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In this note, we provide a Maple implementation to solve the inverse spectral problem of
reconstructing the self-adjoint Dirac operators on (0, 1) from eigenvalues and specially defined
norming matrices in the simplest case when only a finite number of eigenvalues and norming
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Introduction

The role of Dirac and Sturm-Liouville operators in
modern physics and mathematics can hardly be over-
rated. The inverse spectral problems for such operators,
which are of practical importance in microelectronics,
nanotechnology etc., consist in finding the spectral char-
acteristics which determine the operator uniquely and
providing efficient methods of reconstructing the oper-
ator from these characteristics. The study of inverse
spectral problems for Dirac and Sturm-Liouville oper-
ators has a rather long history. We refer the reader to
the references cited in [5, 6, 7, 8] for some known results
on the subject.

Inverse spectral problems for Dirac operators with
matrix-valued potentials were recently treated in the
author’s papers [5, 7, 8]. Namely, using the technique
that was suggested in [6], the inverse spectral prob-
lem of reconstructing the self-adjoint Dirac operators
on (0, 1) with square-integrable matrix-valued potentials
and some separated boundary conditions from eigenval-
ues and specially defined norming matrices was solved
in [5]. Therein, a complete description of the class of the
spectral data was given and a procedure of reconstruct-
ing the operator from its spectral data was suggested.
The more general case of the operators with summable
matrix-valued potentials was treated in [7]. The results
of [7] were further extended to solve the inverse spec-
tral problem for the operators with general (especially,
non-separated) boundary conditions in [8].

In this note, we provide a Maple implementation to
solve the inverse spectral problem of reconstructing the
self-adjoint Dirac operators on (0,1) from eigenvalues
and norming matrices in the simplest but nevertheless
practically important case when only a finite number of
eigenvalues and norming matrices are perturbed. The
algorithm is based on the results which were obtained
in [5, 7].
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The paper is organized as follows. In the reminder
of this Introduction, we introduce some notations which
are used in this paper. In Sect. I, we introduce the
setting of the problem which is considered in this pa-
per. In Sect. II, we review the results which were ob-
tained in [5, 7] to solve the problem under considera-
tion. In Sect. ITI, we solve the problem numerically un-
der assumption that only a finite number of eigenvalues
and norming matrices are perturbed. In Appendix, we
provide a Maple implementation of the suggested algo-
rithm.

Notations. We write M,. for the set of all r x r
matrices A = (a;;)j ;—; with complex entries and M
for the set of all self-adjoint and non-negative matrices
A € M,, ie. such that a;; = @;; and (Av | v) > 0
for any non-zero v € C, (- | -) denoting the standard
inner product in C". We endow M, and M;" with the
operator norm. We write [ for the identity r x r matrix.

We say that a measurable function f = f(x),
x € (a,b), belongs to Lo(a,b) if

b
/ () Pdz < oo,

where the integral is understood in the Lebesgue sense.
We refer the reader to [3] for further details on the
theory of Lo-spaces. We denote by Ls((a,b),C") and
Ls((a,b), M,) the sets of all r-component vectors and
r X r matrices composed of functions from Ls(a,b), re-
spectively.

We write Wi((a,b),C") for the set of all 7-
component vectors composed of functions from the
Sobolev space Wi (a,b). Each function f € W3 (a,b)
has the derivative f’ belonging to La(a,b). We take the
derivatives of vector- and matrix-valued functions com-
ponentwise.
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I. Setting of the problem

In this section, we introduce the setting of the prob-
lem which is considered in this paper.

Let Qy := L2((0,1), M,.). For an arbitrary ¢ € Qo,
we consider the differential expression t, given by the

formula
1/I 0 d 0

on the domain

D(ty) = {f - (2)

Here, ¢*

(qij)f,j:r
In the Hilbert space

fi 2 € W§<(071),©’“)}-

:= (gji)j j—1 1s the adjoint function to ¢ :=

H := Ly((0,1),C") x Ly((0,1),C"),

we introduce the self-adjoint Dirac operator T given by
the formula T, f := t,(f) on the domain

D(T,) :=={f € D(ty) | f1(0) = f2(0), f1(1) = f2(1)}.

The function ¢ will be called the potential of the opera-
tor Tj,.

A number ) € C is called an eigenvalue of the oper-
ator Ty if there exists a non-zero f € D(Ty) such that
Tyf = Af. The spectrum o(7}) of the operator T is
the set of its eigenvalues — it consists of countably many
isolated real points \;, j € Z, accumulating only at +oo
and —oo. For definiteness, we assume that (\;) ez is a
strictly increasing sequence such that A\g < 0 < \;.

Let mg denote the Weyl-Titchmarsh function of the
operator Ty (see [2]). The function m, is an r x r matrix-
valued function and {\;};cz is the set of its poles. For
each j € Z, we set

o = _,\Eijm’I()\)'
Each «; is a non-zero matrix in M;". We call «; the
norming matriz of the operator T, corresponding to the
eigenvalue A;. In the scalar case r = 1, o; will be called
the norming constant corresponding to A;.

Note that in the free case ¢ = 0 one has o(Tp) =
{mn}nez. In this case, the norming matrix correspond-
ing to each eigenvalue nn, n € Z, is the identity r» x r
matrix.

The sequence a, := ((A\;, @;));jez composed of eigen-
values and norming matrices of the operator T, will be
called the spectral data of the operator T;. The op-
erator T, is uniquely determined by its spectral data
(see [5, 7]). The inverse spectral problem for the opera-
tor T, then consists in:

e providing a complete description of the class of
the spectral data, i.e. providing the necessary and
sufficient conditions in order that a sequence

a:= ((Aj,)))jez,

where ()j)jez is a strictly increasing sequence of
real numbers such that A\g <0 < A\ and o5, j € Z,
are non-zero matrices in M, is the spectral of
some operator T, with ¢ € Qo;

e providing an efficient method of reconstructing the
operator T; from its spectral data.

II. Solution of the inverse spectral prob-
lem for the operator T,

Here we summarize the results which were obtained
in [5] to solve the inverse spectral problem for the oper-
ator Tj,.

Let a := ((A\j,®;))jez be an arbitrary sequence,
where (A;)jez is a strictly increasing sequence of real
numbers such that A\g <0 < A; and o, j € Z, are non-
zero matrices in M;". We partition the real axis into
the pairwise disjoint intervals

An::(ﬂn—z,ﬂrm-z , n € 7.

2 2
Then the following theorem gives a complete description
of the class of the spectral data for the operator Tj:
Theorem 1. A sequence a := ((\;, ®;));ez is the spec-
tral data of some operator T, with q € Qg if and only if
it satisfies the following three conditions:

(A1) sup > 1<oo, > > |Nj—mnl* < co and

ne€Z N \;EA, neELN;EA,
2

> >ooa; Il < oo

nez ||\; €A

(Ag) there exists Ng € N such that for any natural
N > Ny it holds

Z Z rank a; = (2N + 1)r;

nez )\_7‘ cA,

(A3) the system of functions
S = {e™® | v € Ranay, j € Z}
is complete in La((—1,1), M.,.).

Here, rank o; and Ran a; denote the rank and the range
of a, respectively. Note that conditions (A;) and (As)
are easy to verify. From the practical point of view, the
most complicated condition is (As).

Next, it is proved in [5] that there is a one-to-one
correspondence between the operators T, with ¢ € Qo
and their spectral data. Therefore, the operator T, can
be reconstructed from its spectral data. The procedure
of reconstructing the operator 7, from its spectral data
can proceed as follows:

Step 1. Given a sequence a := ((A\;, ®;));jez satisfying
the conditions (A1) — (A3) (i.e. the one which is the

o4
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spectral data of some operator T, with ¢ € Q2), con-
struct the function

N

b o= o 3

n=—N

E 621)\j waj

A €A,
_e2i7rn:rl}’ (1)

x € (—1,1), where the limit is understood in the topol-
ogy of the space La((—1,1), M,). The function h will
be called the accelerant of the operator Tj.

Step 2. Solve the Krein equation

r(z,t)+h(x —1t)+ /Ox r(z,s)h(s—t)ds =0, (2)

0 <t<z<1. Conditions (A1) — (As) imply that this
equation has a unique solution r = ry, in a special class
of functions denoted by G5 (M,) (see [5, 6]). Then find
a potential q by the formula

q(z) :=irp(z,0), x € (0,1). (3)

It follows from the results of [5] that a is the spectral
data of the operator Tj.

Taking into account the results which were obtained
in [7], the similar procedure can be written also to solve
the inverse spectral problem for the operator 7, in the
more general case when ¢ € L;((0,1), M,). However,
it would be more complicated from a practical point
of view because the description of the spectral data in-
volves the theory of distributions in this case.

So, one observes that solving the inverse spectral
problem for the operator Ty is actually reduced to solv-
ing the integral equation (2). We refer the reader, e.g.,
to [4, 9] for some results on solving integral equations of
this kind.

III. On the numerical solution of inverse
spectral problem for the operator 7

In this section, we solve the inverse spectral prob-
lem for the operator T, numerically in the simplest case
when only a finite number of eigenvalues and norming
matrices are perturbed, i.e. differ from eigenvalues and
norming matrices of the free operator with ¢ = 0. For
the simplicity of exposition, we concentrate ourselves
only on the case of the scalar potential. The case of
matrix-valued one can be treated similarly.

We say that a collection

b= ((Ans )Ny

where (\,)N__ is an increasing collection of real num-
bers and «,, > 0 for eachn = —N, ..., N, is the spectral
data of the operator T, with ¢ € L(0,1) if

o(Ty) = {)‘n}ﬁ[:—N U {Wn}\n|>Na

the norming constant of the operator 7}, corresponding
to the eigenvalue \,, n = —N,..., N, is a, and the

N €N, (4)

norming constant of the operator Tj corresponding to
the eigenvalue 7n, |n| > N, is 1. Then the following
proposition follows directly from Theorem 1 and Kadec’s
1/4-theorem (see, e.g., [10]):

Proposition 1. If a collection b of (4) is such that

[ A — | < /4, n=-N,...,N, (5)

then b is the spectral data of some operator Ty, with
qc L2 (0, 1)

Theorem C.4 in [7], which is a vector analogue of
Kadec’s 1/4-theorem is some sense, can be used to ob-
tain the analogue of Proposition 1 in the case of matrix-
valued potential q.

So, let a collection b of (4) satisfy the condition (5).
It then follows from Proposition 1 that b is the spectral
data of some operator T, with ¢ € Ly(0,1). Formula (1)
for the accelerant of the operator 7; then reads

N

Z (ane2i)\”a: o eQiTrna:) ) (6)

n=—N

h(z) =

Since the accelerant h of (6) is continuous, it follows
from the results of [1] that the corresponding potential
q is continuous on [0, 1], i.e. ¢ € C[0,1].

In view of formula (6), it is then easy to solve the
Krein equation (2). Indeed, let r = r(z,t) be a so-
lution of (2). Fix an arbitrary z € (0,1) and set
rz(t) := r(z,t), t € (0,z). It then follows from (2)

that
N N
re(t) = Z an(x)e 2t Z by (z)e ™20t
n=—N n=—N
—h(z —1t), (7)
where

an(x) ::/0 Xy (s)ds,

bn(z) := / eFAnsy (s)ds,
0
n = —N...N. We then obtain from (7) that for each

N x
aj(x) =Y an(x)/ Q2im(i—n)t gy
n=—N 0
N €z . .
— Z anbn(:r)/ e2i(mi=An)t qy
n=—N 0
- / h(z — )62t dt (8)
0
and
N x
bi(x) = Z an(x)/ 2 =)t gy
n=—N 0
N x
- Z oznbn(x)/ A=At gt
n=—N 0

— / ’ h(z — t)e? it dt. (9)
0
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Note that (8) — (9) is a system of linear equations with
respect to a,(z) and b,(z), n = —N,..., N. Solving
this system and substituting the coefficients a,,(x) and
by (z) into formula (7) one obtains the value of r,(t).
Taking into account that ¢ € C[0,1], it then follows
from formula (3) that ¢(z) = 7,(0), z € (0,1), where

N

Z (an(z) — anby(x)) — h(z), x€(0,1).

n=—N

r.(0) =

Appendix. A Maple implementation

Here we provide a Maple implementation to solve
the inverse spectral problem for the operator T} in the
case when only a finite number of eigenvalues and norm-
ing constants are perturbed. The algorithm uses the
scheme which was described in the previous section.

So, let b := ((An, ).y satisfy the condition (5)
and thus be the spectral data of some operator T, with
q € C[0,1]. We represent b by the value of N and two
arrays indexed from —N to NV, e.g.,

N :=1:
lambda := Array(—N .. N, [-Pi, 0, Pi]):
alpha := Array(—N .. N, [1, 1, 1]):

We then suggest the following procedure to find the po-
tential ¢ for which b is the spectral data of the operator
%

q := proc(z)

local a, b, var, sys, j, h, r:

var = {seq(a[n],n = —N .. N)}
union {seq(bln],n=—-N .. N)}:

sys :={ }:

h := & — add(alpha[n]-exp(2-I-lambdaln]-z)
—exp(2:-I'Pin-x),n=—-N .. N):

for j from —N to N do

sys := sys union {a[j] = add(a[n]-int(exp(2-1-Pi-(j
—n)t),t=0. x),n=—-N . N)
— add(alpha[n]-b[n]-int(exp(2-I-(Pi-j—lambda[n])-t),
t=0. z),n=—-N. N)
—(int(h(z —t)-exp((2-1)-Pi-jt), t =0 .. x))}:

end do:

for j from —N to N do

sys := sys union {b[j]
= add(a[n]-int(exp(2-I-(lambda[j]—Pi-n)-t),
t=0.z),n=—-N. N)
— add(alpha[n]-b[n]-int(exp(2-1-(lambdal[j]
—lambdaln])t),t=0.. x),n=—=N .. N)
— int(h(x — t)-exp(2-I-lambda[j]-t), t =0 .. z)}:

end do:

sol := solve(sys, var):

assign(sol):

r:= x — add(a[n] — alpha[n]-b[n], n = —N .. N)
— h(z):

return r(x):

end proc:

Finally, we provide some examples:
Example 1. N =0; A\ =0.1, ag = 1.

# Example 1
N :=0:
lambda := Array(—N .. N, [0.1]):
alpha := Array(—N .. N, [1]):
plot(Re(q(x)), x = 0 .. 1, color = black,
font = "ROMAN”, 16], caption = "Re q(x)”);

0.010
0.006
04 . : : . \
0 0.2 0.4 0.6 0.8 1
X
Re q(x)

Fig. 1. Example 1, the real part of ¢(z)

plot(Im(gq(x)), z = 0 .. 1, color = black,
font = "ROMAN”, 16], caption = "Im q(x)”);

0
-0.05
-0.10
-0.15
-0.20

Im q(x)
Fig. 2. Example 1, the imaginary part of g(x)

Example 2. N =1; Ay = —7+01, a1 =
)\OZO, Oé():]..].; )\1:’7'1'—0.].,041:1.

# FExample 2
N :=1:
lambda := Array(—N .. N, [-Pi+ 0.1, 0, Pi — 0.1]):
alpha := Array(—N .. N, [0.9, 1.1, 1]):
qRe :={ }: gIm = { }:
for j from 0 to 1 by 0.05 do
gRe = qRe union {[j, Re(q(j))]}:
gI'm := gIm union {[j, Im(q(4))]}:
end do:
with(plots):
listplot(qRe, color = black,
font = PROMAN”, 16|, caption = "Re q(x)”);

0.9;

Re q(x)
Fig. 3. Example 2, the real part of ¢(z)

listplot(qIm, color = black,
font = "ROMAN”, 16, caption = "Im q(x)”);
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0.10
0.06

0 T . . T .
-0.04 02 04/ 06 08 1

-0.08

Im q(x)
Fig. 4. Example 2, the imaginary part of ¢(x)

Example 3. Note that the potential ¢ depends contin-
uously on the accelerant h considered in the appropriate
metric spaces (see [7, Theorem 1.5]). Therefore, if h — 0
in L;(—1,1), then ¢ — 0 in L1(0,1). This can be illus-
trated by the following examples: N = 0; oy = 1;

(a) Ao = 0.1; (b) Ag = 0.075; (c) Ao = 0.05.

0.014 (a)
0.010 )
0.006
(c)
04 : . . .

0 0.2 0.4 0.6 0.8 1
Re q(x)
Fig. 5. Example 3, the real part of ¢(x)

x

0 02 04 06 038 1

Fig. 6. Example 3, the imaginary part of g(x)

Example 4. N=1; A\_; = —m; a_1 = 1; (a) A\g = 0.1,
ag =11\ =7—-0.1, oy =0.9;
(b) Ao = 0.05, ag = 1.05; Ay = 7 — 0.05, a1 = 0.95.

0.11
0 -

-0.1
-0.2

' (a)
0.8 | (b)

Re q(x)
Fig. 7. Example 4, the real part of q(x)

(2)
—— M

Im q(x)
Fig. 8. Example 4, the imaginary part of g(x)

Conclusions

In this note, a numerical solution of the inverse prob-
lem of reconstructing the self-adjoint Dirac operators

0 on (0,1) in the simplest but practically important case
-0.05 when only a finite number of eigenvalues and norming
(c) constants are perturbed is provided. We give a Maple
-0.10 (b) implementation of the suggested algorithm and provide
-0.15 (a) some examples. The suggested procedure can be used in
practical applications where the inverse spectral prob-

Im q(x) lems for Dirac operators on a finite intervals arise.
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YICJIOBOI CIIOCOB PEIIIEHN S OBPATHOI CIIEKTPAJIBHOM 3AJIAYU
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