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One-dimensional deformed algebra leading to minimal length is considered.
Condition for the wave function to be physical is derived. We obtain that
maximally localization states can be presented as linear combination of two
eigenstates of position operator and it is unique physical wave function made
by two chosen position eigenstates. We prove that any physical function can
be presented as linear combination of countable set of maximally localization
states and propose simple receipt to do this.
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1 Introduction

Recent years there has been a growing interest in quantum mechanic with deformed
commutation relations. It is motivated by several independent lines of investigations in
theoretical physics (e.g. string theory and quantum gravity), which suggest the existence
of minimal length as a finite lower bound to the possible resolution of length [1-3].
Kempf et. al. showed that such an effect can be obtained by modifying usual canonical
commutation relations( [4-7]). In one dimensional case the simplest deformed algebra
leading to minimal length AX,,i, = hy/B writes

(X, P] = ih(1 + BP?). (1)

An important feature of quantum theory with minimal length is that eigenstates of
the position operator are no longer physical states, since for these states the standard
deviation of position is AX = 0 < AX,in. As a result, we cannot work with the position
representation anymore. Generally, the states with AX < AX,,;, do not belong to the
domain of physical states while the states with AX > AX,,;, do.

One of the possible ways of the spatial description of the system is to consider the set
of maximally localized states for which AX = AX,,;, as the generalization of position
eigenstates to the case of presence of minimal length. In paper [5] it was proposed to
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obtain the maximally localization states as particular squeezed states. Hovewer, as it
was shown in [8], this result is correct only for few special cases of deformation. It was
proposed in [8] more general definition of maximally localized states based on variational
principle. The states of maximal localization were considered in case of modification
of the commutation relation between position and momentum operators to all orders
of the minimum length parameter [9-11], in case of presence of both minimal length
and maximal momentum [12] or minimal length and momentum [6], both rotation and
translation invariant case of deformation [13] and finally in non commutative quantum
theories [14].

Hovewer, the criterion of the state to be physical and connection of particular physical
state with the maximally localization states were not considered yet. In present paper we
study the properties and the ways of discrete representation of physical states domain in
deformed space (1).

The paper is organized as follows. In Section 2 we brief about generalized uncertai-
nty principle, the representations of the deformed algebra (1), position eigenstates and
maximally localization states. The requirement for the wave function to be physical and
a few simple examples of physical wave functions are presented in Section 3. Next, in
Section 4 we present the complete set on the domain of physical states. Finally, Section
5 contains conclusion.

2 A brief on deformed algebra

2.1 Generalized uncertainty principle and representations of the
algebra

Uncertainty principle for non-commuting operators X and P satisfying deformed
commutation relation (1) reads

ho( 1+ B(P)>
AX > (AP +6AP> . (2)

Here we use notation AX = 1/((AX)2) and AP = \/((AP)?). From the inequality (2)
we obtain that standard deviation of the coordinate AX has minimum

AXy = hy/By/1+ B(P)2, (3)

which can be achieved at AP = % + (P)2.
There are different representations of algebra (1). One of them is the momentum

representation

X:ih(H—ﬁP?)%, P=P (4)

In the aim of preserving the hermiticity of the operator of coordinate the scalar product
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has to be modified by the introducing a weight function

+oo
W) = [ @) )

Another one is the so-called quasi-coordinate representation

d -1
X:zh%, P:ﬁtan\/gp. (6)

s

Here parameter p changes in the region {—ﬁ,m}. The scalar product in this

representation has the form

N+
<

< V[P >= dp¥™(p)®(p). (7)

—

2

Q

2.2 Eigenvalue problem for position operator

We write eigenvalue equation for position operator in the representation (6)
L d
zhd—p\I/A(p) =AU, (p). (8)

Solution of this equation is

s (p) = @ (9)

Note that the same result but in representation (4) was obtained in [5]

=1/—c€
™

CI'/A(P) \/B 71’% arctan \/EP. (10)

The scalar product of two eigenfunction of position operator

ﬂ

+2"ﬁ
CUN|Tp > = VB / dpe TP (11)
™
~3vE
26hVB . (A A
== Sin ™.
(A — AY) 2h/B

From (12) we conclude that all amount of eigenstates of the position operator can be
divided into sets parameterized by A € [—1,1)

{\I’(/\+2n)ﬁ\/[7(p)an S Z}? (12)
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which are mutually orthogonal

< VintomnvalYotemynyg >= Omn- (13)

One can prove that each of these sets is complete. Such proof is equivalent to the proof
of the following relation

n=-+oo

Z \II?A+2n)h\/B(p,)\I!()\—&-Qn)h\/ﬁ(p) =d(p—p), (14)

n=—oo

which holds. Each set parameterized by A € [—1, 1) is the set of eigenstates of self-adjoint
extension of position operator {X, Dy(X)} with

0:3) = v e 1 (375 7 ) v (<505 ) = (7)) a9
The set (12) is presented in fig. (1).
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Puc. 1: Complete orthogonal set of position eigenstate (A = 0). The eigenstates from the set is denoted
by black point. Scale is in units of h/3.

The considered eigenstates of position operator are nonphysical ones, because they
do not fulfill uncertainty relation (2) and mean value of kinetic energy on such states is
divergent

< WA|P?/2m|T, >= co. (16)

But nevertheless we can use complete set (12) for the representation of the wave function.

2.3 Maximally localization states

As we saw in previous section the eigenstates of the position operator are no longer
physical states. Consequently, we can use these states for formal representation of some
wave function only, but cannot interpret such representation as coordinate one anymore.
Thus, in order to recover some information on the spatial distribution of the system, we
are forced to consider the maximally localization states for which AX = AX,,;,. These
states can be considered as the generalization of the position eigenstates on the deformed
case.

The states with maximally allowed localization are defined as [5]:

(WP X|weh) = ¢, (17)
(TP(X — )2 u!) = AXo.

These states are the states which convert modified Heisenberg uncertainty relation (2)
into equality. Maximally localization states can be obtained from the equation:

X-<X>+@(ﬁ_<ﬁ>)

SAD? U (P) =0. (18)
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In case (P) =0, AP = ﬁ equation (18) can be rewritten in the form

QU = ¢ut, (19)

Q=X +ihBP = LX\M + BP2. (20)
\/1+ BP2

From latter representation for operator Q we conclude that Q and X are isospectral
operators despite the fact that () is not hermitian. The solution of equation (19) in
representation (6) is:

with

\IJZ”I = cos \[p ) exp lip (21)

Scalar product of two maximally localization space is

—1
ml|q,ml 5 El g - 5/ ’ . (5 — 6’)7’(

From (22) we conclude that maximally localization states can be divided into
orthogonal sets \IJ(8 an)h f( ),n € Z, parameterized by € € [—2,2) and satisfying relati-
on

ml
<q/(5+4n)nf“1/(g+4m)rlf> = 0mn- (23)

One can prove that orthogonal set {W7! (4 4n)yhy/B f( ),n € Z} does not form complete set.

3 Physical requirements for wave function

From generalized uncertainty principle (2) we point out that mean value of P2 can be
finite only for states which belong to allowed region AX > AX,,;,. Thus, the finiteness
of the mean value of the operator of kinetic energy is the requirement for wave function
to be physical.

Let us consider any normalized wave function F(P) in momentum representation (4)
satisfying

[ p PP

dP——— =1. 24

/ 1+ BP? (24)

We also assume the wave function to be well-behaved, i.e. continuous, finite everywhere
and sufficiently smooth.

The mean value of P? in state described by F(P) writes
< F|P?|F >= [ dppizuwpn2 _1 [ dP|F(P))*> -1 (25)
B 1+ pP? B '

—c0 — 00
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Thus, the mean value of P? will be finite iff function F(P) is square integrable due to
usual scalar product:

/ dP|F(P)]* < oo, (26)
and hence goes to zero while P is going to infinity

F(+o00) =0. (27)

However, the latter formula is only necessary condition, not sufficient, since condition
. 1
(26) demands wave function F(P) ~ P~27¢, ¢ > 0 for P — cc.
Condition (27) can be written in the form

—+oo

> (=)rCn =0, (28)

n=—oo

with C,, being the expansion coefficients of F(P) over the complete set of position ei-
genfunctions parameterized by A € [—1,1) in momentum representation:

+oo
F(P)= Y Co¥(y omnya(P). (29)

n=—oo

Note that condition (28) is invariant under the choice of A.

3.1 Connection of maximally localization states with the position
eigenstates

Unlike eigenstates of the operator of position maximally localization states are physi-
cal ones:

1

) P? !
U —|U >= ——,
¢ |2m| ¢ 2mp3

(30)

which means that maximally localization states have to satisfy condition (28). To show
this we present maximally localization state as the series over complete set of position
eigenstates (12):

V=Y Cu¥irianns (31)

n=—oo

5

§

Cn = \I/EkA_FQn)h\/B(p)\IJ?l(p)dp (32)

—

2

S

It is easy to obtain that

< W, TP >=

r(1- (257 oo (;w%”) ~ (33)
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Puc. 2: Plotting of < \I/x|\Ilg”l > over  — £ in units A/B

This dependence can be plotted (see fig. 2). We see from the fig. 2 that < \IJ$|\II’§"I >
equals zero while z = (£ + hy/B) + 2nhy/B for n € Z, n # +1. It means that if we choose
A = £+ hy/8 which denotes complete set of position eigenfunction we obtain the simplest
decomposition for \If?l(see fig. 3):

1
ml
Ve = 5 (Venvs + Vernys) (34)

This result also can be easily obtained from (21) by presenting the cosine function by
exponentials [15]. From (34) we see that maximally localization state satisfy necessary

-10 -8 -6 -4 -2 0 2 4 6 8 10 X

ml
(4n+1)iv/B
state is denoted by the black circle placed in a point (4n + 1)hy/B. Every maximally localization state
can be presented as normalized sum of two adjacent position eigenstates denoted by the black point.
Scale is in units of /5.

Puc. 3: Orthogonal set of maximally localization states ¥ (P),n € Z. Maximally localization

condition of being physical (28) and it is unique physical wave function formed as linear
combination of considered two eigenfunctions of position operator.

3.2 Eigenfunctions of X2

Another simple example of physical states are the eigenfunctions of X2, Let us consi-
der the eigenproblem for X? in representation (6):

de)n(p) - Xn¢n(p)' (35)

Due to (27) we assume that eigenfunction vanish at the endpoints of the domain of p.
Note, that there exist infinitely many self-adjoint extensions of the operator X? [16],
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while only the following one
X2 = _h2i2 D(XQ) {¢ ¢ eL (_7r 7T> (b (iﬂ-) = 0} (36)
dp*’ 2B 2vB)’ 2vB
has physical eigenfunctions.
Now the considerable problem writes

d*¢n(p)

_hK2
dp?

= Xn(zsn (p)a (37)

with (bn(j:ﬁ) = 0. This problem is rather similar to the problem of particle in a box
in undeformed space. The solution of the problem is

Xn = hZﬁnQu (38)
00t = 2 sin (/B + 57 (39
withn=1,2,... .

The nonzero matrix elements of P? on eigenfunction of X? are

(60| P\ dnton) = (dniok| P?|dn) = 1

B (2n — 5k,0) 5 (40)

with n,m,k=1,2,... .

4 Complete set on the domain of physical states

Let us consider any physical function F(p) in representation (6) and write it in the
form

F(p) = V2cos(v/Bp) f (p). (41)

The mean value of P? we demand to be convergent

iy

2VB

PPy =2 [ (<o (2

__n_
2VB

o, L
(P7) = ﬂ

é\*\i\ﬂ

Using normalization condition for F(p) we can write:
\ﬂf
2 2y L
= 2 sin%(\/Bp)dp )|*dp — = < o0, (43)
B B
~5E TE

From (43) we conclude that f(p) has to be square integrable function. Thus, any physical
function can be presented by (41) with f(p) being square integrable function.
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Mentioned square integrable function can be presented as the series over complete set
of position eigenfunctions (12):

f(p) = Z An\I’(/\Jan)h\/B(p)a (44>
ﬁ

A= [ Va0 (45)
~3vF

> A < oo (46)

Substituting (44) into (41) we write

Z AnV2c0s(\/BP) Y (5 p2myny(P) Z A ‘I’(A+2n)hf( p)- (47)

n—=—oo n—=——oo

Here we use that \Ij()\+2n)hf( p) = \@cos(\/ﬁp)\Il(/\Hn)h\/B(p).
Thus, any physical function can be presented as a series over set of functions (fig. 4)

{\I/Er;\l+2n)h\/B(P)7n € Z}7 A€ [_171)3 (48)

with the expansion coefficients satisfying (46).

-10 -8 -6 -4 2 0 2 4 6 8 10 X

Puc. 4: Two orthogonal sets of maximally localization states ‘lj(4n+1)hf( ) and ‘l/z’li, l)ﬁf(P)7 nez

forming complete set on the domain of physical states. Maximally localization states are denoted by the
black and white circle placed in a point (4n+ 1)A/B and (4n — 1)7/B correspondingly. Every maximally
localization state can be presented as normalized sum of two adjacent position eigenstates denoted by
the black point. Scale is in units of iiy/B.

Considerable set (48) is not orthogonal one:

1
ml ml _
<Varemnya Y irr2nnyg >= Omn + 5 Omntt + dmn-1), (49)
with n,m € Z.
It is interesting that following matrix elements also have tridiagonal form:
1 1
2 ml _ _
< \Il2mhf|P ‘\IIth\/B >= 3 (6”%" 2(6m7n+1 + 6m,n—1)) s

(2n —1)2

< X2 o W26 (4n2 4+ 1)épr
hf| | h\f> B (4n~+1) n T 9

2

< \I/2mﬁf|P|lI}2nhf >= 2\/7( mmn+1 — 5m,'r7,71)7

m m 2n —1 2n+1
<o f|X|\I!2nlh V5= hy/ 3 <2n5m,n + 5 Smnt1 + 5 5,”,”_1))

with n,m € Z.

(50)

2n + 1)2
6m,n+1 + Hém,n—l) )
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5 Conclusion

We have studied modified commutation relation leading to minimal length proposed
by Kempf. Because of the existence of nonzero minimal uncertainty in position, ei-
genfunctions of the position operator even being square integrable are nonphysical
anyway. In general the states with the standard deviation less then minimal length
AX < AX,in do not belong to the domain of physical states. The physical domain is
made by the well-behaved wave function satisfying AX > AX,,;,. The crucial property
of these states is the finiteness of the mean value of kinetic energy.

We have derived the necessary condition of the finiteness of the mean value of ki-
netic energy. Eigenfunctions of position operator of course do not satisfy this condition,
however maximally localization states and eigenstates of X2 do.

Note that the eigenproblems for X and X2 operators in deformed space are rather
similar to the eigenproblems for P and P? operators for particle in a box in ordinary
quantum mechanics. This fact hints that particle in a box problem can be, if one needs,
reformulated as free particle in space with minimal uncertainty in momentum.

We have obtained that maximally localization states can be presented as linear combi-
nation of two eigenstates of position operator and it is unique physical wave function
written by two chosen position eigenstates.

Finally, we propose simple procedure to present chosen physical function as a linear
combination of countable set of maximally localization states. This set can be considered
as complete set on the physical domain.
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Posrnanaerscs omnoBuMipaa tedopmoBana aaredpa 3 MiHIMAIBHOIO JTOBXKUHOIO.
Mu BuBesu ymoBYy dizuaHocTi XBUIH0BOI PyHKIII. [loKazaHno, 1Mo MakCHMaIbLHO
JIOKAJ/TI30BaHi CTAHU MOXKYThH OYTH TpEJCTABJCHI SK JiHiHA KOMOIHAINS TBOX
BJIACHUX CTaHIB OIlepaTOpa KOOPAUHATH, 1 IO Ie €auHa (hi3uIHa XBUJIbOBA (DyH-
KIlisi yTBOpEHA 3 JIBOX ODPAHWX KOODJAWHATHUX BJIACHUX CTaHiB. Mwu moBenn,
o Oy/ib-sika (hiznuHa XBUIbOBA (QYHKIlS MO2Ke OyTH IPEICTABICHA K JIHIAHA
KOMOIHAIIiA 3/TIYeHHOTO HabOPy MaKCUMAaJIbHO JIOKAJII30BAHUX CTAHIB Ta 3aIpo-
MTOHYBaJIA TIPOCTUI CITOCIO sIK 11e 3POOUTH.

Kuiro4oBi cioBa: MiHiMa/bHA JIOBYXKUHA, Y3araJbHEHWI TPUHITUI HEBU3HAYTE-
HOCTI1, MAKCUMAJILHO JIOKAJII30BaHI CTAHI
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PU3NYECKUNE COCTOSAHUSA B JE®OPMINPOBAHOM
IIPOCTPAHCTBE C MUHUMAJIbBHOM AJINMHON
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PaccmaTrpuBaetcs ognomepras jgedopMupoBaHa aaredpa ¢ MUHUMAJILHON JIH-
HOit. MBI BeIBE/ U yCjI0BHE (DUBUIHOCTH BOJIHOBOI yHKImU. [TokazaHo, 4T0 MaxK-
CUMAJIHFHO JIOKAJN30BAHHBIE COCTOSIHUSI MOTYT OBITH IIPEJICTAB/IEHBI KaK JIMHET-
Has KOMOMHAIIUS JIBYX COOCTBEHHBIX COCTOSIHUI OIEPATOPa KOOPIUHATHI, U 3TO
eIMHCTBeHHAas (PU3NIecKas BOJHOBas (PYHKIMsS 00pas3oBaHa M3 JIBYX BHIOPaH-
HBIX KOOPJIUMHATHBIX COOCTBEHHBIX COCTOsiHUM. MBI J0Ka3a/ u, 9To Jrobas dusn-
yecKasl BOJIHOBasi (DYHKIIMS MOXKET OBITh IpeJCTaB/ieHa Kak JIMHelHas KOMOU-
HaIUs CIETHO HAOOpa MaKCHUMAJIbHO JIOKAJIU30BAHUX COCTOSIHUI U IIPe 0K IIN
MIPOCTO# €II0CcO0 KaK ITO CIETATH.

KurodeBble cjioBa: MUHUMAJIbHAS JTAHA, OOOOIEHHBIN TPUHITUI HEOIPeIe-
JIEHHOCTH, MAKCUMAJILHO JIOKAJIM30BAHHBIE COCTOSHUS



