УДК 533.951 РАСЅ 73.50.-h, 73.61.-r, 78.20.-e, 36.40.Gk

ФРАКТАЛЬНА СТРУКТУРА УЛЬТРАТОНКИХ ПЛІВОК СРІБЛА

I. Болеста¹, О. Кушнір¹, Б. Кулик², В. Гаврилюх¹

¹ Львівський національний університет ім. І. Франка, факультет електроніки, вул. Драгоманова, 50, 79005 Львів, Україна

² Науково-навчальний центр «Фрактал», вул. Драгоманова, 50, 79005 Львів, Україна, e-mail: Alex.Kuschnir@gmail.com

За даними атомно-силової мікроскопії визначено хаусдорфову D_H та кореляційну D_c фрактальні розмірності ультратонких плівок срібла, напилених термічним методом на скляні підкладки. Показано, що в діапазоні масових товщин $d_m = 1..6$ нм $D_c < D_H$, а їхні значення лінійно зростають з ростом d_m з коефіцієнтами 0,028 і 0,008 нм⁻¹ відповідно.

Ключові слова: ультратонкі плівки срібла, фрактальна розмірність, ACM топологія, кореляційна довжина, шорсткість поверхні.

Ультратонкі плівки металу належать до класу метал-діелектричних нанокомпозитних матеріалів, унікальні оптичні та діелектричні властивості яких обумовлюють їх інтенсивні дослідження [1–3]. Такі нанокомпозити формуються на початкових стадіях напилення плівок металу на діелектричні підкладки, коли утворюються окремі металічні кластери з фрактальною структурою [4]. При цьому спостерігається залежність оптичних властивостей від фрактальної розмірності, яка, в свою чергу, залежить від масової товщини доперколяційних плівок [5]. Тому визначення структури ультратонких доперколяційних плівок та встановлення її прояву у фізичних властивостях є важливим завданням.

Метою даної роботи є визначення фрактальної розмірності ультратонких плівок срібла. Плівки отримувалися термічним випаровуванням срібла у вакуумі ~ 10^{-6} Торр зі швидкістю 0,010..0,016 нм/с на скляні підкладки при температурі T = 290 К. Масова товщина плівок контролювалася в процесі напилення за допомогою кварцового вібратора. Для досліджень було отримано серію плівок з масовими товщинами 1,1 нм, 2,2 нм, 3,6 нм, 4,3 нм,5,7 нм. Товщини досліджуваних плівок були значно меншими від перколяційної, яка, згідно з даними дослідження класичного розмірного ефекту [6], складає ~ 20 нм.

Топологія поверхні тонких плівок вивчалася за допомогою атомно-силового мікроскопа NT-MDT Solver 47 Pro і проводилася у напівконтактному режимі з використанням зонда NSG10 з радіусом ~10 нм. Попередня обробка результатів вимірювань проводилася за допомогою комплектного програмного забезпечення.

[©] Болеста І.,Кушнір О., Кулик Б. та ін., 2012

Фрактальну розмірність плівок визначали методом підрахунку комірок (box counting method) [7]. Його суть зводиться до заповнення досліджуваної структури *d*- мірними «кубиками» з «об'ємами» ε^d , де d = 1, 2, 3 – розмірність декартового простору, ε – довжина ребра «кубика». Фрактальна розмірність розраховується через тангенс кута нахилу лінійної апроксимації залежності $logN(\varepsilon)$ від $log(\varepsilon)$, де $N(\varepsilon)$ – число кубиків з ребром ε , які містять принаймні один елемент структури при її покритті. Отриману таким чином фрактальну розмірність D_H називають розмірністю Хаусдорфа-Безіковича.

Було створено власне програмне забезпечення, яке тестувалося на класичних фрактальних побудовах з відомою фрактальною розмірністю, таких як сніжинка (трикутник) Коха, килим і серветка Серпінського. В результаті при тестуванні на не менш ніж десяти зображеннях кожної з побудов відносна помилка визначення фрактальної розмірності не перевищувала 1,6%. Кореляційна фрактальна розмірність D_c розраховувалась зі спектру потужності, який, в свою чергу, визначався з автокореляційної функції топології плівок [8,9].

Мікроскопічні дослідження доперколяційних плівок різної масової товщини показують, що їхня поверхня є шорсткою. Для прикладу на рис. 1, *a* наведена топологія плівки з $d_m = 3,6$ нм площею 2^*2 мкм², а на рис. 1, δ – профіль топології поверхні *z* цієї ж плівки вздовж напрямків *x* та *y* зображення відповідно. Значення *z*, яке відраховується від абсолютного мінімуму топології поверхні, є неоднаковим в різних точках і міняється в межах 5..30 нм. Розподіл висот по осі *z* має вигляд, близький до гаусового (рис. 1, *в*).

Важливою характеристикою статистичних властивостей поверхні є двовимірна автокореляційна функція, яка для стаціонарних поверхонь визначається співвідношенням [12]

$$C(x,y) = \frac{1}{S} \int_{S} z(x',y') z(x'+x,y'+y) dx' dy',$$
(1)

де z(x,y) — функція розподілу за висотою, S — площа поверхні. Чисельно кореляційну функцію можна розрахувати за формулою [12]

$$C(x,y) = F^{-1}[F^{-1}[z(x,y)]F[z(x,y)]],$$
(2)

де F і F^{-1} описують пряме і обернене дискретне перетворення Фур'є.

При гаусовому розподілі неоднорідностей кореляційна функція записується у вигляді [12]

$$C(r) = \delta^2 exp(-(x^2 + y^2)/\sigma^2),$$
(3)

де δ і σ – шорсткість та кореляційна довжина поверхні.

На рис. 2, *а* показана розрахована за даними ACM двовимірна автокореляційна функція поверхні плівки срібла з $d_m = 3, 6$ нм, а на рис. 2, $\delta -$ її переріз площиною x = 0. Апроксимація кривої рис. 2, δ формулою (3) дозволяє отримати значення шорсткості δ та кореляційної довжини σ поверхні. Значення цих параметрів усереднені за не менш, як 5-ма вимірюваннями, для плівок з різною масовою товщиною наведені у таблиці 1.

Рис. 1: АСМ топологія плівки срібла $d_m = 3,6$ нм (а), вигляд зрізів топології вздовж напрямків x та y (б) та гістограма розподілу за $z(\mathbf{B})$.

Рис. 2: Двовимірна автокореляція сигналу топології плівки срібла $d_m = 3,6$ нм(а), її зріз площиною z = const (вставка) та вертикальний перетин x = 0(6) з апроксимацією функцією Гауса.

Табл. 1: Кореляційний довжина та шорсткість плівок срібла з різною масовою товщиною.

d_m , нм	σ , hm	δ , нм
1,1	37,1	$2,\!85$
2,2	40,1	3,74
3,6	36,1	$3,\!82$
4,3	39,2	4,04
5,7	49,8	4,14

Перетин поверхні двовимірної автокореляційної функції площиною z = const показує її ізотропію у площині xy. Однак для деяких плівок було виявлено її анізотропію, яка проявляється у відхиленні форми перетину автокореляційної функції від кругової до еліптичної (вставка на рис. 2, a). Очевидно, така анізотропія відповідає анізотропії структури досліджуваних об'єктів. У роботах [5, 10, 11] нами показано, що основним елементом структури ультратонких плівок $Ag \in$ сфероїди, довга вісь яких лежить у площині підкладки, через що анізотропія структури плівок може бути пов'язаною з частково впорядкованим розміщенням.

Для підтвердження цього припущення нами був побудований розподіл частинок за орієнтаціями відносно осі Ox для плівки з $d_m = 3, 6$ нм. Для цього ACM зображення спочатку розбивалося на області методом вододілу [13], в подальшому у кожній області проведено зріз зображення методом оптимального вибору висоти [14] для визначення положення частинок (рис. 3, *a*). Біля кожної області, що відповідає частинці, описується прямокутник з мінімальною площею, довга сторона якого відповідає довгій осі еліпсоїда. Отже, довга сторона прямокутника відпові-

Рис. 3: Приклад виділення частинок на ACM–зображенні плівки срібла $d_m = 3,6$ нм (а); розподіл цих частинок за напрямком відносно осі x (б).

дає за орієнтацію частинки в площині сканування (тобто в площині, паралельній до підкладки). Це дозволяє побудувати гістограму розподілу частинок за напрямком (рис. 3, δ). Як бачимо, на гістограмі виділяється максимум, що свідчить про наявність переважного напрямку орієнтації частинок. Відзначимо ще раз, що суттєво переважаючий напрямок частинок характерний не для всіх плівок, а іноді і не для всіх зображень однієї плівки.

Оскільки автокореляційна функція пов'язана зі спектральною густиною потужності, то фрактальність топології поверхні можна визначити зі спектру потужності, який у подвійних логарифмічних координатах має лінійний характер [8]. В роботах [16,17] показано,що спектр потужності описується степеневою залежністю від просторових частот,

$$S(\nu_x) = \frac{K_\alpha}{\nu_x^\alpha},\tag{4}$$

де спектральна сила K_{α} та спектральний індекс α є фрактальними параметрами, що характеризують шорсткість поверхні. Зі співвідношення (4) випливає, що величина α визначається тангенсом кута нахилу при зображенні спектра потужності у подвійних логарифмічних координатах.

Методом Блекмана-Тьюкі [15] нами розраховано одновимірний спектр потужності як функція просторових частот, який у подвійних логарифмічних координатах зображений на рис. 4. Величина α для наведеного рисунка становить 2,52 та співвідноситься з фрактальною корозмірністю H, як $\alpha = 2H + 1$ [16].

Значення кореляційної фрактальної розмірності пов'язані з фрактальною корозмірністю наступним чином [16]:

Рис. 4: Спектр потужності у подвійних логарифмічних координатах.

$$D_c = 3 - H,\tag{5}$$

На рис. 5 представлені залежності від масової товщини хаусдорфівської фрактальної розмірності D_H при використанні методу підрахунку комірок (крива 1) і кореляційної фрактальної розмірністі D_c (крива 2). Кожна точка графіків відповідає усередненому значенню для п'яти, як мінімум, АСМ-зображень поверхні зразка.

Як видно з графіків, фрактальна розмірність росте зі збільшенням масової товщини плівок, а її значення, визначене за допомогою методу підрахунку комірок, є більшим за значення кореляційної фрактальної розмірності.

Дійсно, кореляційна розмірність D_c належить до нескінченного сімейства розмірностей D_q , які визначені співвідношенням [16]

$$D_q = \lim_{r \to 0} \frac{1}{q-1} \frac{\ln \sum_k p_k^q}{\ln r}, -\infty \leqslant q \leqslant \infty, \tag{6}$$

де сума береться за всіма комірками з розміром r, на які поділено простір, а p_k — ймовірність, з якою частинки фракталу попадають у k-ту коміру. При q = 0з (6) отримується розмірність, що визначається методом підрахунку комірок (або розмірність Хаусдорфа D_H), оскільки з суми $\sum_k p_k^0 = \sum_k 1$ вибираються комірки, в яких присутня принаймні одна точка фракталу. Кореляційна розмірність з (6) відповідає значенню q = 2, так що $D_2 < D_0$, оскільки $D_q \ge D_{q'}$ при $q' \ge q$ [16,17].

Таким чином, в роботі визначена фрактальна розмірність ультратонких плівок срібла методом підрахунку клітинок та кореляційним методом. Показано, що фра-

Рис. 5: Фрактальна розмірність, визначена кореляційним методом (крива 1) та методом підрахунку комірок (крива 2).

ктальна розмірність зростає зі збільшенням d_m у досліджуваному діапазоні. Підтверджено, що кореляційна розмірність є меншою за визначену методом підрахунку клітинок для всього діапазону досліджуваних масових товщин.

Список використаної літератури

- Zayats A.V. Nano-optics of surface plasmon polaritons / A.V. Zayats, I.I. Smolyaninov, A.A. Maradudin // Phys. Rep. – 2005. – V. 408. – P. 131-314.
- Sarychev A.K. Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites /A.K. Sarychev, V.M. Shalaev // Phys. Rep. - 2000. -V. 335. - P. 275-371.
- Dolgaleva K. The effects of local fields on laser gain for layered and Maxwell Garnett composite materials / K. Dolgaleva, R.W. Boyd, P.W. Milonni // J. Opt. A: Pure Appl. Opt. 2009. - V. 11. - 024002.
- Ducourtieux S. Percolation and fractal composites: Optical studies / S. Ducourtieux, S. Gresillon, A. C. Boccara, J. C. Rivoal, X. Quelin, P. Gadenne, V.P. Drachev, W.D. Bragg, V.P. Safonov, V.A. Podolskiy, Z.C. Ying, R.L. Armstrong, V.M. Shalaev// J. Nonlin. Opt. Phys. Mater. 2000. V. 9. P. 105-116.
- Болеста I. Морфологія та спектри поглинання ультратонких плівок срібла / І.М.Болеста, А.В.Бородчук, О.О.Кушнір, І.І.Колич, І.І.Сиворотка // Журн. Фіз. Досліджень. – 2011. – Том 15. Вип. 4. – С. 4703 (8 с.)

- Бородчук А.В. Вплив субатомних підшарів сурми на металізацію плівок срібла та міді / А.В. Бородчук, О.Б. Дорош, З.В. Стасюк // Вісн. Львівського Університету. Сер. фіз. 2000. Т. 33. С. 328–332.
- 7. *Мандельброт Б.Б.* Фрактальная геометрия природы / Москва : Институт компьютерных исследований, 2002. - 656 с.
- Church E.L. Fractal surface finish / Eugene L. Church // Appl. Opt. 1988. -V. 27. - P. 1518-1526.
- Zimnyakov D.A. Fractality of speckle intensity fluctuations / D.A. Zimnyakov, V.V. Tuchin // Appl. Opt. - 1996. - V. 35. - P. 4325-4333.
- Болеста I. Моделювання оптичних спектрів за даними АСМ / І. Болеста, А.Бородчук, О.Кушнір, // Журн. Фіз. Досліджень. – 2012. – Том 16. – С. 1901 (8 с.)
- Bolesta I.M. AFM microscopy and optical studies for the shape of particles in ultrathin silver films / I.M. Bolesta, O.O. Kushnir // Ukr. J. Phys. Opt. – 2012. – V. 13. – P. 165–170.
- Liu Hong. Enhanced Surface Plasmon Resonance on a Smooth Silver Film with a Seed Growth Layer / Hong Liu, Bing Wang, Eunice S.P. Leong, Ping Yang, Yun Zong, Si Guangyuan, Jinghua Teng, S.A. Maier // ACS Nano. - 2010. - V. 4. -P. 3139-3146.
- Malik S.H.K. Modified Watershed Algorithm for Segmentation of 2D Images / S.H.K. Malik, A. Khan, A. Bibi // Journal of Information science and Information Technology. – 2009. – V. 6. – P. 546-552.
- 14. *Вудс Р.* Цифровая обработка изображений / Р. Вудс, Р. Гонсалес. Москва : Техносфера, 2006. 1072 с.
- Айфиичер Э.С. Цифровая обработка сигналов: практ. подход. Пер. с англ. Изд. 2-е / Э.С. Айфичер, Б.У. Джервис. - Москва : Вильямс, 2004. - 992 с.
- 16. Шредер М. Фракталы, хаос, степенные законы. Ижевск : НИЦ "Регулярная и хаотическая динамика 2001. 527 s.
- 17. Божокин С.В. Фракталы и мультифракталы / С.В. Божокин, Д.А. Паршин. Ижевск : НИЦ "Регулярная и хаотическая динамика 2001. 128 с.

Стаття надійшла до редакції 9.09.2012 прийнята до друку 17.10.2012

THE FRACTAL STRUCTURE OF ULTRA-THIN SILVER FILMS

I. Bolesta¹, O. Kushnir¹, B. Kulyk², V. Gavryliuh¹

¹ Ivan Franko National University of L'viv, Electronics Departament 50, Dragomanov Str., UA – 79005 Lviv, Ukraine

² Scientific-Educational Center "Fractal" 50, Dragomanov Str., UA – 79005 Lviv, Ukraine

Studied the Hausdorff D_H and D_c correlation fractal dimension of ultra-thin silver films using atom-force microscopy data. It is shown that in the mass thickness $d_m = 1..6$ nm $D_c < D_H$ this volumes grown with coefficients 0,028 and 0,008 nm⁻¹.

Key words: ultra-thin silver films, fractal dimension, AFM-topology, correlation length, surface RMS.

ФРАКТАЛЬНАЯ СТРУКТУРА УЛЬТРАТОНКИХ ПЛЕНОК СЕРЕБРА

И. Болеста¹, А. Кушнир¹, Б. Кулык², В. Гаврылюх¹

¹ Факультет электроники Львовского национального университета имени Ивана Франко, ул. Драгоманова, 50, Львов 79005, Украина

² Научно-учебный центр «Фрактал», ул. Драгоманова, 50, Львов 79005, Украина

По данным атомно-силовой микроскопии определены хаусдорфова D_H и корреляционная D_c фрактальные размерности ультратонких пленок серебра, напыленных термическим методом на стеклянные подложки. Показано, что в диапазоне массовых толщин $d_m = 1..6$ нм $D_c < D_H$, а ихние значения возрастают при увеличении d_m с коэффициентами 0,028 и 0,008 нм⁻¹ соответственно.

Ключевые слова: ультратонкие пленки серебра, фрактальная размерность, ACM топология, корреляционная длина, шероховатость поверхности.