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1. Definitions and relations

In general topology one often investigates di�erent classes of compact-like spaces
and relations between them, see, for instance, basic [11, Chap. 3] and general works [9],
[19], [23], [22], [17]. We consider the present paper as a next small step in this quest.

We shall follow the terminology of [11]. By N we shall denote the set of all positive
integers.

A subset of a topological space X is called regular open if it equals the interior of its
closure. A space X is quasiregular if each nonempty open subset of X contains closure
of some nonempty open subset of X.
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1.1. Old classes. We recall that a topological space X is said to be

• semiregular if X has a base consisting of regular open subsets;
• compact if each open cover of X has a �nite subcover;
• sequentially compact if each sequence {xn}n∈N ofX has a convergent subsequence
in X;

• ω-bounded if each countable subset of X has compact closure;
• totally countably compact if each sequence of X contains a subsequence with
compact closure;

• countably compact if each open countable cover of X has a �nite subcover;
• countably compact at a subset A ⊆ X if every in�nite subset B ⊆ A has an
accumulation point x in X;

• countably pracompact if there exists a dense subset D in X such that X is
countably compact at D;

• feebly ω-bounded if for each sequence {Un}n∈N of non-empty open subsets of X
there is a compact subset K of X such that K ∩ Un 6= ∅ for each n;

• selectively sequentially feebly compact if for each sequence {Un}n∈N of non-empty
open subsets of X we can choose a point xn ∈ Un for each n ∈ N such that the
sequence {xn} has a convergent subsequence;

• selectively feebly compact1, if for each sequence {Un}n∈N of non-empty open
subsets of X we can choose a point x ∈ X and a point xn ∈ Un for each n ∈ N
such that the set {n ∈ N : xn ∈ W} is in�nite for every open neighborhood W
of x.

• sequentially feebly compact2 [10, Def. 1.4] if for each sequence {Un : n ∈ N}
of non-empty open subsets of the space X there exist a point x ∈ X and an
in�nite set I ⊂ N such that for each neighborhood U of the point x the set
{n ∈ I : Un ∩ U = ∅} is �nite;

• feebly compact if each locally �nite family of nonempty open subsets of the space
X is �nite.

• k-space if X is Hausdor� and a subset F ⊂ X is closed in X if and only if F ∩K
is closed in K for every compact subspace K ⊂ X.

1Selectively sequentially feebly compact Tychono� spaces were recently introduced and studied by
Dorantes-Aldama and Shakhmatov in [8]. Also they considered selectively feebly compact Tychono�
spaces under the name selectively pseudocompact spaces. An equivalent property appeared a few years
earlier in papers by Garc�a-Ferreira with Ortiz-Castillo [12] and with Tomita [13] under the title �strong
pseudocompactness�, but since the term �strongly pseudocompact� is used in [3, 7] to denote two di�erent
properties, we stick to a name for this property which re�ects its �selective� nature and also matches the
name of the previous �selective� property.

2One of the authors introduced this notion a few years ago as a natural property intermediate between
feeble and sequential compactness, which may be useful in some applications in topological algebra.
Indeed, for instance, Proposition 1.10. by Artico et al. [4] combined with Theorem 1.1 by Lipparini [17]
states that that each T0 feebly compact topological group is sequentially feebly compact. But later we
found that it is a known property, even with the same name. The oldest reference which we know (see
[19, p. 15]) is Reznichenko's paper [21]. A similar notion had been given by Artico et al. in [4, Def.
1.8], where are used pairwise disjoint open sets instead. Lipparini proved in [17] that these notions are
equivalent.
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According to Theorem 3.10.22 of [11], a Tychono� topological space X is feebly compact
if and only if it is pseudocompact, that is, each continuous real-valued function on X is
bounded. Also, a Hausdor� topological space X is feebly compact if and only if every
locally �nite family of non-empty open subsets of X is �nite.

Relations between di�erent classes of compact-like spaces are well-studied. Some of
them are presented on Diagram 3 in [19, p.17], on Diagram 1 in [8, p. 58] (for Tychono�
spaces), and on Diagram 3.6 in [22, p. 611].

1.2. New classes. The notion of countable pracompactness has been studied by several
authors under several names. According to Matveev [19] it �appeared in the literature
under many di�erent names�. Matveev mentions that Baboolal, Backhouse and Ori [5]
introduced an equivalent notion under the name e-countable compactness. In the recent
paper [18] the authors study the notion using the expression �densely countably compact�.
A few references and a further name are recalled there [2] According to Arkhangel'skii [1]
countable compactness at some subset and countable pracompactness ��nd important
applications in Cp-theory�.

In order to re�ne the strati�cation of countable pracompact spaces even more, we
introduce the following de�nitions. In each of them we require that a space X contains
a dense subset D with a special property. Namely,

• if each sequence of points of the set D has a convergent subsequence (in X) then
X is sequentially pracompact ;

• if each sequence of points of the set D has a subsequence with compact closure
(in X) then X is totally countably pracompact ;

• if each countable subset of the set D has compact closure (in X) then X is
ω-bounded-pracompact.

Our main motivation to introduce the above spaces is their possible applications in
topological algebra. In particular, we are going to use them in the paper [15].

Diagram 1 shows relations between di�erent classes of compact-like spaces. All impli-
cations on the diagram are true and we suggest that they are either well-known or easy to
prove and all non-marked arrows are not reversible without imposing additional conditi-
ons on spaces. In particular, in Section 4 of the present paper we construct a sequentially
feebly compact space which is not selectively feebly compact (Example 2), a sequentially
pracompact space which is not countably compact (Example 3), and a totally countably
pracompact space which is nether ω-bounded-pracompact nor totally countably compact
(Example 4).

2. Basic properties

2.1. Extensions. We recall that an extension of a space X is a space Y containing
X as a dense subspace. It is easy to check that countable pracompactness, sequenti-
al pracompactness, feeble compactness, sequential feeble compactness, selective feeble
compactness, selective sequential feeble compactness, and feeble ω-boundedness is
preserved by extensions.

2.2. Continuous images. It is easy to check that sequential compactness, feeble
compactness, sequential feeble compactness, countably pracompactness, and sequential
pracompactness is preserved by continuous images and total countable compactness,
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total countable pracompactness, ω-boundedness, and ω-bounded-pracompactness is
preserved by continuous Hausdor� images.
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Diagram 1

2.3. Products. The investigation of productivity of compact-like spaces is motivated
by the fundamental Tychono� theorem, stating that a product of a family of compact
spaces is compact, On the other hand, there are two countably compact spaces whose
product is not feebly compact (see [11], the paragraph before Theorem 3.10.16). The
product of a countable family of sequentially compact spaces is sequentially compact [11,
Theorem 3.10.35]. But already the Cantor cube Dc is not sequentially compact (see [11],



52
Oleg GUTIK, Oleksandr RAVSKY

ISSN 2078-3744. Âiñíèê Ëüâiâ. óí-òó. Ñåðiÿ ìåõ.-ìàò. 2018. Âèïóñê 85

the paragraph after Example 3.10.38). On the other hand, some compact-like spaces
are also preserved by products, see [23, §3-4] (especially Theorem 3.3, Proposition 3,4,
Example 3.15, Theorem 4.7, and Example 4.15) and §7 for the history, and [22, §5].
Among more recent results we note that Dow et al. in Theorem 4.1 of [10] proved that
a product of a family of sequentially feebly compact spaces is again sequentially feebly
compact, and in Theorem 4.3 that every product of feebly compact spaces, all but one
of which are sequentially feebly compact, is feebly compact.

In the next propositions we show that sequentially pracompact, T1 totally countably
compact, and ω-bounded-pracompact spaces are preserved by products. The proofs are
easy and straightforward but we provide them because a theorem should have a proof.

Let X be a product of a family {Xα : α ∈ A} of spaces. For each subset B of the
set A by πB we denote the projection from X =

∏
{Xα : α ∈ A} to

∏
{Xα : α ∈ B}. If

B = {α} then πB we shall denote also by πα. A space Y ⊂ X is called a Σ-product of
the family {Xα} provided there exists a point y ∈ X such that

Y = {x ∈ X : xα = yα for all but countably many α ∈ A} .
In this case Y is also called the Corson Σ-subspace of X based at y.

Proposition 1. The (Σ-) product of a family of sequentially pracompact spaces is

sequentially pracompact.

Proof. Let X be the non-empty product of a family {Xα : α ∈ A} of sequentially
pracompact spaces and Y ⊂ X be the Corson Σ-subspace of X based at a point
y = (yα) ∈ X. For each index α ∈ A �x a dense subset Dα 3 yα of the space Xα

such that each sequence of points of the set Dα has a convergent subsequence and �x a
point aα ∈ Dα. Put D = Y ∩

∏
α∈ADα. Then the set D is a dense subset of the space X.

Let C = {xn : n ∈ N} be a sequence of points of the set D and B = {αm : m ∈ N} be an
enumeration of the countable set {α ∈ A : ∃x ∈ C(xα 6= yα)}. By induction we can build
a sequence {xαm ∈ Xαm} of points and a sequence {Sm} of in�nite subsets of N such
that Sm ⊃ Sm′ for each m ≤ m′ and for each neighborhood Uαm

⊂ Xαm
of the point xαm

the set {n ∈ Sm : xnαm
6∈ Uαm

} is �nite. We can easily construct an in�nite set S ⊂ N
such that the set S \ Sm is �nite for each m ∈ N. Choose a point x = (xα) ∈ Y such
that xα is already de�ned for α ∈ B and xα = yα for α ∈ A \ B. Let U be an arbitrary
neighborhood of the point x. There exist a �nite subset F of the set A and a family

{Uα : α ∈ F,Uα ⊂ Xα is an open neighborhood of xα}
such that x ∈ U ′ = π−1F (

∏
{Uα : α ∈ F}) ⊂ U . The inductive construction implies that

the set Tα = {n ∈ S : xnα 6∈ Uα} is �nite for each α ∈ F . Then xn ∈ U ′ ⊂ U for each
n ∈ S \

⋃
{Tα : α ∈ F}. �

Proposition 2. The (Σ-) product of a family of totally countably pracompact T1 spaces

is totally countably pracompact.

Proof. Let X be the non-empty product of a family {Xα : α ∈ A} of totally countably
pracompact spaces and Y ⊂ X be the Corson Σ-subspace of X based at a point y =
(yα) ∈ X. For each index α ∈ A �x a dense subset Dα 3 yα of the space Xα such that
each sequence of points of the set Dα has a subsequence with compact closure in Xα. Put
D = Y ∩

∏
α∈ADα. Then the setD is a dense subset of the spaceX. Let C = {xn : n ∈ N}
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be a sequence of points of the setD and {αm : m ∈ N} be an enumeration of the countable
set {α ∈ A : ∃x ∈ C(xα 6= yα)}. By induction we can build a sequence {Sm} of in�nite
subsets of N such that Sm ⊃ Sm′ for each m ≤ m′ and the set {xnαm

: n ∈ Sm} has
compact closure in Xαm

. We can easily construct an in�nite set S ⊂ N such that the set
S \ Sm is �nite for each m ∈ N. Then the set {xn : n ∈ S} has compact closure in X,
which is contained in Y . �

Remark 1. The referee remarked that in the case of Cartesian product in Proposition 2
T1 condition can be weakened to that for each α ∈ A a set {yα} has compact closure in
Xα. The proof remains almost the same, only the �nal words �which is contained in Y �
should be dropped.

It motivates to de�ne a class of spaces in which every singleton (that is, one-point
set) has compact closure. The referee suggested to investigate which classes of compact-
like spaces belong to the class. By de�nition, each T1 space belong to the class. Each
totally countably compact space X also belongs to the class because for any point x ∈ X
the set {x} is the closure of any subsequence of the constant sequence {xn}, where xn = x
for each n.

On the other hand, the referee proposed to endow ω with the topology of left
intervals, whose open sets are the intervals [0, n), plus the whole of ω. Here the closure
of 0 is the noncompact space ω. We extend this construction as follows. Let X = ω1 + ω
endowed with a topology with a subbase consisting of hal�ntervals [0, α), where α < ω1+ω
and (α, ω1 + ω), where α < ω1. Then the closure of ω1 is a noncompact set [ω1, ω1 + ω).
Now put D = ω1. Then D is dense in X and each countable subset C of D is contained
in a closed compact set [0, supC] of D. Thus X is both sequentially and ω-bounded-
pracompact.

A sequentially compact example of a space not belonging to the class is more
complicated, but, luckily, already known. Namely, in [20, Example 5] the second author
constructed a group G =

⊕
α∈ω1

Z, which is the direct sum of the groups Z and its subgroup

S = {0} ∪ {(xα) ∈ G : (∃β ∈ ω1)((∀α > β)(xα = 0)&(xβ > 0))} .

Let GS be the group G endowed with a topology with a base {x+S : x ∈ G}. Then GS is
a paratopological group, that is the group operation + : G×G→ G is continuous. In [20,
Example 5] it is shown that the group GS is sequentially compact. On the other hand,

by [20, Lemma 17] the set S ⊂ GS is compact. Since {0} = {x ∈ G : x + S 3 0} = −S,
if the set −S is compact then G = S ∪ (−S) is compact too, which contradicts [20,
Proposition 12].

Proposition 3. The product of a family of ω-bounded-pracompact spaces is ω-bounded-
pracompact. Moreover, if all spaces of the family are T1 then a Σ-product of the family

is ω-bounded-pracompact too.

Proof. Let X be the non-empty product of a family {Xα : α ∈ A} of ω-bounded-
pracompact spaces and Y ⊂ X be the Corson Σ-subspace of X based at a point
y = (yα) ∈ X. For each index α ∈ A �x a dense subset Dα 3 yα of the space Xα such that
each countable subset of the set Dα has compact closure in Xα. Put D = Y ∩

∏
α∈ADα.

Then the set D is a dense subset of the space X. Let C be a countable subset of the set
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D. Then C is a subset of a closed compact subset C ′ =
∏
α∈A πα(C) of the space X.

Now assume that all spaces Xα are T1. Put B = {α ∈ A : ∃x ∈ C(xα 6= yα)}. The set B
is countable and so C ′ =

∏
α∈B πα(C)×

∏
α∈A\B{yα} ⊂ Y . �

Example 1. This example shows that T1 condition is essential in the Σ-product case
of Propositions 2 and 3. Let X ′ be a space consisting of two distinct points a and b
endowed with the topology {∅, {a}, X ′}. Let A be an uncountable subset, X be the
product of a family {Xα : α ∈ A}, Y ⊂ X be the Corson Σ-subspace of X based at a
point y = (aα) ∈ X, where Xα = X ′ and aα = a for each α ∈ A. Since the space X ′ is
compact, it is easy to check that the space Y is countably compact. On the other hand,
the space Y is not totally countably pracompact. For this purpose it su�ces to show that
for any point x = (xα) ∈ Y a set {x} (everywhere in this example we by S we mean the

closure in Y of its subset S) is not compact, because {x} is the closure (in Y ) of any
subsequence of a constant sequence {xn}, where xn = x for each n. By [11, Proposition

2.3.3], {x} = {(xα)} = Y ∩
∏
α∈A {xα}. Remark that b ∈ {xα} for each α ∈ A. Now for

each α ∈ A put Yα = {y = (yβ) ∈ Y : yα = a}. Since for each point z = (zα) ∈ Y , there
exists an index α such that zα = a, the family {Yα : α ∈ A} is an open cover of the set Y ,

and hence of {x}. Let C be any �nite subset of A. Let t = (tα) ∈ Y be such that tα = b

if xα = b or α ∈ C and tα = a, otherwise. Then t ∈ {x} \
⋃
{Yα : α ∈ C}. Thus the set

{x} is not compact.

Since the sequential feebly compactness is preserved by extensions, the following
proposition strengthens Theorem 4.1 of [10] a bit.

Proposition 4. The Σ-product of a family of sequentially feebly compact spaces is

sequentially feebly compact.

Proof. Let X be a non-empty product of a family {Xα : α ∈ A} of sequentially feebly
compact spaces, Y ⊂ X be the Corson Σ-subspace of X based at a point y = (yα) ∈ X,
and {Vn : n ∈ N} be a sequence of non-empty open subsets of the space Y . For each index
n choose a �nite subset Bn of the set A and a family

{Unα : α ∈ Bn, Unα is a non-empty open subset of Xα}

such that Un∩Y ⊂ Vn, where Un = π−1Bn
(
∏
{Unα : α ∈ Bn}). Put B =

⋃
Bn. By Theorem

4.1 of [10], the space X ′ = {Xα : α ∈ B} is sequentially feebly compact. Since {πB(Un)}
is a sequence of its non-empty open subsets, there exist a point x′ ∈ X ′ and an in�-
nite set I ⊂ N such that for each neighborhood U ′ of the point x′ = (x′α)α∈B the set
{n ∈ I : πB(Un) ∩ U ′ = ∅} is �nite. De�ne a point x = (xα)α∈A ∈ Y by putting xα = x′α
for each α ∈ B and xα = yα for each α ∈ A \ B. Let V be an arbitrary neighborhood
of the point x in the space Y . Pick a canonical neighborhood U of the point x in the
space X such that U ∩ Y ⊂ V . Then there exists a subset I ′ of the set I such that a
set I \ I ′ is �nite and πB(Un) ∩ πB(U) 6= ∅ for each n ∈ I ′. Fix any such n and pick
a point z′ = (z′α)α∈B ∈ πB(Un) ∩ πB(U). De�ne a point z = (zα)α∈A ∈ Y by putting
zα = z′α for each α ∈ B and zα = yα for each α ∈ A \ B. It is easy to check that
z ∈ Un ∩ U ∩ Y ⊂ Vn ∩ V . �
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3. Backward implications

In [6], Banakh and Zdomskyy de�ned a topological space X to be an α7-space if for
any family {Sn : n ∈ N} of countable in�nite subsets of the space X such that a set Sn\U
is �nite for any n and any neighborhood U of x there exist a countable in�nite subset S
of the space X and a point y ∈ X such that a set S \ V is �nite for any neighborhood V
of y and Sn ∩ S 6= ∅ for in�nitely many n.

Proposition 5. Let X be a Fr�echet-Urysohn feebly compact space. Then X is sequenti-

ally feebly compact. Moreover, if X is either quasiregular or α7 then X is selectively

sequentially feebly compact.

Proof. Let X be a Fr�echet-Urysohn feebly compact space and {Vn : n ∈ N} be a sequence
of non-empty open subsets of the space X. For each n choose a non-empty open set
Un ⊂ Vn such that Un ⊂ Vn provided the space X is quasiregular. Since the space X is
feebly compact, there exists a point x ∈ X such that each neighborhood of the point x
intersects in�nitely many sets of the sequence {Un}. Put I0 =

{
n ∈ N : x ∈ Un

}
.

Suppose that the set I0 is in�nite. Then U ∩ Un 6= ∅ for each n ∈ I0 and each
neighborhood U of the point x. If the space X is quasiregular then x ∈ Vn for each
n ∈ I0, thus the constant sequence {xn = x : n ∈ I0} converges to x. Assume that X is
an α7-space. Since the spaceX is Fr�echet-Urysohn, for each n ∈ I0 there exists a sequence
S′n = {xnk : k ∈ N} of points of Un convergent to a point x. Considering its subsequence,
if necessarily, we can assume that the sequence S′n either consists of distinct points or it
is constant. In the latter case we have xnk = xn ∈ Un for each k for some point xn ∈ Un
such that x ∈ {xn}. Put I ′0 = {n ∈ I0 : S′n is constant}. If the set I ′0 is in�nite then a
sequence {xn : n ∈ I ′0} converges to the point x. So we suppose that the set I ′0 is �nite.
Since X is an α7-space, there exist a countable in�nite subset S of the space X and a
point y ∈ X such that a set S \ V is �nite for any neighborhood V of y and a set

I ′′0 =
{
n ∈ I0 \ I ′0 : there exists a natural k(n) such that xnk(n) ∈ S

}
is in�nite. For each n ∈ I ′′0 put xn = xnk(n) ∈ Un. If there exists a point z ∈ X such that

the set I1 = {n ∈ I ′′0 : xn = z} is in�nite then the sequence {xn : n ∈ I1} converges to the
point z. Otherwise the sequence {xn : n ∈ I ′′0 } converges to the point y. Indeed, let V be
an arbitrary neighborhood of the point y. Then the set S \ V is �nite and xn ∈ V for
each n ∈ I ′′0 \ {n : xn ∈ S \ V }.

Suppose that the set I0 is �nite. Since x ∈
⋃
{Un : n ∈ N \ I0} and X is a

Fr�echet-Urysohn space, there exists a sequence {x′m : m ∈ N} of points of the set⋃
{Un : n ∈ N \ I0} converging to the point x. For each index m ∈ N choose an index

n(m) ∈ N \ I0 such that x′m ∈ Un(m). Put I1 = {n(m) : m ∈ N}. Since x 6∈ Un for
each n ∈ N \ I0, the set I1 is in�nite. For each r ∈ I1 pick a point xr = x′m(r), where

n(m(r)) = r. Then xr ∈ Ur and the sequence {xr : r ∈ I1} converges to the point x.
Indeed, let U be an arbitrary neighbourhood of the point x. Since the sequence {x′m}
converges to the point x, there exists N ∈ N such that x′m ∈ U for each m > N . Then
xr ∈ U for each r ∈ I1 \ {n(m) : 0 ≤ m ≤ N}. �

Proposition 6. Each sequential countably pracompact space is sequentially pracompact.
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Proof. Let X be a sequential countably pracompact space. There exists a dense subset D
of the space X such that each in�nite subset of the set D has an accumulation point in X.
Let {xn : n ∈ N} be a sequence of points of the set D. If there exists a point x ∈ X such

that x ∈ {xn} for in�nitely many indices n ∈ N then the {xn : xn = x} is a convergent
subsequence of the sequence {xn : n ∈ N}. So we suppose that there is no such point x.
Then the set B = {xn : n ∈ N} is in�nite. The set B has an accumulation point y in X.

Then y ∈ B \ {y}. Therefore the set B \ {y} is not sequentially closed and there exists a
sequence {zm : m ∈ N} of points of the set B\{y} converging to a point z 6∈ B\{y}. Then
the sequence {zm : m ∈ N} contains in�nitely many distinct points of the set B \{y}. �

Proposition 7. Each countably pracompact k-space X is totally countably pracompact.

Proof. There exists a dense subset D of the space X such that each in�nite subset of the
set D has an accumulation point in X. Let {xn : n ∈ N} be a sequence of points of the
set D. Put B = {xn : n ∈ N}. If the set B is �nite then there exists a point x ∈ X such
that xn = x for in�nitely many indices n ∈ N. Then a subsequence {xn : xn = x} of the
sequence {xn : n ∈ N} has compact closure {x} in X. Thus we suppose that the set B is

in�nite. The set B has an accumulation point y in X. Then y ∈ B \ {y}. Therefore the set
B \ {y} is not closed and there exists a compact subset K of the space X such that a set
B∩K is not closed in K. Then the set B∩K is in�nite, the sequence {xn : xn ∈ B ∩K}
is in�nite too and {xn : xn ∈ B ∩K} ⊂ K. �

Proposition 8. Each sequentially feebly compact space containing a dense set D of

isolated points is sequentially pracompact.

Proof. It is easy to check that each sequence of points of the set D has a convergent
subsequence. �

4. Examples

Example 2. Let X0 be a non-empty T1 space. Determine a topology on the set X =
(X0 × ω) ∪ {y0}, where y0 6∈ X0 × ω by the following base

B = {U × {n} : U is an open subset of the space X0, n ∈ ω}∪

∪
⋃{
{y0} ∪

⋃
m≥n

X0 × {m} \ Fm : n ∈ ω, Fm is a �nite subset of X0

for each m ∈ ω such that m ≥ n
}
.

It is easy to check the following:

• the space X is Hausdor� provided the space X0 is Hausdor�;
• the space X is feebly compact provided the space X0 is a feebly compact space
without isolated points;

• the spaceX is sequentially feebly compact provided the spaceX0 is a sequentially
feebly compact space without isolated points.

Now we take the standard unit segment [0, 1] as X0. Then X is a sequentially feebly
compact space containing a closed discrete in�nite subspace {1}×ω. Now for each n ∈ ω
put Un = X0×{n}. Let {xn} be a sequence of points of the space X such that xn ∈ Un.
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Then the set {xn} has no accumulation points, thus the space X is not selectively feebly
compact.

We recall that the Stone-�Cech compacti�cation of a Tychono� space X is a compact
Hausdor� space βX containing X as a dense subspace so that each continuous map
f : X → Y to a compact Hausdor� space Y extends to a continuous map f : βX → Y
(see [11]).

Example 3 ([11, Exer. 3.6.I], [8, Ex. 2.6]). Let {Nα}α∈A, where A∩N = ∅, be an in�nite
family of in�nite subsets of N such that the intersectionNα∩Nβ is �nite for every pair α, β
of distinct elements of A and that {Nα}α∈A is maximal with respect to the last property.
Generate a topology on the set X = N∪S by the neighborhood system {B(x)}x∈X , where
B(x) = {{n}}, if x = n ∈ N and B(x) = {{α} ∪ (Nα \ {1, 2, . . . , n})}∞n=1 if x = α ∈ A.

Since A is a closed discrete in�nite subset of X, X is not countably compact. On
the other hand, the set D = N is dense in X. Let {xn : n ∈ N} be an arbitrary sequence
of points of the set D. If the set S = {xn : n ∈ N} is �nite then the sequence {xn : n ∈ N}
has a constant subsequence. If the set S is in�nite then by maximality of A there exists
α ∈ A such that Nα ∩ S is in�nite. Note that the enumeration {xnk

: k ∈ N} of Nα ∩ S
in the increasing order is a subsequence of the sequence {xn : n ∈ N} converging to the
point α. Thus the space X is sequentially pracompact.

Example 4. Endow the set N with the discrete topology. Let A (N) = N∪{∞} be a one-
point Alexandro� compacti�cation of N with the remainder ∞. We de�ne on A (N)×N
the product topology τp and extend the topology τp onto X = A (N) × N ∪ {a}, where
a /∈ A (N)× N, to a topology τ∗ in the following way: bases of the topologies τp and τ∗

coincide at x for any x ∈ A (N)× N and the family

B∗(a) = {Ua(i1, . . . , in) : i1, . . . , in ∈ N} ,

where

Ua(i1, . . . , in) = X \ (({∞} × N) ∪ (A (N)× {i1, . . . , in})) ,

determines a set of neighbourhood systems for τ∗ at the point a.
The de�nition of the topology τ∗ on X implies that N×N is the maximum discrete

subspace of (X, τ∗) and N×N is dense in (X, τ∗). Hence every dense subset D of (X, τ∗)
contains N × N. However, N× N = X is not compact, and hence (X, τ∗) is not an ω-
bounded-pracompact space.

Now we shall show that (X, τ∗) is totally countably pracompact. Especially we shall
prove that N × N is the requested dense subset of the space (X, τ∗). Fix an arbitrary
sequence {xn}n∈N ⊂ N×N. If there exists a positive integer i such that the set {xn}n∈N∩
(A (N)× {i}) is in�nite then the subsequence

{
xij
}
j∈N = {xn}n∈N ∩ (A (N)× {i}) with

the corresponding renumbering has compact closure in (X, τ∗). In the other case the set
{xn}n∈N ∩ (A (N)× {i}) is �nite for any positive integer i. Then the de�nition of (X, τ∗)

implies that {xn}n∈N = {a} ∪ {xn}n∈N is a compact subset of (X, τ∗).
We observe that by Proposition 19 of [14], (X, τ∗) is Hausdor� non-semiregular

countably pracompact non-countably compact space, and hence (X, τ∗) is not totally
countably compact.
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