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1. Bornological groups

1.1. Bornological spaces. A family I of subsets of a set X is called an ideal (in the
Boolean algebra PX of all subsets of X) if I is closed under formation of �nite unions
and subsets. If

⋃
I = X then I is called a bornology, so a bornology is an ideal containing

the ideal [X]<ω of all �nite subsets of X.
A bornological space is a pair (X,B) consisting of a set X and a bornology B on X.

Any set Y ∈ B is called bounded. If X ∈ B, then the bornological space (X,B) is bounded.
Any subset Y ⊂ X of a bornological space (X,B) carries the subbornology

B�Y := {B ∈ B : B ⊂ Y },

induced by B.
A bornology B on X is called

• tall if B�Y 6= [Y ]<ω for any in�nite subset Y ;
• antitall if any subset Y /∈ B of X contains an in�nite subset Z ⊆ Y such that
B�Z = [Z]<ω.
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By [15, Proposition 1], every bornology is the meet of some tall and antitall
bornologies.

A family B′ ⊆ B is called a base of a bornology B if each set B ∈ B is contained in
some set B′ ∈ B′. Every bornology with a countable base is antitall. In particular, the
bornology of all bounded subsets of a metric space is antitall. We note also that for every
bornology B on X with a countable base, there exists a metric d on X such that B is a
bornology of all bounded subsets of (X, d).

The product of a family of bornological spaces (Xα,Bα), α ∈ A, is the Cartesian
product

∏
α∈AXα of their supports endowed with the bornology generated by the base

{
∏
α∈ABα : (Bα)α∈A ∈

∏
α∈A Bα}.

A mapping f : X → Y between two bornological spaces (X,BX) and (Y,BY ) is
called bornologous if {f(B) : B ∈ BX} ⊂ BY .

A variety is a class of bornological spaces closed under formation of subspaces,
products and bornologous images.

We denote byMsingle the variety of all singletons,Mbound the variety of all bounded
bornological spaces, Mκ the variety of all κ-bounded spaces. For an in�nite cardinal κ, a
bornological space (X,B) is called κ-bounded if each subset B ⊂ X of cardinality |B| < κ
is bounded.

Every variety of bornological spaces coincides with one of the varieties in the chain:

Msingle ⊂Mbound ⊂ · · · ⊂Mκ ⊂ · · · ⊂Mω,

see the proof of Theorem 2 in [16].

1.2. Bornologies on groups. A bornology on a group G is called right (left) invariant
if Bg ⊆ B (resp. gB ⊆ B) for each every g ∈ G. Here Bg = {Bg : B ∈ B} and
gB = {gB : B ∈ B}. A group G endowed with a right (left) invariant bornology is called
a right (left) bornological group.

We say that a group G endowed with a bornology B is a bornological group if the
group multiplication and inversion are bornologous mapping. In this case, B is called a
group bornology. We note that B is a group bornology if and only if for any A,B ∈ B we
have AB−1 ∈ B.

1.3. Duality. Now we endow every group G with the discrete topology and identify
the Stone-�Cech compacti�cation βG of G with the set of all ultra�lters on G. Then the
family

{
A : A ⊆ G

}
, where A = {p ∈ βG : A ∈ p}, forms a base of the topology of

βG. Given a �lter ϕ on G, we denote ϕ = ∩
{
A : A ∈ ϕ

}
, so ϕ de�nes the closed subset

ϕ of βG, and each closed subset K of βG can be obtained in this way: K = ϕ, where
ϕ =

{
A ⊆ G : K ⊆ A

}
.

We use the standard extension [8, Section 4.1] of the multiplication on G to the
semigroup multiplication on βG such that for every p ∈ βG the right shift βG → βG,
x 7→ xp, is continuous, and for every g ∈ G the left shift βG→ βG, x 7→ gx, is continuous.
For ultra�lters p, q ∈ βG their product pq in βG is de�ned by the formula

pq =
{⋃

x∈P xQx : P ∈ p, {Qx}x∈P ⊂ q
}
.

Let G∗ := βG \G be the set of all free ultra�lters on G. It follows directly from the
de�nition of the multiplication in βG that G∗ and G∗G∗ are ideals in the semigroup βG,
and G∗ is the unique maximal closed ideal in G. By Theorem 4.44 from [8], the closure
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K(βG) of the minimal ideal K(G) of βG is an ideal, so K(βG) is the smallest closed

ideal in βG. For the structure of K(βG) and some other ideals in βG see [8, Sections 4,
6].

For an ideal I on a group G and a closed subset K of βG, we put

I∧ = {p ∈ βG : ∀A ∈ I G \A ∈ p} and K∨ = {G \A : A ∈ ϕ, ϕ = K} .

We have the following duality statements:

• I is left translation invariant if and only if I∧ is a left ideal of the semigroup βG;
• I is right translation invariant if and only if (I∧)G ⊆ I∧;
• (I∧)∨ = I;
• I is a bornology if and only if I∧ ⊆ G∗.
Thus, we have the duality between left invariant bornologies on G and closed left

ideals of βG containing in G∗. We say that a subset A of a group G is

• large if G = FA for some F ∈ [G]<ω;
• small if L \A is large for every large subset L of G;
• sparse if for every in�nite subset X of G there exists a �nite subset F ⊂ X such
that

⋂
g∈F gA is �nite.

Theorem 1. For every in�nite group G, the family SmG of all small subsets of G is a

left and right invariant bornology and Sm∧G = K(βG).

This is Theorem 4.40 from [8] in the form given in [17, Theorem 12.5].

Theorem 2. For every in�nite group G, the family SpG of all sparse subsets of G is a
left and right invariant bornology and Sp∧G = G∗G∗.

This is Theorem 10 from [4].
More applications of this duality can be found in [18].
Let B be a group bornology on G. By [23], B∧ is an ideal in βG but the converse

statement does not hold: Sm∧G is an ideal but SmG is not a group bornology.

1.4. Plenty of bornologies. We say that a left invariant bornology B of G is maximal
if G /∈ B but G ∈ B′ for every left invariant bornology B′ on G such that B ( B′.

Theorem 3. For every in�nite group G, of cardinality κ, there are 22
κ

distinct maximal
left invariant bornologies on G.

Proof. By Theorem 6.30 from [8], there exists a family F consisting of |F| = 22
κ

pairwise
disjoint closed left ideals in βG. Each I ∈ F contains some minimal closed left ideal LI .
Then {L∨I : I ∈ F} is the desired family of maximal left invariant bornologies on G. �

Theorem 4 ([14]). Every countable group G admits exactly 2c group bornologies.

By Theorem 6.3.3 from [26], each Abelian group G admits exactly 22
|G|

group
bornologies. However this theorem does not extend to uncountable non-commutative
groups. The following (consistent) counterexample was suggested by Taras Banakh.

Example 1. Under CH there exists a group G of cardinality |G| = c = ω1 admitting

exactly 2c < 22
c

group bornologies.
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Proof. In [29] Shelah constructed a CH-example of a group G of cardinality |G| = c = ω1

such that G = A6641 for any uncountable subset A ⊂ G. This implies that each group
bornology B on G either coincides with PG or is contained in the bornology [G]≤ω of
countable subsets of G. Thus, the number of group bornologies of Shelah's group G

is ≤ 2|[G]≤ω| = 2c. On the other hand, Theorem 4 ensures that this number is ≥ 2c.
Therefore, the number of group bornologies of Shelah's group G is equal to 2c, which is
strictly smaller than 22

c

by known Cantor's Theorem. �

Theorem 4 implies that under the assumption 2ω1 = 2ω, each group G of cardinality

|G| = ω1 has exactly 2c = 22
|G|

group bornologies. This observation shows that the group
from Example 1 cannot be constructed in ZFC.

Theorem 5 ([18]). For every in�nite group G, the following statements hold:

(i) if B is a left invariant bornology on G and B 6= [G]<ω, then there is a left
invariant bornology B′ on G such that [G]<ω ( B′ ( B;

(ii) if G is either countable or Abelian and B is a left and right invariant bornology
on G such that B 6= [G]<ω then there is a left and right invariant bornology B′
on G such that [G]<ω ( B′ ( B;

(iii) if G is the group Sκ of all permutations of an in�nite cardinal κ then there exists
a left and right invariant bornology B on G such that [G]<ω ( B and there are
no left and right invariant bornologies on G between [G]<ω and B.

Theorem 6. Let G be an in�nite group and let B be a group bornology of G such that
B 6= [G]<ω. If G is either countable or Abelian then there is a group bornology B′ such
that [G]<ω ( B′ ( B.

This is Theorem 6.4.1. from [26]. We do not know (Question 6.4.1. in [26]) if Theorem
6 remains true for every in�nite group G, in particular, for G = Sκ.

By [17, Theorem 12.9], every in�nite group can be partitioned into countably many
small subsets.

Question 1. Given an in�nite group G, do there exist a small subset S and a countable
subset A of G such that {aS : a ∈ A} is a covering (partition) of G?

This is so if either G is amenable or G has a subgroup of countable index.

2. Coarse groups

2.1. Balleans and coarse spaces. For a set X a subset ε ⊂ X × X containing the
diagonal MX := {(x, x) : x ∈ X} is called an entourage on X. For two entourages ε, ε′ on
X the sets

ε ◦ ε′ = {(x, z) : ∃y ∈ X (x, y) ∈ ε, (y, z) ∈ ε′} and ε−1 = {(y, x) : (x, y) ∈ ε}.

also are entourages on X.
A family E of entourages on X is called a ball structure if it satis�es two axioms:

(a) for any ε, δ ∈ E the entourage ε ◦ δ−1 is contained in some λ ∈ E ;
(b)

⋃
E = X ×X.

A ball structure E on X is called a coarse structure if it satis�es one additional axiom:
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(c) if ε ∈ E and MX⊆ δ ⊆ ε, then δ ∈ E .
It follows that each coarse structure is a ball structure and each ball structure E on X is
a base of the unique coarse structure

↓E = {δ : ∃ε ∈ E MX⊆ δ ⊆ ε}.

A subfamily E ′ ⊆ E is called a base of a coarse structure E if for every ε ∈ E is contained
in some δ ∈ E ′.

A ballean is a pair (X, E) consisting of a set X and a ball structure E on X. If the
ball structure E is a coarse structure, then the ballean (X, E) is called a coarse space. We
note that coarse spaces can be considered as asymptotic counterparts of uniform spaces
and balleans can be de�ned in terms of balls, see [17], [26].

Let E be a ball structure on a set X. For every x ∈ X and ε ∈ E the set B(x, ε) :=
{y ∈ X : (x, y) ∈ ε} is called the ball of radius ε centered at x.

A subset Y of X is called bounded if there exist x ∈ X and ε ∈ E such that
Y ⊆ B(x, ε). The coarse structure E = {ε ∈ X × X : 4X ⊆ ε} is the unique coarse
structure such that (X, E) bounded.

For a ballean (X, E), each subset Y ⊆ X carries the induced ball structure E�Y :=
{ε ∩ (Y × Y ) : ε ∈ E}. The ballen (Y, E�Y ) is called a subballean of (X, E).

A subset Y of a ballean X is called large (or coarsely dense) if there exists ε ∈ E
such that X = B(Y, ε) where B(Y, ε) =

⋃
y∈Y B(y, ε).

Let (X, E), (X ′, E ′) be balleans. A mapping f : X → X ′ is called coarse if for every
ε ∈ E there exists ε′ ∈ E ′ such that, for every x ∈ X, we have f(B(x, ε)) ⊆ B(f(x), ε′).
If f is surjective and coarse, then (X ′, E ′) is called a coarse image of (X, E). If f is a
bijection such that f and f−1 are coarse mappings, then f is called an asymorphism. Two
balleans (X, E), (X ′, E ′) are called coarsely equivalent if there exist large subsets Y ⊆ X,
Y ′ ⊆ X ′ such that the balleans (Y, E�Y ) and (Y ′, E ′�Y ′) are asymorphic.

To conclude the coarse vocabulary, we take a family {(Xα, Eα) : α < κ} of balleans
and de�ne their product

∏
α<κ(Xα, Eα) as the Cartesian product

∏
α<κXα endowed with

the ball structure consisting of the entourages

{((xα), (yα)) : ∀α ∈ A (xα, yα) ∈ εα}

where (εα)α∈A ∈
∏
α∈A Eα.

For lattices of coarse structures and varieties of coarse spaces, see [19] and [16].
For every ballean (X, E), the family of all bounded subsets of X is a bornology. On

the other hand, for every bornology B on X, there is the smallest by inclusion coarse
structure EB on X such that B is the bornology of all bounded subsets of (X, EB). A
coarse structure E on X is of the form EB if and only if (X, E) is thin: for every ε ∈ E ,
there exists a bounded subset A of (X, E) such that B(x, ε) = {x} for all x ∈ X \A. The
thin coarse structures are also called discrete.

2.2. Coarse structures on groups. We remind that a bornology I on a group G is
a group bornology if and AB−1 ∈ I for all A,B ∈ I. A group bornology I is called
invariant if

⋃
g∈G g

−1Ag ∈ I for each A ∈ I.

Let X be a G-space with an action G × X → X, (g, x) 7→ gx, of a group G. We
assume that G acts on X transitively, take a group bornology I on G and consider the
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coarse structure E(G, I, X) on X generated by the base consisting of the entourages
εA := {(x, y) ∈ X ×X : y ∈ {x} ∪Ax}. In this case B(x, εA) = {x} ∪Ax.

By [10, Theorem 1], for every coarse structure E on X, there exist a group G of
permutations of X and a group ideal I on G such that E = E(G, I, X).

Now let X = G and G acts on X by the left shifts. We denote EI = E(G, I, G).
Thus, every group bornology I on G turns G into the coarse space (G, EI). We note that
a subset A of G is bounded in (G, EI) if and only if A ∈ I.

A group G endowed with a coarse structure E is called left (right) coarse group if,
for every ε ∈ E , there exists ε′ ∈ E such that gB(x, ε) ⊆ B(gx, ε′) (resp. B(x, ε)g ⊆
B(xg, ε′) ) for all x, g ∈ G. Equivalently, (G, E) is a left (right) coarse group if E has a
base consisting of left (right) invariant entourages. An entourage ε is left (right) invariant
if gε = ε (resp. εg = g) for each g ∈ G, where gε = {(gx, gy) : (x, y) ∈ ε)} and
εg = {(xg, yg) : (x, y) ∈ ε)}. For �nitely generated groups, the right coarse groups
(G, E[G]<ω) in metric form play an important role in Geometric Group Theory, see [6,
Chapter 4].

A group G endowed with a coarse structure E is called a coarse group if the group
multiplication (G, E)× (G, E)→ (G, E), (x, y) 7→ xy, and the inversion (G, E)→ (G, E),
x 7→ x−1, are coarse mappings. In this case, E is called a group coarse structure.

The following two statements are taken from [22], see also [26, Chapter 6].

Proposition 1. A group G endowed with a coarse structure E is a right coarse group if
and only if there exists a group bornology I on G such that E = EI .

Proposition 2. For a group G endowed with a coarse structure E, the following condi-
tions are equivalent:

(i) (G, E) is a coarse group;
(ii) (G, E) is a left and right coarse group;
(iii) there exists an invariant group bornology I on G such that E = EI .

Applying Theorem 1.4, we get 22
ℵ0

distinct right coarse structures on any countable
group. For every in�nite group G and any in�nite cardinal κ 6 |G|, the bornology [G]<κ

de�nes an unbounded right coarse structure on G. But if G has only two conjugated
classes then there is only one, bounded, group coarse structure on G.

2.3. Asymorphisms. For an in�nite cardinal κ, we say that two groups G and H are κ-
asymorphic (resp. κ-coarsely equivalent) if the right coarse structures on G and H de�ned
by the bornologies [G]<κ and [H]<κ are asymorphic (resp. coarsely equivalent). In the
case κ = ℵ0, G and H are called �nitarily asymorphic and �nitarily coarsely equivalent,
respectively.

Let us recall that a group G is locally �nite if each �nite subset of G is contained
in a �nite subgroup of G. A classi�cation of countable locally �nite groups up to �nitary
asymorphisms is obtained in [12] (cf. [17, p. 103]).

Theorem 7. Two countable locally �nite groups G1 and G2 are �nitarily asymorphic if
and only if the following conditions hold:

(i) for every �nite subgroup F1 ⊂ G1, there exists a �nite subgroup F2 of G2 such
that |F1| is a divisor of |F2|;
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(ii) for every �nite subgroup F2 of G2, there exists a �nite subgroup F1 of G1 such
that |F2| is a divisor of |F1|.

It follows that there are continuum many distinct types of countable locally �nite
groups and each group is �nitarily asymorphic to some direct sum of �nite cyclic groups.

The following coarse classi�cation of countable Abelian groups is obtained in [2].

Theorem 8. Two countable groups G and H are �nitarily coarsely equivalent if and only
if the torsion-free ranks of G and H coincide and G,H are both either �nitely generated
or in�nitely generated.

In particular, any two countable torsion Abelian groups are �nitarily coarsely equi-
valent.

For κ-asymorphisms, we have the following two results.

Theorem 9 ([25]). For any uncountable cardinal κ, any two groups G,H of cardinality
|G| = κ = |H| are κ-asymorphic.

Theorem 10 ([24]). Let κ be a cardinal and G be an Abelian group of cardinality |G| ≥ κ.
The group G is κ-asymorphic to a free Abelian group. If κ < |G| or κ = |G| is a singular
cardinal, then G is not not κ-coarsely equivalent to a free group. In particular, G is not
κ-asymorphic to a free group.

Theorem 11 ([20]). For every countable group G there are continuum many distinct
classes of �nitarily coarsely equivalent subsets of G.

2.4. Free coarse groups. A class M of groups is a variety if M is closed under
subgroups, products and homomorphic images. We assume that M is non-trivial (i.e.
there exists G ∈M such that |G| > 1) and recall that the a group FM(X) in the variety
M is de�ned by the following conditions: FM(X) ∈M, X ⊂ FM(X), X generates FM(X)
and every mapping X → G, G ∈M can be extended to homomorphism FM(X)→ G.

For a coarse space (X, E), a free coarse group FM(X, E) is de�ned as a coarse group
(FM(X), E ′) such that (X, E) is a subballean of (FM(X), E ′) and every coarse mappi-
ng (X, E) → (G, E ′′), G ∈ M, (G, E ′′) is a coarse group, can be extended to a coarse
homomorphism (FM(X), E ′) → (G, E ′′). The de�nition implies that a free coarse group
is unique up to an asymorphism, which is the identity on X.

The following theorem is proved in [21] with explicit description of the coarse
structure of FM(X, E).

Theorem 12. For every coarse space (X, E) and every non-trivial variety M of groups,
there exists a free coarse group FM(X, E).

2.5. Maximality. A topological space X with no isolated points is called maximal if X
has an isolated point in any stronger topology. A topological group G is called maximal
if G is maximal as a topological space. Every maximal topological group has an open
countable Boolean subgroup, and can be constructed using the Martin Axiom. On the
other hand, the existence of a maximal topological group implies the existence of a P -
point in ω∗, see [11].
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An unbounded coarse space (X, E) is called maximal if X is bounded in every coarse
structure E ′ such that E ⊂ E ′. A coarse group G is called maximal if G is maximal as
a coarse space. If a coarse group (G, I) is maximal then {g2 : g ∈ G} is bounded in
(G, I), and a maximal coarse Boolean group is constructed in [27] under CH, (see also
[26, Chapter 10]), but the following question remains open.

Question 2. Does there exist a maximal coarse group in ZFC?

2.6. Normality. We say that subsets Y, Z of a coarse space (X, E) are asymptotically
disjoint if, for every ε ∈ E the intersection B(Y, ε) ∩B(Z, ε) is bounded.

A subset U ⊂ X of a coarse space (X, E) is called an asymptotic neighborhood of a
set A ⊂ X if the sets A and X \ U are asymptotically disjoint.

A coarse space (X, E) is called normal if any asymptotically disjoint subsets Y,Z ⊂
X have disjoint asymptotic neighborhoods OY , OZ .

Theorem 13 ([13]). For a coarse space (X, E) the following conditions are equivalent:

(1) (X, E) is normal;
(2) for any disjoint and asymptotically disjoint sets Y,Z ⊂ X there exists a slowly

oscillating function f : (X, E)→ [0, 1] such that f(Y ) ⊂ {0} and f(Z) ⊂ {1}.
(3) for each subballean Y of X, every bounded slowly oscillating function f : Y → R

can be extended to a bounded slowly oscillating function on X.

We recall that a real-valued function f : X → R de�ned on a coarse space (X, E)
is slowly oscillating if for any ε ∈ E and real number δ > 0 there exists a bounded set
B ⊂ X such that diamf(B(x, ε)) < δ.

Every metrizable coarse space is normal. More generally, a coarse space is normal
if its coarse structure has a linearly ordered base, see [13]. A partial conversion of this
result for products was recently proved in [3].

Theorem 14. If the product X × Y of two unbounded coarse spaces X,Y is normal,
then the coarse space X × Y has bounded growth and its bornology has a linearly ordered
base.

A coarse space (X, E) is de�ned to have bounded growth if there exists a (multi-
valued) function Φ : X → PX such that for every bounded set B ⊂ X the union⋃
x∈B Φ(x) is bounded and for every entourage ε ∈ E there exists a bounded set D ⊂ X

such that B(x, ε) ⊂ Φ(x) for all x ∈ X \D.

Theorem 15 ([3]). Let κ be an in�nite cardinal and G be a group of cardinality |G| ≥ κ,
endowed with the coarse structure E[G]<κ , generated by the group ideal [G]<κ. If the coarse
space (X, E[G]κ) is normal (and G is solvable), then |G| = κ (and the cardinal κ = |G| is
regular).

2.7. Coarse structures on topological groups. A subset A of a topological group G
(all topological groups are supposed to be Hausdor�) is called totally bounded if, for every
neighborhood U of the identity, there exists a �nite set F ⊂ G such that A ⊆ FU ∩UF .
The group bornology Bτ of all totally bounded subsets of (G, τ) de�nes two (antitall)
coarse structures El and Er generated by the ball structures{
{(x, y) ∈ G×G : y ∈ {x}∪Bx} : B ∈ Bτ

}
and {{(x, y) ∈ G×G : y ∈ {x}∪Bx : B ∈ Bτ

}
,
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respectively.
The following questions are from [7].

Question 3. Given a group bornology B on a group G, how can one detect whether
there exists a group topology τ on G such that B = Bτ?

Let (G, τ) be a topological group. We denote by τ ] the strongest group topology
on G such that Bτ] = Bτ , and say that (G, τ) is b-determined if τ ] = τ . Clearly, every
discrete group is b-determined. A totally bounded group G is b-determined if and only if
τ is the maximal totally bounded topology on G.

Question 4. Given a topological group G, how can one detect whether G is b-determi-
ned?

For the coarse structures El, Er and slowly oscillating functions on locally compact
groups, see [5].

3. Uniform groups

We recall that a family U of subsets of X ×X is a uniformity on a set X if

• MX⊆ u for each u ∈ U ;
• if u, v ∈ U then u ∩ v ∈ U ;
• if u ∈ U and u ⊆ v ⊂ X ×X then v ∈ U .
• for every u ∈ U , there exists v ∈ U such that v ◦ v−1 ⊆ u.
A family F ⊆ U is called a base of U if for every u ∈ U there exists v ∈ F such that

v ⊆ u. A set X, endowed with a uniformity U , is called a uniform space.
We say that a uniformity U on a group G is left (right) invariant if U has a base

consisting of left (right) translation invariant entourages (cf. 2.2).
A �lter ϕ on a group G is called a group �lter if for every A ∈ ϕ there exists B ∈ ϕ

such that BB−1 ∈ ϕ. In this case every set A ∈ ϕ contains the unit e of the group G. If
{ε} ∈ ϕ, then the group �lter ϕ is called principal.

Every group �lter ϕ determines two uniformities Lϕ and Rϕ on G with the bases{
{(x, y) ∈ G×G : y ∈ xA} : A ∈ ϕ

}
and

{
{(x, y) ∈ G×G : y ∈ Ax} : A ∈ ϕ

}
.

Proposition 3. A uniformity U on a group G is right invariant if and only if U = Rϕ
for some group �lter ϕ on G.

We recall that a topological group G is balanced (= SIN) if the left and right uni-
formities on G coincide (= G has a base of invariant neighborhoods of the identity).

Proposition 4. A uniformity U on a group G is left and right invariant if and only if G
endowed with the topology generated by the uniformity U is a balanced topological group.

Example 2. Let H be a topological group and let f be an arbitrary automorphism of
H. Then the semidirect product G = H h 〈f〉 is a right uniform group determined by
the �lter of neighbourhoods of e in H. If f is discontinuous then G is not left uniform.
Now let H be the Cartesian product of in�nitely many copies of Zp. It is easy to �nd a
discontinuous automorphism of order 2 of H. Hence, the right uniform group G contains
a compact topological group of index 2 but G is not a topological group.
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We say that a group G is uniformizable if there is a non-principal group �lter ϕ on
G such that ∩ϕ = {e}.

We recall that a group G is topologizable if G admits a non-discrete (Hausdor�)
group topology. Clearly, every topologizable group is uniformizable, but the class of
uniformizable groups is much wider than the class of topologizable groups. By [30], every
group can be embedded into some non-topologizable group, and if a group G contains a
uniformizable subgroup then G is uniformizable.

Does there exists a non-uniformizable group? In [9], Alexander Olshansky used the
following example to construct a countable non-topologizable group.

Example 3. Let n ≥ 2 be a natural number and m ≥ 665 be an odd number. Let
A(n,m) be the Adian group, see [1]. This group is generated by n elements and has the
following properties:

(a) A(n,m) is torsion free;
(b) the center C of A(n,m) is an in�nite cyclic group, C = 〈c〉;
(c) A(n,m)/C is an in�nite group of period m.

We put G = A(n,m)/〈cm〉, denote by f : A(n,m) → G the quotient map and observe
that if g ∈ G \ {e} then g or gm belongs to the set {f(c), f(c2), . . . , f(cm−1)}. It follows
that if ϕ is a group �lter on G and ∩ϕ = {e} then {e} ∈ ϕ, so G is non-uniformizable.

Question 5. Does every uniformizable group contain a topologizable subgroup?

Question 6. Can one �nd a criterion of uniformizability of countable groups in spirit of
Markov's criterion of topologizability?
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