ISSN 2078-3744. Вісник Львів. ун-ту. Серія мех.-мат. 2018. Випуск 86. С. 103–108 Visnyk of the Lviv Univ. Series Mech. Math. 2018. Issue 86. Р. 103–108 http://publications.lnu.edu.ua/bulletins/index.php/mmf doi: http://dx.doi.org/10.30970/vmm.2018.86.103-108

УДК 512.582

EXTENSION OF BOUNDED BAIRE-ONE FUNCTIONS VS EXTENSIONS OF UNBOUNDED BAIRE-ONE FUNCTIONS

Dedicated to the 60th birthday of M. M. Zarichnyi

Olena KARLOVA¹, Volodymyr MYKHAYLYUK^{1,2}

¹ Chernivtsi National University Kotsyubynskoho Str., 2, 58000, Chernivtsi, Ukraine ² Jan Kochanowski University in Kielce, Poland e-mail: maslenizza.ua@gmail.com, vmykhaylyuk@ukr.net

We compare possibilities of extension of bounded and unbounded Baire-one functions from subspaces of topological spaces.

Key words: extension, Baire-one function, B₁-embedded set, B₁^{*}-embedded set.

1. INTRODUCTION

Let X be a topological space. A function $f: X \to \mathbb{R}$ belongs to the first Baire class, if it is a pointwise limit of a sequence of real-valued continuous functions on X. We will denote by $B_1(X)$ and $B_1^*(X)$ the collections of all Baire-one and bounded Baire-one functions on X, respectively.

A subset E of X is B_1 -embedded (B_1^* -embedded) in X, if every (bounded) function $f \in B_1(E)$ can be extended to a function $g \in B_1(X)$. We will say that a space X has the property ($B_1^* = B_1$) if every B_1^* -embedded subset of X is B_1 -embedded in X.

Characterizations of B_1 - and B_1^* -embedded subsets of topological spaces were obtained in [3] and [4].

This short note is devoted to the following interesting problem: to find topological spaces with the property $(B_1^* = B_1)$.

In the second section of this note we extend results from [4, Section 6] and show that every hereditarily Lindelöff hereditarily Baire space X which hereditarily has a σ -discrete π -base has the property (B^{*}₁ = B₁). In Section 3 we show that any countable completely

²⁰¹⁰ Mathematics Subject Classification: Primary 54C20, 26A21; Secondary 54C30, 54C50 © Karlova, O., Mykhaylyuk, V., 2018

regular hereditarily irresolvable space X without isolated points is B_1^* -embedded and is not B_1 -embedded in βX .

2. Spaces with the property $(B_1^* = B_1)$

Recall that a set A in a topological space X is functionally G_{δ} (functionally F_{σ}), if A is an intersection (a union) of a sequence of functionally open (functionally closed) subsets of X. We say that a subset A of a topological space X is functionally ambiguous if A is functionally F_{σ} and functionally G_{δ} simultaneously.

Lemma 1. Let X be a completely regular topological space of the first category with a σ -discrete π -base. Then there exist disjoint functionally ambiguous sets A and B such that

$$X = A \cup B = \overline{A} = \overline{B}.$$

Proof. We fix a π -base $\mathscr{V} = (\mathscr{V}_n : n \in \omega)$ of X, where each family \mathscr{V}_n is discrete and consists of functionally open sets in X. Denote $V_n = \bigcup \{V : V \in \mathscr{V}_n\}$ for all $n \in \omega$.

Let us observe that every open set $G \subseteq X$ contains a functionally open subset Usuch that $U \subseteq G \subseteq \overline{U}$. Indeed, for every $n \in \omega$ we put $U_n = \bigcup \{V \in \mathscr{V}_n : V \subseteq G\}$ and $U = \bigcup_{n \in \omega} U_n$. Then each U_n is functionally open as a union of a discrete family of functionally open sets. Hence, U is functionally open. It is easy to see that U is dense in G.

Keeping in mind the previous fact, we may assume that there exists a covering $(F_n: n \in \omega)$ of the space X by nowhere dense functionally closed sets $F_n \subseteq X$. Let $X_0 = F_0$ and $X_n = F_n \setminus \bigcup_{k < n} F_k$ for all $n \ge 1$. Then $(X_n: n \in \omega)$ is a partition of X by nowhere dense functionally ambiguous sets X_n .

Fix $n \in \omega$ and $V \in \mathscr{V}_n$. Since X is regular, we can choose two open sets H_1 and H_2 in V such that $\overline{H_1} \cap \overline{H_2} = \emptyset$ and $\overline{H_i} \subseteq V$ for i = 1, 2. Let G_i and O_i be functionally open sets such that $G_i \subseteq H_i \subseteq \overline{G_i}$ and $O_i \subseteq X \setminus \overline{H_i} \subseteq \overline{O_i}$, i = 1, 2. We put $A_{V,n} = X \setminus (G_1 \cup O_1)$ and $B_{V,n} = X \setminus (G_2 \cup O_2)$ and obtain disjoint nowhere dense functionally closed subsets of V.

We put $m_0 = 0$ and choose numbers $n_1 \ge 0$ and $m_1 > n_1$ such that $X_{n_1} \cap V_1 \ne \emptyset$ and $X_{m_1} \cap V_1 \ne \emptyset$. Notice that $A'_1 = \bigcup_{n=0}^{n_1} X_n$ and $B'_1 = \bigcup_{n=n_1+1}^{m_1} X_n$ are nowhere dense functionally ambiguous sets in X. Now we consider the set

$$\mathscr{W}_1 = \{ V \in \mathscr{V}_1 : V \cap (A'_1 \cup B'_1) = \varnothing \}$$

and observe that the sets $A_1'' = \bigcup \{A_{V,1} : V \in \mathscr{W}_1\}$ and $B_1'' = \bigcup \{B_{V,1} : V \in \mathscr{W}_1\}$ are functionally closed and nowhere dense in X. Let $A_1 = A_1' \cup A_1''$ and $B_1 = B_1' \cup B_1''$. Notice that A_1 and B_1 are functionally ambiguous nowhere dense disjoint subsets of X.

Since $X \setminus (A_1 \cup B_1) = X$, there exists a number $n_2 > m_1$ such that $(X_{n_2} \setminus (A_1 \cup B_1)) \cap V_2 \neq \emptyset$. We put $A'_2 = \bigcup_{n=m_1+1}^{n_2} (X_n \setminus (A_1 \cup B_1))$. Moreover, there exists $m_2 > n_2$ such that $(X_{m_2} \setminus (A_1 \cup B_1)) \cap V_2 \neq \emptyset$. Let $B'_2 = \bigcup_{n=n_2+1}^{m_2} (X_n \setminus (A_1 \cup B_1))$. We put $\mathscr{W}_2 = \{V \in \mathscr{V}_2 \colon V \cap (A'_2 \cup B'_2) = \emptyset\}$ and observe that the sets $A''_2 = \{A_{V,2} \colon V \in \mathscr{W}_2\}$ and $B''_2 = \{b_{V,2} \colon V \in \mathscr{W}_2\}$ are functionally closed and nowhere dense in X. We denote $A_2 = A'_2 \cup A''_2$ and $B_2 = B'_2 \cup B''_2$. Then A_2 and B_2 are functionally ambiguous nowhere dense disjoint subsets of X.

Proceeding this process inductively we obtain sequences $(A_k)_{k=1}^{\infty}$ and $(B_k)_{k=1}^{\infty}$ of functionally ambiguous sets such that $A_k \cap V \neq \emptyset \neq B_k \cap V$, $A_k \cap B_k = \emptyset$ for all $k \in \mathbb{N}$ and $V \in \mathscr{V}_k$. It remains to put $A = \bigcup_{k=1}^{\infty} A_k$, $B = \bigcup_{k=1}^{\infty} B_k$ and observe that $A \cup B = X$.

In addition, note that Borel resolvability of topological spaces was also studied in [1, 2].

We say that a topological space X hereditarily has a σ -discrete π -base if every its closed subspace has a σ -discrete π -base. It is easy to see that if a space X hereditarily has a σ -discrete π -base, then each subspace of X has a σ -discrete π -base.

Recall that a subspace E of a topological space X is *z*-embedded in X, if any functionally closed subset F of E can be extended to a functionally closed subset of X.

Lemma 2. Let X be a normal space such that X hereditarily has a σ -discrete π -base. If X is a B_1^* -embedded subset of a hereditarily Baire space Y, then X is hereditarily Baire.

Proof. Assume that X is not hereditarily Baire and find a closed subset $F \subseteq X$ of the first category. According to Lemma 1, there exist disjoint functionally ambiguous subsets A and B in F such that $F = A \cup B = \overline{A} = \overline{B}$. Since F is a closed subset of a normal space, F is z-embedded in X. Therefore, there are two functionally ambiguous disjoint sets \widetilde{A} and \widetilde{B} in X such that $\widetilde{A} \cap F = A$ and $\widetilde{B} \cap F = B$ (see [4, Proposition 4.3]). Let us observe that the characteristic function $\chi : X \to [0, 1]$ of the set \widetilde{A} belongs to the first Baire class. Then there exists an extension $f \in B_1(Y)$ of χ . The sets $f^{-1}(0)$ and $f^{-1}(1)$ are disjoint G_{δ} -sets which are dense in \overline{X} . We obtain a contradiction, because \overline{X} is a Baire space as a closed subset of a hereditarily Baire space.

Remark 1. There exist a metrizable separable Baire space X and its B_1^* -embedded subspace E which is not a Baire space. Let $X = (\mathbb{Q} \times \{0\}) \cup (\mathbb{R} \times (0, 1])$ and $E = \mathbb{Q} \times \{0\}$. Then E is closed in X. Therefore, any F_{σ} - and G_{δ} -subset C of E is also F_{σ} - and G_{δ} - in X. Hence, E is B_1^* -embedded in X.

Theorem 1. Let Y be a hereditarily Baire completely regular space and $X \subseteq Y$ be a Lindelöf space which hereditarily has a σ -discrete π -base. The following are equivalent:

- (1) X is B_1^* -embedded in Y;
- (2) X is B_1 -embedded in Y.

Proof. We need only to show $1) \Rightarrow 2$). By Lemma 2, X is hereditarily Baire. Then X is B₁-embedded in Y by [3, Theorem 13].

Corollary 1. Every hereditarily Lindelöff hereditarily Baire space X which hereditarily has a σ -discrete π -base has the property ($B_1^* = B_1$).

3. Spaces without the property $(B_1^* = B_1)$

A subset A of a topological space X is called (functionally) resolvable in the sense of Hausdorff or (functionally) H-set if

$$A = (F_1 \setminus F_2) \cup (F_3 \setminus F_4) \cup \cdots \cup (F_{\xi} \setminus F_{\xi+1}) \cup \ldots,$$

where $(F_{\xi})_{\xi < \alpha}$ is a decreasing chain of (functionally) closed sets in X.

It is well-known [5, §12.I] that a set A is an H-set if and only if for any closed nonempty set $F \subseteq X$ there is a nonempty relatively open set $U \subseteq F$ such that $U \subseteq A$ or $U \subseteq X \setminus A$.

A topological space without isolated points is called *crowded*.

A topological space X is *irresolvable* if it is not a union of two disjoint dense subsets. A space X is *hereditarily irresolvable* if every subspace of X is irresolvable.

Lemma 3. Every subset of a hereditarily irresolvable space is an H-set.

Proof. Assume that there is a closed nonempty set F in a hereditarily irresolvable space X and a set $A \subseteq X$ such that $\overline{F \cap A} \cap \overline{F \setminus A} = F$. Then

$$\overline{F \cap A} = \overline{F \setminus A} = F = (F \cap A) \cup (F \setminus A),$$

which contradicts to irresolvability of F.

A function $f: X \to Y$ from a topological space X to a metric space (Y, d) is called *fragmented* if for every $\varepsilon > 0$ and for every closed nonempty set $F \subseteq X$ there exists a relatively open nonempty set $U \subseteq F$ such that diam $f(U) < \varepsilon$.

Proposition 1. Every bounded function $f : X \to \mathbb{R}$ on a hereditarily irresolvable space X is fragmented.

Proof. To obtain a contradiction we assume that there exists a bounded function $f: X \to \mathbb{R}$ which is not fragmented. Then there is $\varepsilon > 0$ and a closed nonempty set $F \subseteq X$ such that for every relatively open set $U \subseteq F$ we have diam $f(U) \ge \varepsilon$.

Since f(X) is a compact set, we take a finite partition $\{B_1, \ldots, B_n\}$ of f(X) by sets of diameter $\langle \varepsilon$. Let $H_k = f^{-1}(B_k) \cap F$ for every $k \in \{1, \ldots, n\}$. Then each H_k has empty interior in F, because f is not fragmented. By Lemma 3, each H_k is an H-set and, therefore, is nowhere dense in F. Hence, $\{H_1, \ldots, H_n\}$ is a finite partition of F by nowhere dense sets, which is impossible.

Lemma 4. Let E be a z-embedded countable subspace of a topological space X and $A \subseteq E$ be a functionally H-set in E. Then there exists a functionally H-set $B \subseteq X$ such that B is F_{σ} and $B \cap E = A$.

Proof. We take a decreasing transfinite sequence $(A_{\xi} : \xi < \alpha)$ of functionally closed subsets of E such that $A = \bigcup_{\xi < \alpha} (A_{\xi} \setminus A_{\xi+1})$ (every ordinal ξ is odd). Since $|A| \le \aleph_0$, we may assume that $|(A_{\xi} : \xi < \alpha)| \le \aleph_0$. The subspace E is z-embedded in X and we choose a decreasing sequence $(B_{\xi} : \xi < \alpha)$ of functionally closed sets in X such that $A_{\xi} = B_{\xi} \cap E$ for all $\xi < \alpha$. We put

$$B = \bigcup_{\xi < \alpha, \xi \text{ is odd}} (B_{\xi} \setminus B_{\xi+1}).$$

Then B is functionally F_{σ} -set in X and $B \cap E = A$.

Lemma 5. Let X be a compact space and $B \subseteq X$ be functionally Borel measurable H-set. Then B is functionally ambiguous in X.

106

Proof. Since B is functionally Borel measurable, there exists a sequence $(f_n)_{n\in\omega}$ of continuous functions $f_n: X \to [0,1]$ such that B belongs to the σ -algebra generated by the system of sets $\{f_n^{-1}(0) : n \in \omega\}$. We consider a continuous map $f: X \to [0,1]^{\omega}$, $f(x) = (f_n(x))_{n\in\omega}$ for all $x \in X$, and a compact metrizable space $Y = f(X) \subseteq [0,1]^{\omega}$.

We show that the set B' = f(B) is an H-set in Y. Suppose to the contrary that there is a closed nonempty set Y' in Y such that $\overline{Y' \cap B'} = \overline{Y' \setminus B'} = Y'$. We put $X' = f^{-1}(Y')$ and $g = f|_{X'}$. Since X' is a compact space and f(X') = Y', we apply Zorn's Lemma and find a closed nonempty set $Z \subseteq X'$ such that the restriction $g|_Z : Z \to Y'$ of the continuous map $g : X' \to Y'$ is irreducible. Keeping in mind that the preimage of any everywhere dense set remains everywhere dense under an irreducible map, we obtain that

$$\overline{g^{-1}(Y' \cap B')} = \overline{g^{-1}(Y' \setminus B')} = Z = \overline{Z \cap B} = \overline{Z \setminus B},$$

which contradicts to resolvability of B.

By [5, §30, X, Theorem 5] the set f(B) is F_{σ} and G_{δ} in a compact metrizable space Y. Since $B = f^{-1}(f(B))$ and f is continuous, we have that B is functionally ambiguous subset of X.

Proposition 2. Let X be a countable hereditarily irresolvable completely regular space. Then X is B_1^* -embedded in βX .

Proof. Since X is countable and completely regular, it is perfectly normal. Therefore, every subsets of X is functionally ambiguous.

Fix an arbitrary $A \subseteq X$. By Lemma 3 the set A is an H-set. We apply Lemma 4 and find a functionally H-set $B \subseteq \beta X$ such that B is F_{σ} and $B \cap X = A$. Notice that B is functionally ambiguous by Lemma 5. Hence, B is a B₁^{*}-embedded subspace of βX according to [4, Proposition 5.1].

Let us observe that examples of countable hereditarily irresolvable completely regular spaces can be found, for instance, in [6, p. 536].

Proposition 3. Let X be a countable completely regular space without isolated points. Then X is not B_1 -embedded in βX .

Proof. Observe that X is a functionally F_{σ} -subset of βX . Now assume that X is B₁embedded in βX . According to [3, Proposition 8(iii)] there should be a function $f \in$ B₁(βX) such that $X \subseteq f^{-1}(0)$ and $\beta X \setminus X \subseteq f^{-1}(1)$. Then the set X is G_{δ} in βX . Therefore, X is a Baire space, which implies a contradiction, since X is of the first category in itself.

Propositions 2 and 3 imply the following fact.

Theorem 2. Let X be a countable hereditarily irresolvable completely regular space without isolated points. Then X is B_1^* -embedded in βX and is not B_1 -embedded in βX .

ACKNOWLEDGEMENTS

The first author is partially supported by a grant of Chernivtsi National University for young scientists in 2018 year.

The authors would like to thank the anonymous referee for careful reading of the manuscript.

References

- 1. J. G. Ceder, On maximally Borel resolvable spaces, Rev. Roum. Math. Pures Appl. 11 (1966), 89-94.
- R. Jiménez and V. Malykhin, Structure resolvability, Commentat. Math. Univ. Carol. 39 (1998), no. 2, 379-387.
- O. Kalenda and J. Spurný, Extending Baire-one functions on topological spaces, Topol. Appl. 149 (2005), no. 1-3, 195-216. DOI: 10.1016/j.topol.2004.09.007
- O. Karlova, On α-embedded sets and extension of mappings, Commentat. Math. Univ. Carol. 54 (2013), no. 3, 377-396.
- 5. K. Kuratowski, Topology, vol. 1, Academic Press, New York, 1966.
- V. V. Tkachuk, A C_p-theory problem book. Special features of function spaces, Problem Books in Math., Springer, Cham, 2014.

Стаття: надійшла до редколегії 05.11.2018 доопрацьована 21.11.2018 прийнята до друку 26.12.2018

ПРОДОВЖЕННЯ ОБМЕЖЕНИХ І НЕОБМЕЖЕНИХ ФУНКЦІЙ ПЕРШОГО КЛАСУ БЕРА

Олена КАРЛОВА¹, Володимир МИХАЙЛЮК^{1,2}

 Чернівецький національний університет імені Юрія Федьковича, вул. Коцюбинського, 2, 58000, Чернівці
Університет Яна Кохановського, Кельци, Польща e-mail: maslenizza.ua@gmail.com, vmykhaylyuk@ukr.net

Порівнюються можливості продовження обмежених і необмежених функцій першого класу Бера з підпросторів топологічних просторів.

Ключові слова: продовження, функція першого класу Бера, В₁-вкладена множина, В₁^{*}-вкладена множина.