016), no. 3, 355-366.
5. E. Burgunder, P.-L. Curien, and M. Ronco. Free algebraic structures on the permutohedra, J. Algebra 487 (2017), 20-59.
6. A. V. Zhuchok. Free dimonoids, Ukr. Math. J. 63 (2011), no. 2, 196-208.
7. A. V. Zhuchok. Free commutative dimonoids, Algebra Discrete Math. 9 (2010), no. 1, 109119.
8. Yu. V. Zhuchok. Free abelian dimonoids, Algebra Discrete Math. 20 (2015), no. 2, 330-342.
9. A. V. Zhuchok. Free normal dibands, Algebra Discrete Math. 12 (2011), no. 2, 112-127.
10. A. V. Zhuchok. Free ($l r, r r$)-dibands, Algebra Discrete Math. 15 (2013), no. 2, 295-304.
11. G. Birkhoff. On the structure of abstract algebras, Proc. Cambr. Phil. Soc. 31 (1935), no. 4, 433-454.
12. A. V. Zhuchok. Decompositions of free dimonoids, Uchen. zap. Kazan. univ. Ser. Phys. and Math. 154 (2012), no. 2, 93-100 (in Russian).

Стаття: надійшла до редколегї 15.10.2017 прийнята до друку 24.04.2018

ВІЛЬНІ АБЕЛЕВІ ДІСПОЛУКИ

Юрій ЖУЧОК

Лугансвкий начіональний університет імені Тараса Шевченка,
м. Старобільськ, 92703, плоша Гоголя, 1 e-mail: zhuchok.yu@gmail.com

Доведено, що многовиди абелевих дісполук і (ln,rn)-дісполук збігаються. Розглянуто деякі властивості вільних абелевих дісполук.

Ключові слова: дімоноїд, абелева дісполука, вільна абелева дісполука, напівгрупа.

[^0]: 2010 Mathematics Subject Classification: 08B20, 17A30, 08A30
 (C) Zhuchok, Yu., 2017

