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We prove that any topological group G containing a subspace X of the
Sorgenfrey line has spread s(G) ≥ s(X × X). Under OCA, each topologi-
cal group containing an uncountable subspace of the Sorgenfrey line has
uncountable spread. This implies that under OCA a cometrizable topological
group G is cosmic if and only if it has countable spread. On the other hand,
under CH there exists a cometrizable Abelian topological group that has
hereditarily Lindel�of countable power and contains an uncountable subspace
of the Sorgenfrey line. This cometrizable topological group has countable
spread but is not cosmic.
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1. Introduction

The main result of this paper is the following theorem answering the problem [2],
posed by the �rst author on MathOver�ow.

Theorem 1. Each topological group containing a topological copy of the Sorgenfrey line
contains a discrete subspace of cardinality continuum.
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We recall that the Sorgenfrey line is the real line endowed with the topology,
generated by the half-intervals [a, b) where a < b are arbitrary real numbers. The
Sorgenfrey line endowed with the (continuous) operation of addition of real numbers
is a classical example of a paratopological group, which is not a topological group, see
[1, 1.2.1]. The Sorgenfrey line has countable spread and shows that Theorem 1 cannot
be generalized to paratopological groups.

Theorem 1 follows from a more re�ned theorem evaluating the spread of a topological
group that contains a topological copy of an uncountable subspace of the Sorgenfrey line.

We recall that for a topological space X the cardinal

s(X) = sup{|D| : D ⊂ X is a discrete subspace of X}

is called the spread of X.

Theorem 2. Assume that a topological group G contains a subspace X, homeomorphic
to an uncountable subspace of the Sorgenfrey line. Then s(G) ≥ s(X ×X).

Theorems 1 and 2 will be proved in Section 2. Theorem 2 has the following corollary
holding under OCA (the Open Coloring Axiom, see [11, �8]).

Corollary 1. Under OCA any topological group G containing an uncountable subspace
X of the Sorgenfrey line has uncountable spread.

Proof. Proposition 8.4(c) of [11] implies that X contains an uncountable subset Z admi-
tting a strictly decreasing function f : Z → X (with respect to the linear order inherited
from the real line). Then D = {(x, f(x)) : z ∈ Z} is a discrete subspace of X ×X and
hence

s(G) ≥ s(X ×X) ≥ |D| = |Z| > ω.

�

We shall apply Corollary 1 to detect cosmic topological groups among cometrizable
topological groups.

A topological space X

• is cosmic if it is a continuous image of a separable metrizable space;
• is cometrizable if X admits a weaker metrizable topology such that each point has
a (not necessarily open) neighborhood base consisting of sets which are closed in
the metric topology.

Cometrizable spaces were introduced by Gruenhage in [8]. The interplay between
cometrizable spaces and other generalized metric spaces was studied in [3] and [4]. It was
proved in [3] and [4] that the class of cometrizable spaces includes all strati�able and
all sequential ℵ0-spaces. On the other hand, there exists a countable (and hence cosmic)
space, which is not cometrizable.

In [8] Gruenhage proved that under PFA a regular cometrizable space X is cosmic
if and only if X has countable spread and contains no uncountable subspace of the
Sorgenfrey line. In [11, 8.5] Todor�cevi�c observed that this characterization remains true
under OCA (which is a weaker assumption than PFA). Unifying Theorem 8.5 [11] of
Todor�cevi�c with Corollary 1, we obtain the following OCA-characterization of cosmic
topological groups.
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Corollary 2. Under OCA, a cometrizable topological group is cosmic if and only if it
has countable spread.

It is interesting that this OCA-characterization of cosmic cometrizable groups does
not hold under the Continuum Hypothesis (brie�y, CH).

Theorem 3. Under CH there exists a cometrizable topological group G that contains an
uncountable subspace of the Sorgenfrey line (and hence is not cosmic) but has hereditarily
Lindel�of countable power Gω (and hence Gω has countable spread).

Theorem 3 will be proved in Section 3.

Remark 1. By [10], there exists a hereditarily Lindel�of topological group G whose square
is not normal. The topological groupG has countable spread but is not cosmic. Corollary 2
implies that the space G is not cometrizable under OCA.

Remark 2. Using the Continuum Hypothesis, Hajnal and Juh�asz [7] constructed a heredi-
tarily separable Boolean topological group G with uncountable pseudocharacter. This
topological group has countable spread (being hereditarily separable) but is not heredi-
tarily Lindel�of and not cosmic (because it has uncountable pseudocharacter).

2. Proof of Theorem 2

Theorems 1 and 2 will be deduced from the following

Lemma 1. Let κ be a cardinal of uncountable co�nality and X be a subspace of the
Sorgenfrey line whose square contains a discrete subspace Γ ⊂ X × X of cardinality
|Γ| = κ. If a topological group G contains a subspace homeomorphic to X, then G contains
a discrete subspace of cardinality κ.

Proof. We shall identify the subspace X of the Sorgenfrey line with a subspace of the
topological group G. For every x ∈ X and a rational number q > x let

[x, q) = {y ∈ X : x ≤ y < q}
be the order half-interval in X. Let also

↑x = {y ∈ X : x ≤ y} .
By the de�nition of the Sorgenfrey topology, the countable family {[x, q) : x < q ∈ Q} is
a neighborhod base at x in the space X.

Since the subspace Γ ⊂ X ×X is discrete, each point (x, y) ∈ Γ has a neighborhood
O(x,y) ⊂ X ×X such that Γ∩O(x,y) = {(x, y)}. Find rational numbers u(x,y), v(x,y) such
that

(x, y) ∈ [x, u(x,y))× [y, v(x,y)) ⊂ O(x,y).

Since the cardinal |Γ| = κ has uncountable co�nality, for some rational numbers u, v the
set

Γ′ =
{

(x, y) ∈ Γ : u(x,y) = u, v(x,y) = v
}

has cardinality |Γ′| = |Γ|. Replacing the set Γ by the set Γ′, we can assume that u(x,y) = u
and v(x,y) = v for all (x, y) ∈ Γ.

Let

Γ1 := {x ∈ X : ∃y ∈ X (x, y) ∈ Γ} and Γ2 = {y ∈ X : ∃x ∈ X (x, y) ∈ Γ}
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be the projections of the set Γ ⊂ X × X onto the coordinate axes. We claim that Γ
coincides with the graph of some strictly decreasing function f : Γ1 → Γ2. First observe
that for any x ∈ Γ1 there exists a unique y ∈ Γ with (x, y) ∈ Γ. Otherwise we could �nd
two real numbers y1 < y2 with (x, y1), (x, y2) ∈ Γ and conclude that

(x, y2) ∈ [x, u)× [y2, v) ⊂ [x, u)× [y1, v) ⊂ O(x,y1),

which contradicts the choice of the neighborhood O(x,y1). This contradiction shows that
Γ coincides with the graph of some function f : Γ1 → Γ2. Let us show that this
function is strictly decreasing. Assuming that this is not true, we could �nd two poi-
nts (x1, y1), (x2, y2) ∈ Γ with x1 < x2 and y1 ≤ y2. Then

(x2, y2) ∈ [x2, u)× [y2, v) ⊂ [x1, u)× [y1, v) ⊂ O(x1,y1),

which contradicts the choice of the neighborhood O(x1,y1).
Therefore the function f : Γ1 → Γ2 is strictly decreasing, which implies that

|Γ1| = |Γ2| = |Γ| = κ.

For any point x ∈ X choose a neighborhood Vx ⊂ G of the unit e of G such that

X ∩ (V −1x Vxx ∪ xVxV −1x ) ⊂ ↑x.

Next, for every point x ∈ X, choose a rational point rx > x such that [x, rx) ⊂ xVf(x)
if x ∈ Γ1 and [x, rx) ⊂ Vf−1(x)x if x ∈ Γ2. Since the cardinal |Γ1| = κ has uncountable

co�nality, for some c, d ∈ Q the set Z =
{
z ∈ Γ1 : rz = c, rf(z) = d

}
has cadinality κ.

We claim that the subspace D := {z · f(z) : z ∈ Z} has cardinality κ and is discrete
in G. For every z ∈ Z consider the neighborhood z(Vz ∩Vf(z))f(z) of the point z ·f(z) in
G. We claim that x·f(x) /∈ z(Vz∩Vf(z))f(z) for any x ∈ Z\{z}. To derive a contradiction,
assume that x · f(x) ∈ zVf(z)f(z) for some x 6= z in Z.

If x > z, then x ∈ [z, rz) ⊂ zVf(z) and

f(x) = x−1xf(x) ∈ x−1zVf(z)f(z) ⊂ V −1f(z)z
−1zVf(z)f(z) = V −1f(z)Vf(z)f(z).

Then

f(x) ∈ X ∩ V −1f(z)Vf(z)f(z) ⊂ ↑f(z)

and f(x) ≥ f(z), which is not possible as x > z and f is strictly decreasing.
If z > x, then f(x) > f(z) and

f(x) ∈ [f(x), rf(x)) = [f(x), d) ⊂ [f(z), d) = [f(z), rf(z)) ⊂ Vzf(z)

and then

x ∈ zVzf(z)f(x)−1 ⊂ zVzf(z)f(z)−1V −1z = zVzV
−1
z ⊂ ↑z

which contradicts z > x. �

Proof of Theorem 1. Assume that a topological group G contains a topological copy
of the Sorgenfrey line S. Observe that the square of S contains a discrete subset Γ =
{(x,−x) : x ∈ S} of cardinality continuum c. By [6, 5.12], the continuum has uncountable
co�nality. Applying Lemma 1, we conclude that the topological group G contains a
discrete subspace of cardinality c. �
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Proof of Theorem 2. Let G be a topological group G containing a subspace X,
homeomorphic to an uncountable subspace of the Sorgenfrey line. Assuming that
s(G) < s(X × X), we conclude that s(X × X) ≥ κ+ for the cardinal κ = s(G). Then
X ×X contains a discrete subspace D of cardinality |D| = κ+, which has uncountable
co�nality. In this case we can apply Lemma 1 and conclude that G contains a discrete
subspace of cardinality κ+, which implies that κ = s(G) ≥ κ+ > κ and this is a desired
contradiction. �

3. Proof of Theorem 3

In this section we prove Theorem 3. But �rst we prove that the Sorgenfrey line S
embeds into a cometrizable topological group. In the proof of this embedding result, we
use the k-separability of S.

A subset D of a topological space X is called k-dense in X if each compact subset
K ⊂ X is contained in a compact set K̃ ⊂ X such that the intersection D ∩ K̃ is dense
in K̃.

A topological space X is de�ned to be k-separable if it contains a countable k-dense
subset.

Lemma 2. The set Q of rational numbers is k-dense in the Sorgenfrey line S.

Proof. Given a compact set K ⊂ S, observe that K is metrizable and hence contains a
countable dense subset {xn}n∈ω ⊂ K. For every n, k ∈ ω �x a rational numbers xn,k such

that xn < xn,k < xn + 1
2n+k . We claim that the subset K̃ = K ∪ {xn,k}n,k∈ω is compact.

Indeed, let U be a cover of K̃ by open subsets of S. For every x ∈ K �nd a set Ux ∈ U with
x ∈ Ux and a real number bx such that [x, bx) ⊂ Ux. By the compactness of K the open
cover {[x, bx) : x ∈ K} of K has a �nite subcover {[x, bx) : x ∈ F} (here F is a suitable
�nite subset ofK). For every x ∈ F the set [x, bx) is closed in S and hence the intersection
K ∩ [x, bx) is compact, which implies that the number εx := bx − max

(
K ∩ [x, bx)

)
is

strictly positive. Choose m ∈ N such that 1
2m < minx∈F εx. Then

K̃ \
⋃
x∈F

[x, bx) ⊂ {xn,k : n+ k ≤ m}

is �nite and hence is contained in the union
⋃
F of some �nite subfamily F ⊂ U . Then

F ∪ {Ux : x ∈ F} ⊂ U is a �nite subcover of K̃, witnessing that the subset K̃ of S is

compact. By the de�nition of K̃, the set K̃ ∩Q ⊃ {xn,k}n,k∈ω is dense in K̃. �

Lemma 2 implies that the Sorgenfrey line is k-separable. Now we prove that for any
k-separable space X and a cometrizable space Y the function space Ck(X,Y ) is cometri-
zable. Here for topological spaces X,Y by Ck(X,Y ) we denote the space of continuous
functions from X to Y , endowed with the compact-open topology, which is generated by
the subbase consisting of the sets

[K,U ] := {f ∈ Ck(X,Y ) : f(K) ⊂ U}
where K is a compact subset of X and U is an open subset of Y .

Lemma 3. For any k-separable space X and any cometrizable space Y the function space
Ck(X,Y ) is cometrizable.
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Proof. Let D be a countable k-dense set in X and τ be a metrizable topology on Y ,
witnessing that the space Y is cometrizable. By Yτ we denote the metrizable topological
space (Y, τ).

The density of the set D in X ensures that the restriction operator

r : Ck(X,Y )→ Y Dτ , r : f 7→ f�D,

is injective. Let σ be the (metrizable) topology on Ck(X,Y ) such that the map

r : (Ck(X,Y ), σ)→ Y Dτ

is a topological embedding. We claim that the topology σ witnesses that the space
Ck(X,Y ) is cometrizable.

Fix any function f ∈ Ck(X,Y ) and an open neighborhood Of ⊂ Ck(X,Y ). Without
loss of generality, Of is of basic form Of =

⋂n
i=1[Ki, Ui] for some non-empty compact

sets K1, . . . ,Kn ⊂ X and some open sets U1, . . . , Un ⊂ Y . For every i ≤ n and point
x ∈ Ki, �nd a neighborhood Vf(x) ⊂ Y of f(x) ∈ Ui whose τ -closure V

τ

f(x) is contained
in Ui. Using the regularity of the cometrizable space Y , �nd two open neighborhoods
Nf(x),Wf(x) of f(x) such that

Nf(x) ⊂Wf(x) ⊂W f(x) ⊂ Vf(x).

By the compactness of Ki, the open cover
{
f−1(Nf(x)) : x ∈ Ki

}
of Ki has a �nite

subcover
{
f−1(Nf(x)) : x ∈ Fi

}
where Fi ⊂ Ki is a �nite subset of Ki. By the k-density

of D in X, for every x ∈ Fi the compact set Ki,x := Ki ∩ f−1(N̄f(x)) can be enlarged to

a compact set K̃i,x ⊂ X such that Ki,x is contained in the closure of the set K̃i,x ∩D.

Replacing the set K̃i,x by K̃i,x ∩ f−1(W f(x)), we can assume that f(K̃i,x) ⊂ W f(x) ⊂
Vf(x).

Consider the open neighborhood

Vf =

n⋂
i=1

⋂
x∈Fi

[K̃i,x, Vf(x)]

of f in the function space Ck(X,Y ). We claim that its σ-closure V
σ

f is contained in Of .
Given any function g /∈ Of , we should �nd a neighborhood Og ∈ σ of g that does

not intersect Vf . Since g /∈ Of , there exists i ≤ n and a point z ∈ Ki such that g(z) /∈ Ui.
Find a point x ∈ Fi with z ∈ Ki,x. Taking into account that V

τ

f(x) ⊂ Ui ⊂ Y \{g(z)}, we
conclude that g(z) /∈ V τf(x). Since the point z belongs to the closure of the set K̃i,n∩D, the

continuity of the function g : Z → Yτ yields a point d ∈ K̃i,n ∩D such that g(d) /∈ V τf(x).
Then Og :=

[
{d}, Y \ V τf(x)

]
∈ σ is a required σ-open neighborhood of g that is disjoint

with the neighborhood Vf . �

Lemma 4. The Sorgenfrey line S admits a topological embedding into the cometrizable
locally convex linear vector space Ck(S).

Proof. By Lemma 2, the Sorgenfrey line S is k-separable, and by Lemma 3, the function
space Ck(S) is cometrizable. It remains to observe that the map χ : S→ Ck(S) assigning
to each point x ∈ S the function χx : S → {0, 1} de�ned by χ−1x (1) = [−x,∞) is a
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topological embedding of S into the function space Ck(S), which has the structure of a
locally convex topological vector space. �

Proof of Theorem 3. By Lemma 4, the Sorgenfrey line S can be identi�ed with a subspace
of some cometrizable Abelian topological group H. According to Michael [9], under CH
the Sorgenfrey line contains an uncounatble subspace X whose countable power Xω is
hereditarily Lindel�of. Observe that the topological sum X<ω =

⊕
n∈ωX

n of �nite powers
of X admits a topological embedding into Xω, which implies that X<ω is hereditarily
Lindel�of as well as its countable power (X<ω)ω.

Observing that the group hull G of X in the group H ⊃ S ⊃ X is a continuous image
of X<ω, we conclude that the space G is hereditarily Lindel�of. Moreover, the countable
power Gω is hereditarily Lindel�of, being a continuous image of the hereditarily Lindel�of
space (X<ω)ω. �
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Äîâåäåíî, ùî òîïîëîãi÷íà ãðóïà G, ÿêà ìiñòèòü ïiäïðîñòið X ñòðiëêè
Çàð åíôðåÿ, ìà¹ ñïðåä s(G) ≥ s(X ×X). Â ïðèïóùåííi OCA, äîâiëüíà òî-
ïîëîãi÷íà ãðóïà, ùî ìiñòèòü íåçëi÷åííèé ïiäïðîñòið ñòðiëêè Çàð åíôðåÿ
ìà¹ íåçëi÷åííèé ñïðåä. Çâiäñè âèïëèâà¹, ùî ïðè OCA êîìåòðèçîâíà òîïî-
ëîãi÷íà ãðóïà ìà¹ çëi÷åííó ñiòêó òîäi i ëèøå òîäi, êîëè âîíà ìà¹ çëi÷åí-
íèé ñïðåä. Ç iíøîãî áîêó, ïðè CH iñíó¹ êîìåòðèçîâíà àáåëåâà òîïîëîãi÷íà
ãðóïà, ùî ìà¹ ñïàäêîâî ëiíäåëåôîâó çëi÷åííó ñòåïiòü i ìiñòèòü äåÿêèé íå-
çëi÷ííèé ïiäïðîñòið ñòðiëêè. Öÿ òîïîëîãi÷íà ãðóïà ìà¹ çëi÷åííèé ñïðåä,
ïðîòå íå ìà¹ çëi÷åííî¨ ñiòêè.

Êëþ÷îâi ñëîâà: ñòðiëêà Çîð åíôðåÿ, òîïîëîãi÷íà ãðóïà, ñïðåä, ÎÑÀ,
CH.
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