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We prove that any topological group G containing a subspace X of the
Sorgenfrey line has spread s(G) > s(X x X). Under OCA, each topologi-
cal group containing an uncountable subspace of the Sorgenfrey line has
uncountable spread. This implies that under OCA a cometrizable topological
group G is cosmic if and only if it has countable spread. On the other hand,
under CH there exists a cometrizable Abelian topological group that has
hereditarily Lindel6f countable power and contains an uncountable subspace
of the Sorgenfrey line. This cometrizable topological group has countable
spread but is not cosmic.
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1. INTRODUCTION

The main result of this paper is the following theorem answering the problem [2],
posed by the first author on MathOverflow.

Theorem 1. Fach topological group containing a topological copy of the Sorgenfrey line
contains a discrete subspace of cardinality continuum.
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We recall that the Sorgenfrey line is the real line endowed with the topology,
generated by the half-intervals [a,b) where a < b are arbitrary real numbers. The
Sorgenfrey line endowed with the (continuous) operation of addition of real numbers
is a classical example of a paratopological group, which is not a topological group, see
[1, 1.2.1]. The Sorgenfrey line has countable spread and shows that Theorem [I| cannot
be generalized to paratopological groups.

Theorem I]follows from a more refined theorem evaluating the spread of a topological
group that contains a topological copy of an uncountable subspace of the Sorgenfrey line.

We recall that for a topological space X the cardinal

s(X) =sup{|D|: D C X is a discrete subspace of X}
is called the spread of X.

Theorem 2. Assume that a topological group G contains a subspace X, homeomorphic
to an uncountable subspace of the Sorgenfrey line. Then s(G) > s(X x X).

Theorems [I] and [2] will be proved in Section R} Theorem | has the following corollary
holding under OCA (the Open Coloring Axiom, see [11} §8]).

Corollary 1. Under OCA any topological group G containing an uncountable subspace
X of the Sorgenfrey line has uncountable spread.

Proof. Proposition 8.4(c) of [11] implies that X contains an uncountable subset Z admi-
tting a strictly decreasing function f : Z — X (with respect to the linear order inherited
from the real line). Then D = {(z, f(z)) : z € Z} is a discrete subspace of X x X and
hence
3(G) > s(X x X) > |D|=1Z| > w.
O

We shall apply Corollary [1] to detect cosmic topological groups among cometrizable
topological groups.
A topological space X
e is cosmic if it is a continuous image of a separable metrizable space;
e is cometrizable if X admits a weaker metrizable topology such that each point has
a (not necessarily open) neighborhood base consisting of sets which are closed in
the metric topology.

Cometrizable spaces were introduced by Gruenhage in [8]. The interplay between
cometrizable spaces and other generalized metric spaces was studied in [3] and [4]. It was
proved in [3] and [4] that the class of cometrizable spaces includes all stratifiable and
all sequential Np-spaces. On the other hand, there exists a countable (and hence cosmic)
space, which is not cometrizable.

In [8] Gruenhage proved that under PFA a regular cometrizable space X is cosmic
if and only if X has countable spread and contains no uncountable subspace of the
Sorgenfrey line. In [I1} 8.5] Todorcevié observed that this characterization remains true
under OCA (which is a weaker assumption than PFA). Unifying Theorem 8.5 [I1] of
Todorcevi¢ with Corollary [I} we obtain the following OCA-characterization of cosmic
topological groups.
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Corollary 2. Under OCA, a cometrizable topological group is cosmic if and only if it
has countable spread.

It is interesting that this OCA-characterization of cosmic cometrizable groups does
not hold under the Continuum Hypothesis (briefly, CH).

Theorem 3. Under CH there exists a cometrizable topological group G that contains an
uncountable subspace of the Sorgenfrey line (and hence is not cosmic) but has hereditarily
Lindeldf countable power G¥ (and hence G* has countable spread).

Theorem [3] will be proved in Section

Remark 1. By [10], there exists a hereditarily Lindelf topological group G whose square
is not normal. The topological group G has countable spread but is not cosmic. Corollary 2]
implies that the space G is not cometrizable under OCA.

Remark 2. Using the Continuum Hypothesis, Hajnal and Juhdsz [7] constructed a heredi-
tarily separable Boolean topological group G with uncountable pseudocharacter. This
topological group has countable spread (being hereditarily separable) but is not heredi-
tarily Lindel6f and not cosmic (because it has uncountable pseudocharacter).

2. PROOF OF THEOREM [2]
Theorems [T] and 2] will be deduced from the following

Lemma 1. Let x be a cardinal of uncountable cofinality and X be a subspace of the
Sorgenfrey line whose square contains a discrete subspace I' C X X X of cardinality
IT| = k. If a topological group G contains a subspace homeomorphic to X, then G contains
a discrete subspace of cardinality k.

Proof. We shall identify the subspace X of the Sorgenfrey line with a subspace of the
topological group G. For every x € X and a rational number ¢ > x let

[z,¢9) ={ye Xz <y<q}
be the order half-interval in X. Let also
tr={yeX:z<y}.

By the definition of the Sorgenfrey topology, the countable family {[z,q) : x < ¢ € Q} is
a neighborhod base at z in the space X.

Since the subspace I' C X x X is discrete, each point (z,y) € T has a neighborhood
O(z,y) C X x X such that 'N O, ) = {(z,y)}. Find rational numbers u(, ), v(5,y) such
that

((E,y) € [xvu(rc,y)) X [yvv(m,y)) - O(T,y)
Since the cardinal |I'| = k has uncountable cofinality, for some rational numbers u, v the
set
I = {(2,y) €Tt Ugzy) = U, V(z,y) =0}
has cardinality [I'| = |I'|. Replacing the set I" by the set I, we can assume that u(, ) = u
and v(, ) = v for all (z,y) € T.
Let

Ii={reX:yeX (r,y) e} and INp={yeX:JxecX (z,y) €T}
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be the projections of the set I' C X x X onto the coordinate axes. We claim that T’
coincides with the graph of some strictly decreasing function f : I’y — I'5. First observe
that for any x € T'; there exists a unique y € T’ with (z,y) € I'. Otherwise we could find
two real numbers y; < y2 with (z,91), (z,y2) € T and conclude that

($7y2) € [x,u) X [y27’l)) - [ac,u) X [ylvv) c O(Ivyl)’

which contradicts the choice of the neighborhood O, ,,. This contradiction shows that
I" coincides with the graph of some function f : I'y — T'5. Let us show that this
function is strictly decreasing. Assuming that this is not true, we could find two poi-
nts (z1,y1), (22,y2) € T with 1 < 25 and y; < yo. Then

(72,Y2) € [T2,u) X [y2,v) C [T1,u) X [y1,0) C O(a, ),
which contradicts the choice of the neighborhood O, 4,)-
Therefore the function f: 'y — I's is strictly decreasing, which implies that
IL4] = [Ta] = 7] = .
For any point « € X choose a neighborhood V,, C G of the unit e of G such that
XNV, Wz uaV,V, Y C ta.

Next, for every point x € X, choose a rational point r, > x such that [z,7,) C 2V},
if z € Ty and [2,7,) C Vy-1(yyz if © € T'5. Since the cardinal |I';| = & has uncountable
cofinality, for some ¢, d € Q the set Z = {z elir,=c 1y = d} has cadinality .

We claim that the subspace D := {z - f(z) : z € Z} has cardinality x and is discrete
in G. For every z € Z consider the neighborhood z(V, NVy(.)) f(z) of the point z- f(2) in
G. We claim that x- f(x) ¢ 2(V.NVy(.)) f(2) for any x € Z\{z}. To derive a contradiction,
assume that = - f(x) € 2Vy(.) f(2) for some z # z in Z.

If 2 > z, then x € [z,7.) C 2V}(;) and

fl@)=a'af(z) € 2V f(2) C sz;)zflef(z)f(z) = szzl)Vf(z)f(z).
Then
f(x) eXn szzl)vj'(z)f(z) C Tf(z)

and f(x) > f(z), which is not possible as x > z and f is strictly decreasing.
If z > x, then f(z) > f(2) and

f(@) € [f(@),rp)) = [f(2),d) C[f(2),d) = [f(2),r5(x)) CVaf(2)
and then
v €2Vif(2)f(x) "t CAVLf(2)f(2) V=2V VT 1z

which contradicts z > . O

Proof of Theorem [l Assume that a topological group G contains a topological copy
of the Sorgenfrey line S. Observe that the square of S contains a discrete subset I' =
{(z,—z) : x € S} of cardinality continuum c. By [6, 5.12], the continuum has uncountable
cofinality. Applying Lemma [I] we conclude that the topological group G contains a
discrete subspace of cardinality c. O
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Proof of Theorem[2. Let G be a topological group G containing a subspace X,
homeomorphic to an uncountable subspace of the Sorgenfrey line. Assuming that
s(G) < s(X x X), we conclude that s(X x X) > k™ for the cardinal k = s(G). Then
X x X contains a discrete subspace D of cardinality |D| = s, which has uncountable
cofinality. In this case we can apply Lemma [I| and conclude that G contains a discrete
subspace of cardinality x*, which implies that k = s(G) > s > k and this is a desired
contradiction. (]

3. PROOF OF THEOREM [3|

In this section we prove Theorem [3| But first we prove that the Sorgenfrey line S
embeds into a cometrizable topological group. In the proof of this embedding result, we
use the k-separability of S.

A subset D of a topological space X is called k-dense in X if each compact subset
K C X is contained in a compact set K C X such that the intersection D N K is dense
in K.

A topological space X is defined to be k-separable if it contains a countable k-dense
subset.

Lemma 2. The set Q of rational numbers is k-dense in the Sorgenfrey line S.

Proof. Given a compact set K C S, observe that K is metrizable and hence contains a
countable dense subset {z,, }ne, C K. For every n, k € w fix a rational numbers z,, 5, such
that @, < Tp ., < Tp + 5opr- We claim that the subset K = KU{Zp 1 }n.kew is compact.
Indeed, let U be a cover of K by open subsets of S. For every z € K find a set U, € U with
x € U, and a real number b,, such that [x,b,) C U,. By the compactness of K the open
cover {[x,b;) : x € K} of K has a finite subcover {[x,b,): z € F} (here F is a suitable
finite subset of K). For every = € F the set [z,b,,) is closed in S and hence the intersection
K N z,b,) is compact, which implies that the number ¢, := b, — max (K N [z, br)) is
strictly positive. Choose m € N such that - < mingep e,. Then

27YL
K\ U [£,b;) C{znk:n+k<m}
zeF
is finite and hence is contained in the union (JF of some finite subfamily F C /. Then
FU{U, :z € F} C U is a finite subcover of K, witnessing that the subset K of S is

compact. By the definition of K, the set K N Q D {Tnk}, peo 18 dense in K. O

Lemma 2] implies that the Sorgenfrey line is k-separable. Now we prove that for any
k-separable space X and a cometrizable space Y the function space C(X,Y) is cometri-
zable. Here for topological spaces X,Y by Ci(X,Y) we denote the space of continuous
functions from X to Y, endowed with the compact-open topology, which is generated by
the subbase consisting of the sets

[K,U]:={f € CWx(X,Y): f(K) CU}
where K is a compact subset of X and U is an open subset of Y.

Lemma 3. For any k-separable space X and any cometrizable space Y the function space
Cr(X,Y) is cometrizable.
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Proof. Let D be a countable k-dense set in X and 7 be a metrizable topology on Y,
witnessing that the space Y is cometrizable. By Y, we denote the metrizable topological
space (Y, 7).

The density of the set D in X ensures that the restriction operator

r:CW(X,Y) = YP, r:fe fID
is injective. Let o be the (metrizable) topology on Cj(X,Y) such that the map
r: (Ch(X,Y),0) = YP

is a topological embedding. We claim that the topology o witnesses that the space
Cr(X,Y) is cometrizable.

Fix any function f € Cx(X,Y) and an open neighborhood Oy C Cx(X,Y"). Without
loss of generality, Oy is of basic form Oy = (I_,[K;, U;] for some non-empty compact
sets K1,...,K, C X and some open sets Uj,...,U, C Y. For every ¢+ < n and point
r € Kj, find a neighborhood V() C Y of f(x) € U; whose 7-closure V;(x) is contained
in U;. Using the regularity of the cometrizable space Y, find two open neighborhoods
N2y, Wz of f(x) such that

Niw)y C Wiy C Wiy C Vi)

By the compactness of K;, the open cover {f (Nf(@)) 1w € Ki} of K; has a finite
subcover {f (Nf(@)) :x € F; } where F; C K is a finite subset of K;. By the k-density
of D in X, for every x € F; the compact set K; , := K; N f’l(Nf(x)) can be enlarged to
a compact set fQ ¢« C X such that K, is contained in the closure of the set f{i,z N D.
Replacing the set KZ « by KZ N f™ (Wf ), We can assume that f(f(”;) C Wf(w) C

Vi:-
Consider the open neighborhood

HD:

ﬂ [Kies Vi)
eF;

of f in the function space Cy(X,Y). We claim that its o-closure V; is contained in Oy.

Given any function g ¢ Oy, we should find a neighborhood Oy € o of g that does
not intersect V. Since g ¢ Oy, there exists ¢ < n and a point z € K; such that g(z) ¢ U;.
Find a point z € F; with z € K ;. Taking into account that V;(x) cU;, cY\{g(2)}, we
conclude that g(z) ¢ V;(m). Since the point z belongs to the closure of the set K; ,ND, the
continuity of the function g : Z — Y; yields a point d € K; ,, N D such that g(d) ¢ V;(I).

Then O, := [{d}, Y \V;(z)] € o is a required g-open neighborhood of g that is disjoint
with the neighborhood V7. O

Lemma 4. The Sorgenfrey line S admits a topological embedding into the cometrizable
locally convez linear vector space Ci(S).

Proof. By Lemma [2] the Sorgenfrey line S is k-separable, and by Lemma [3] the function
space Ci(S) is cometrizable. It remains to observe that the map x : S — Ci(S) assigning
to each point z € S the function x, : S — {0,1} defined by x;1(1) = [-z,00) is a
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topological embedding of S into the function space C(S), which has the structure of a
locally convex topological vector space. O

Proof of Theorem [3. By Lemma[d] the Sorgenfrey line S can be identified with a subspace
of some cometrizable Abelian topological group H. According to Michael [9], under CH
the Sorgenfrey line contains an uncounatble subspace X whose countable power X% is
hereditarily Lindelof. Observe that the topological sum X<“ = . X" of finite powers
of X admits a topological embedding into X, which implies that X< is hereditarily
Lindelof as well as its countable power (X <¢)v.

Observing that the group hull G of X in the group H O S D X is a continuous image
of X<%, we conclude that the space G is hereditarily Lindelof. Moreover, the countable
power G* is hereditarily Lindel6f, being a continuous image of the hereditarily Lindel6f
space (X <v)v. O
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ITPO CIIPE/I TOITIOJIOITYHHUX I'PVYII, 11O MICTATDH
IMIIMHOXKVNHI CTPIJIKN 30PT EH®PES

Tapac BAHAX!, Irop TYPAH!,
Onekcannp PABCHKIUN?

Y Tveiecorut nayionarvrut yrisepcumem imens Isana Ppanxa,
Ynisepcumemenvxa, 1, 79000, JIveis
2 Incmumym npukacOHus npobaem METGHIKY | MATNEMATNUKY
im. . C. Ilidempuzava HAH Yrpainu,
eys. Hayxosa, 36, 79060, /Iveis
e-mail: t.0.banakh@gmail.com, igor-guranQukr.net,
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Hoseneno, mwo ronosorivna rpyna G, ska micrurh migupocrip X crpijaku
Baprendpes, mae cupen s(G) > s(X x X). B npunymenni OCA, nosinpaa TO-
[OJIOri9Ha I'pyma, m0 MICTUTh He3/H4YeHHWM mianpocTip crpiiku 3apreadpes
Ma€ HesJsliveHHuil cupen. 3sigacu Butmsae, mwo npu OCA komerpuszoBHa TOLO-
JIOTiYHA I'PYyNa MA€ 3JIYeHHY CITKY TOZi 1 JIuIne TOZXi, KOJIM BOHA MAa€ 3JjIideH-
Huii crpes. 3 immoro 6oky, npu CH icaye komerpu3zoBHa abeseBa TOMOJJIOTiYHA
rpyma, oo Ma€ CHaIKOBO JliHaesedOBy 3/YeHHy CTEITh 1 MICTUTD [IedAKuil He-
3JIYHHWN mAnpocTip cTpinku. Ilg TomosoridHa rpymna Mae€ 3/i4eHHUi CIpen,
IpoTe He Ma€ 3JIYEeHHOI CITKU.

Karowosi caosa: crpinka 3oprendpes, Tonosoriuna rpyna, cupen, OCA,
CH.
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