Теоретична і прикладна фізика

вісник національного університету "львівська політехніка" "Фізико-математичні науки" Вип.768 № 768, (2013) с. 111–115 JOURNAL OF NATIONAL UNIVERSITY "LVIVSKA POLITECHNIKA" "Physical & mathematical sciences" Vol.768 No 768, (2013) 111–115

ПОЄДНАННЯ ПЕРЕВАГ ПОЛЯРИЗАЦІЙНО-ОПТИЧНОГО ТА ІНТЕРФЕРОМЕТРИЧНОГО МЕТОДІВ ДЛЯ ВИЗНАЧЕННЯ АБСОЛЮТНИХ П'ЄЗООПТИЧНИХ КОЕФІЦІЄНТІВ РОМБІЧНИХ КРИСТАЛІВ

Дем'янишин Н. М.

Фізико-механічний інститут ім. Г.В. Карпенка, вул. Наукова 5, Львів, 79601, Україна

(Отримано 30 вересня 2013 р.)

На прикладі кристалів борату стронцію описано метод визначення абсолютних п'єзооптичних коефіцієнтів ромбічних кристалів на основі п'єзооптичних коефіцієнтів різниці ходу, які визначено поляризаційно-оптичним методом. Записано відповідні співвідношення. Показано, що для знаходження всіх дванадцяти абсолютних п'єзооптичних коефіцієнтів необхідно провести також три інтерферометричні вимірювання.

Ключові слова: поляризаційно-оптичний метод, п'єзооптичні коефіцієнти, ромбічні кристали.

РАСS: 78.20 Hp **УДК:** 548.0:515.511

Вступ

Для визначення абсолютних п'єзооптичних коефіцієнтів (ПОК), тобто коефіцієнтів, що описують зміни показників заломлення оптичного матеріалу та повороти оптичної індикатриси, під дією механічних напружень, використовуються інтерферометричні методи [1–3]. Ці методи є трудомісткими, особливо під час вивчення п'єзооптичного ефекту в анізотропних матеріалах, а надто у випадках незначної непаралельності оптичних граней досліджуваного зразка [3-6]. Тому спроби отримати абсолютні п'єзооптичні коефіцієнти π_{im} (індекси *i*, *m* відповідають напрямкам поляризації світла та дії одновісного тиску, відповідно) на основі поляризаційно-оптичних вимірювань робляться не вперше. Поляризаційно-оптичні вимірювання простіші порівняно з інтерферометричними [3, 7–9]. Проте в літературі вдалих прикладів визначення абсолютних ПОК поляризаційно-оптичним методом є небагато. Вони обмежуються визначенням діагональних поворотно-зсувних ПОК тетрагональних і кубічних кристалів [10–15].

Прикладом визначення абсолютних ПОК π_{im} за допомогою вимірювань ПОК різниці ходу π_{km}° є результати вивчення ПОЕ кристалів сегнетової солі [16], які належать до ромбічного класу симетрії 222. Підкреслимо, що для отримання всіх абсолютних ПОК автори [16] визначили також шість головних ПОК інтерферометричним методом і, крім того, акустооптичним методом знайшли відношення деяких пружнооптичних коефіцієнтів p_{in} та перевірили ці відношення на основі ПОК π_{im} , використовуючи тензорний вираз $p_{in} = \pi_{im}C_{mn}$ (C_{mn} – коефіцієнти пружної жорсткості) [8, 17].

Однак, в роботах [18–20] стверджується, що матрицю абсолютних п'єзооптичних коефіцентів тригональних та ромбічних кристалів можна заповнити на основі лише поляризаційно-оптичних вимірювань. Проте в роботі [21] показано, що для знаходження усіх восьми абсолютних ПОК π_{im} тригональних кристалів (класи симетрії 32, 3m, $\bar{3}m$) поляризаційнооптичним методом необхідно провести також два інтерферометричні вимірювання. У цій роботі доведемо, що у випадку заповнення матриці абсолютних коефіцієнтів ПОК ромбічних кристалів необхідно провести як мінімум три інтерферометричні вимірювання ПОК π_{im} .

I. Основні співвідношення та їх аналіз

Скористаємось відомим виразом взаємозв'язку між ПОК різниці ходу π_{km}° та абсолютними ПОК π_{im} [9, 21]:

$$\pi_{km}^{\circ} = \pi_{im} n_i^3 - \pi_{jm} n_j^3 - 2\Delta \Box n_k S_{km}, \qquad (1)$$

де Δn_k – двозаломлення кристала в напрямку поширення світла k, S_{km} – коефіцієнти пружної податливості кристала.

Схеми зразків для вивчення ПОЕ в ромбічних кристалах: а) – зразок прямих зрізів , б) – $45^{\circ}/X$ -зрізу, в) – $45^{\circ}/Y$ -зрізу, г) – $45^{\circ}/Z$ -зрізу

Матриця п'єзооптичних коефіцієнтів ромбічних кристалів містить дванадцять незалежних ПОК π_{im} : дев'ять головних (i, m = 1, 2, 3) та три діагональних поворотно-зсувних (i = m = 4, 5, 6) коефіцієнти [3, 8]. Спочатку на основі (1) запишемо розрахункові співвідношення для визначення головних ПОК ромбічних кристалів $\pi_{11}, \pi_{12}, \pi_{13}, \pi_{21}, \pi_{22}, \pi_{23}, \pi_{31}, \pi_{32}$ та π_{33} на зразку прямих зрізів (грані зразка перпендикулярні кристалооптичним осям X_1, X_2, X_3 , див. рисунок а) із врахуванням пружності та правила перестановки індексів $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$:

$$\pi_{21}^{\circ} = \pi_{31}n_3^3 - \pi_{11}n_1^3 - 2\Delta n_2 S_{12}, \qquad (2)$$

$$\pi_{31}^{\circ} = \pi_{11}n_3^3 - \pi_{21}n_2^3 - 2\Delta n_3 S_{13}, \qquad (3)$$

$$\pi_{12}^{\circ} = \pi_{22}n_2^3 - \pi_{32}n_3^3 - 2\Delta n_1 S_{12}, \qquad (4)$$

$$\pi_{32}^{\circ} = \pi_{12}n_1^3 - \pi_{22}n_2^3 - 2\Delta n_3 S_{23}, \tag{5}$$

$$\pi_{13}^{\circ} = \pi_{23}n_2^3 - \pi_{33}n_3^3 - 2\Delta n_1 S_{13}, \tag{6}$$

$$\pi_{23}^{\circ} = \pi_{33}n_3^3 - \pi_{13}n_1^3 - 2\Delta n_2 S_{23}.$$
 (7)

Цих виразів недостатньо для визначення дев'ятьох відповідних ПОК π_{im} . У [8] додатково записано три рівняння для визначення головних ПОК π_{im} на зразках $45^{\circ}/X$ –, $45^{\circ}/Y$ – та $45^{\circ}/Z$ –зрізів (грані перпендикулярні осям, що становлять кут 45° з кристалооптичними осями $X_2, X_3; X_1, X_3$ та X_1, X_2 відповідно, див. рисунок б–г). Перепишемо ці рівняння з врахуванням правила взаємодії індексів k та і, j для зразків 45° – зрізів [4, 5]: $1 \rightarrow 4 \rightarrow \overline{4} \rightarrow 1$; $2 \rightarrow 5 \rightarrow \overline{5} \rightarrow 2$; $3 \rightarrow 6 \rightarrow \overline{6} \rightarrow 3$ (зміст напрямків 4 та $\overline{4}$, 5 та $\overline{5}$, 6 та $\overline{6}$ зрозумілий із рис. 1 б-г):

$$\pi_{41}^{\circ} = \frac{1}{2} \left(\pi_{21} + \pi_{31} \right) n_4^3 - \pi_{11} n_1^3 - \Delta n_4 \left(S_{12} + S_{13} \right), \quad (8)$$

$$\pi_{52}^{\circ} = \frac{1}{2} \left(\pi_{32} + \pi_{12} \right) n_5^3 - \pi_{22} n_2^3 - \Delta n_5 \left(S_{12} + S_{23} \right), \quad (9)$$

$$\pi_{63}^{\circ} = \frac{1}{2} \left(\pi_{13} + \pi_{23} \right) n_6^3 - \pi_{33} n_3^3 - \Delta n_6 \left(S_{13} + S_{23} \right), \quad (10)$$

де n_4 , n_5 , n_6 – показники заломлення в напрямках поляризації світла $i = \bar{4}, \bar{5}, \bar{6}$, які визначаються за виразами: $n_4 = \sqrt{2}n_2n_3/(n_2^2 + n_3^2)^{1/2}, n_5 = \sqrt{2}n_1n_3/(n_1^2 + n_3^2)^{1/2}, n_6 = \sqrt{2}n_1n_2/(n_1^2 + n_2^2)^{1/2}$ [3, 9]; $\Delta n_4 = n_4 - n_1$, $\Delta n_5 = n_5 - n_2$, $\Delta n_6 = n_6 - n_3$ – двозаломлення в напрямках поширення світла k = 4, 5, 6, відповідно.

Неголовні діагональні ПОК π_{44} , π_{55} та π_{66} розраховуються із ПОК різниці ходу π_{km}° , визначених на зразках 45°-зрізів поляризаційно-оптичним методом для умов поширення світла в напрямках k = 4, 5, 6 та дії тиску в напрямках $m = \overline{4}, \overline{5}, \overline{6}$ (рис. 1) на основі співвідношень [8]:

$$\pi_{4\bar{4}}^{\circ} = \frac{1}{4} n_{\bar{4}}^3 \left(\pi_{22} + \pi_{23} + \pi_{32} + \pi_{33} + 2\pi_{44} \right) - \frac{1}{2} n_1^3 \left(\pi_{12} + \pi_{13} \right) - \frac{1}{2} \Delta n_4 \left(S_{22} + 2S_{23} + S_{33} - S_{44} \right), (11)$$

$$\pi_{55}^{\circ} = \frac{1}{4} n_5^3 \left(\pi_{11} + \pi_{13} + \pi_{31} + \pi_{33} + 2\pi_{55} \right) - \frac{1}{2} n_2^3 \left(\pi_{21} + \pi_{23} \right) - \frac{1}{2} \Delta n_5 \left(S_{11} + 2S_{13} + S_{33} - S_{55} \right), (12)$$

$$\pi_{6\bar{6}}^{\circ} = \frac{1}{4} n_{6}^{3} \left(\pi_{11} + \pi_{12} + \pi_{21} + \pi_{22} + 2\pi_{6\bar{6}} \right) - \frac{1}{2} n_{3}^{3} \left(\pi_{31} + \pi_{32} \right) - \frac{1}{2} \Delta n_{6} \left(S_{11} + 2S_{12} + S_{22} - S_{6\bar{6}} \right).$$
(13)

Вирази (2)–(13) становлять систему з дванадцяти рівнянь з дванадцятьма невідомими аболютними ПОК π_{im} .

Як видно з формул (2)–(13) три абсолютні неголовні ПОК π_{44} , π_{55} та π_{66} розраховуються з трьох незалежних рівнянь (11)–(13) і визначити їх можна лише за умови, коли головні абсолютні ПОК π_{im} уже відомі. Тому проаналізуємо систему рівнянь для головних абсолютних ПОК π_{im} (2)–(10) і перевіримо, чи можна на основі цих рівнянь визначити всі дев'ять головних ПОК π_{im} ромбічних кристалів.

Для цього дев'ять рівнянь системи (2)-(10) з дев'ятьма невідомими розіб'ємо на три системи по три рівняння з трьома невідомими абсолютними ПОК π_{im} : (2), (3), (8); (4), (5), (9) та (6), (7), (10). Розв'яжемо одну з таких систем, наприклад, першу. Залишимо в лівій частині рівнянь (2), (3), (8) вирази з абсолютними ПОК π_{im} , а в правій – ПОК різниці ходу π_{km}° і пружний внесок $2\Delta n_k S_{km}$ в коефіцієнт π_{km}° :

$$\pi_{31}n_3^3 - \pi_{11}n_1^3 = \pi_{21}^\circ + 2\Delta n_2 S_{12}, \tag{14}$$

$$\pi_{11}n_1^3 - \pi_{21}n_2^3 = \pi_{31}^\circ + 2\Delta n_3 S_{13}, \tag{15}$$

$$\frac{1}{2} (\pi_{21} + \pi_{31}) n_4^3 - \pi_{11} n_1^3 = \pi_{41}^\circ + \Delta n_4 (S_{12} + S_{13}).$$
(16)

З перших двох рівнянь визначимо два абсолютні ПОК π_{21} та π_{31} і підставимо їх в третє рівняння:

τ

$$\pi_{31} = \left(\pi_{21}^{\circ} + 2\Delta n_2 S_{12} + \pi_{11} n_1^3\right) / n_3^3 = \\ = \frac{\pi_{21}^{\circ}}{n_3^3} + 2S_{21} \frac{\Delta n_2}{n_3^3} + \pi_{11} \frac{n_1^3}{n_3^3}, \qquad (17)$$

$$\pi_{21} = -\left(\pi_{31}^{\circ} + 2\Delta n_3 S_{13} - \pi_{11} n_1^3\right) / n_2^3 =$$
$$= \pi_{11} \frac{n_1^3}{n_2^3} - \frac{\pi_{31}^{\circ}}{n_2^3} - 2S_{13} \frac{\Delta n_3}{n_2^3}, \qquad (18)$$

$$\frac{1}{2} \left(\pi_{11} \frac{n_1^3}{n_2^3} - \frac{\pi_{31}^\circ}{n_2^3} - 2S_{13} \frac{\Delta n_3}{n_2^3} + \frac{\pi_{21}^\circ}{n_3^3} + 2S_{21} \frac{\Delta n_2}{n_3^3} + \pi_{11} \frac{n_1^3}{n_3^3} \right) n_4^3 - \pi_{11} n_1^3 = \pi_{41}^\circ + \Delta n_4 \left(S_{12} + S_{13} \right).$$
(19)

Розв'яжемо останнє рівняння відносно абсолютного ПОК π_{11} :

$$\pi_{11} \left[n_4^3 \left(\frac{n_3^3 + n_2^3}{2n_3^3 n_2^3} \right) - 1 \right] = \frac{\pi_{41}^\circ}{n_1^3} + (S_{12} + S_{13}) \frac{\Delta n_4}{n_1^3} + \\ + \pi_{31}^\circ \frac{n_4^3}{2n_2^3 n_1^3} + S_{13} \frac{\Delta n_3 n_4^3}{n_2^3 n_1^3} - \pi_{21}^\circ \frac{n_4^3}{2n_3^3 n_1^3} - S_{21} \frac{\Delta n_2 n_4^3}{n_3^3 n_1^3}.$$

$$(20)$$

Підставивши в (20) значення показників заломлення, легко переконатись, що вираз у квадратних дужках дорівнює нулю. Аналогічний результат отримуємо, розв'язуючи цю систему рівнянь відносно інших головних ПОК: π_{21} чи π_{31} . Тобто, рівняння (2), (3), (8) є взаємозалежними. Тому для визначення цих ПОК на основі вказаних рівнянь, необхідно провести хоча б одне інтерферометричне вимірювання і знайти відповідний абсолютний ПОК π_{im} (π_{11} , π_{21} або π_{31}).

Такий самий результат отримуємо під час розв'язання інших двох систем рівнянь: (4), (5), (9) та (6), (7), (10). Оскільки в кожну групу з трьох рівнянь (2), (3), (8); (4), (5), (9) та (6), (7), (10) входять piзні абсолютні ПОК $\pi_{\mathrm{i}m}$ (в інших двох системах рівнянь ці ПОК не зустрічаються), то для визначення всіх головних абсолютних ПОК π_{im} в ромбічних кристалах на основі поляризаційно-оптичних досліджень необхідно провести мінімум три інтерферометричні вимірювання головних ПОК π_{im} – по одному ПОК для кожної з трьох систем рівнянь (наприклад, π_{11} для системи рівнянь (2), (3), (8), π_{22} для системи рівнянь (4), (5), (9), π_{33} для системи рівнянь (6), (7), (10)). Тоді, маючи значення трьох головних абсолютних ПОК $\pi_{11}, \pi_{22}, \pi_{33}$, отриманих на основі інтерферометричних вимірювань, можна визначити решту шість ПОК $\pi_{12}, \pi_{13}, \pi_{21}, \pi_{23}, \pi_{31}$ та π_{32} з поляризаційно-оптичних вимірювань на зразку прямих зрізів згідно з виразами (2)–(7). А формули (8)-(10) та результати вимірювання на зразках 45° зрізів можна використовувати для перевірки достовірності значень головних ПОК, отриманих на зразку прямих зрізів.

II. Розрахунок абсолютних ПОК на прикладі кристалів борату стронцію (SrB₄O₇)

Наведемо приклад розрахунку абсолютних ПОК π_{im} ромбічних кристалів борату стронцію на основі результатів поляризаційно-оптичних вимірювань ПОК різниці ходу π_{km}° .

У цій роботі ПОК різниці ходу π_{km}° визначено відомим поляризаційно-оптичним методом півхвильових напружень [3, 7], коли індукована механічним напруженням $\sigma_m = \sigma_{km}^{\lambda/2}$ різниця ходу $\delta \Delta_k = \lambda/2$. Тоді π_{km}° розраховується з виразу:

$$\pi_{km}^{\circ} = -2\delta\Delta_k/(d_k\sigma_m) = -\lambda/(d_k\sigma_{km}^{\lambda/2}), \qquad (21)$$

THEORETICAL AND APPLIED PHYSICS

де d_k – товщина кристала в напрямку поширення світла k, $\sigma_{km}^{\lambda/2}$ – півхвильове механічне напруження (індекс m означає напрям дії сили, що створює механічне напруження у зразку), λ – довжина світлової хвилі. Точність визначення ПОК різниці ходу π_{km}° становить 7–10% [9]. Знак π_{km}° визначено за допомогою кварцового клина: "–" означає зменшення природної різниці ходу, "+" – її збільшення при дії одновісного тиску. Враховано також, що напруженням стиску приписують знак "–". Досліджувались зразки кристалів розмірами ~ 8×8×8 мм. Результати дослідження наведені в табл. 1.

Таблиця 1

Результати вивчення ПОЕ в кристалах борату стронцію ($\lambda = 632.8$ нм; $T = 20^{\circ}$ C)

N⁰		Умови	$d_k \sigma_{km}^{\lambda/2},$	$\pi_{km}^{\circ}, \mathrm{Sp}$						
з/п	експерименту		кГ/см							
	m	k								
Зразки прямих зрізів										
1	1	2	150	$\pi^{\circ}_{21}{=}4{,}28$						
2	1	3	185	$\pi^{\circ}_{31} = -3,50$						
3	2	1	165	$\pi^{\circ}_{12}{=}{-}3{,}85$						
4	2	3	175	$\pi^{\circ}_{32}{=}3,\!70$						
5	3	1	185	$\pi_{13}^{\circ}{=}3{,}55$						
6	3	2	155	$\pi^{\circ}_{23} = -4.15$						
Зразки 45°-зрізів										
7	1	4	177	$\pi^{\circ}_{41}=3{,}55$						
8	4	$\bar{4}$	210	$\pi^{\circ}_{4ar{4}} = -3.10$						
9	2	5	173	$\pi^{\circ}_{52}=3{,}75$						
10	5	5	190	$\pi^{\circ}_{5ar{5}} = -3,40$						
11	3	Ē	172	$\pi^{\circ}_{63}=3{,}80$						
12	6	$\overline{6}$	194	$\pi^{\circ}_{6ar{6}} = -3,\!\overline{30}$						

Як видно з таблиці, п'єзооптичний ефект в кристалах борату стронцію є слабкоанізоропним, оскільки коефіцієнти π_{km}° для різних геометрій експерименту за величиною співвимірні. При розрахунку абсолютних ПОК π_{im} кристалів борату стронцію на основі (2)–(7) і (11)–(13) використані значення коефіцієнтів пружної податливості S_{km} із [22] та показників заломлення n_i із [23]: $S_{11} = 3, 5 \pm 0, 1; S_{12} = -0, 9 \pm 0, 5;$ $S_{13} = -0, 33 \pm 0, 3; S_{22} = 4, 1 \pm 0, 3; S_{23} = -0, 5 \pm 0, 4;$ $S_{33} = 2,8 \pm 0,1; \ S_{44} = 7,2 \pm 0,1; \ S_{55} = 8.3 \pm 0,2;$ $S_{66} = 7,5 \pm 0,1$ (усе в Брюстерах, 1Бр = $10^{-12} \text{ м}^2/\text{H}$); $n_1=1,7333;\,n_2=1,7323;\,n_3=1,7356$ (для $\lambda=632,8$ нм; $T = 20^{\circ}$ C). З результатів, отриманих в [23], вибрано три значення головних абсолютних ПОК π_{im} , визначених інтерферометричним методом з найменшими похибками. Це $\pi_{21} = 0, 47 \pm 0, 10$ Бр для системи рівнянь (2), (3), (8), $\pi_{12} = 0,55 \pm 0,13$ Бр для системи рівнянь (4),(5),(9) та $\pi_{33} = -0,37 \pm 0,09$ Бр для системи рівнянь (6), (7), (10). Зауважимо, що пружний внесок $2\Delta n_k S_{km}$ в π_{km}° , розрахований на основі (2)-(7) для зразка прямого зрізу і на основі (11)-(13)для зразків 45°-зрізів, є малий і не перевищує 0,1% від величини π_{km}° , що зумовлено малими значеннями двозаломлення кристалів борату стронцію. У цьому полягає істотна перевага поляризаційно-оптичних методів вимірювання порівняно з інтерферометричними, в яких пружний внесок іноді набагато перевищує оптичну складову [4, 5].

Розраховані на основі поляризаційно-оптичних та інтерферометричних вимірювань значення абсолютних ПОК π_{im} кристалів борату стронцію наведені в табл. 2.

Абсолютні ПОК кристалів борату стронцію

$(\lambda = 632.8 \text{ HM}; T = 20^{\circ} \text{ C})$										
	$\pi_{im},$	π_{11}	π_{21}	π_{31}	π_{12}	π_{22}	π_{32}			
	Бр									
	1	-0,20	0, 47	0,62	0 , 55	-0,16	0.58			
		\pm 0,11	$\pm 0, 10$	\pm 0,12	\pm 0, 13	$\pm 0,14$	± 0.15			
	2	-0,29	0,47	$0,\!56$	$0,\!55$	-0,20	0.52			
ı		\pm 0,10	\pm 0,10	± 0.16	$\pm 0,13$	$\pm 0,11$	± 0.16			
1	π_{im} ,	π_{13}	π_{23}	π_{33}	π_{44}	π_{55}	π_{66}			
	Бр									
	1	0,44	0,31	- 0,37	-0,38	-0,76	-0,57			
		\pm 0,11	$\pm 0,10$	\pm 0,09	\pm 0,23	$\pm 0,19$	$\pm 0,24$			
	2	0,37	0,36	- 0,37	-0,35	-0,53	-0,42			
		± 0.12	± 0.10	± 0.09	± 0.10	± 0.15	± 0.19			

Примітка. 1 – отримано на основі ПОК π_{km}° та трьох ПОК π_{im} (π_{21}, π_{12} та π_{33} – виділені), визначених інтерферометричним методом; 2 – усі ПОК π_{im} отримано інтерферометричним методом [23].

У цій таблиці вказано також похибки визначення ПОК π_{im} . Похибка конкретного коефіцієнта π_{im} розрахована, як середньоквадратична величина від похибок доданків, які входять у співвідношення для визначення π_{im} : π_{km}° – похибка визначення 7%, π_{21} , π_{12} , $\pi_{33} - 20-24\%$ [23], $S_{km} - 1-50\%$ [22], $n_i - <0,01\%$ [23]. Із табл. 2 видно, що похибки поляризаційнооптичного (верхній рядок) та інтерферометричного (нижній рядок) методів визначення ПОК π_{im} є практично однакові. Дещо більшими є похибки визначення ПОК π_{44} , π_{55} , π_{66} (див. верхній рядок), оскільки співвідношення (11)–(13) для розрахунку цих ПОК є складними (детально про розрахунок похибок визначення ПОК див. у [4, 5]).

Висновки

Таблиця 2

Встановлено співвідношення для розрахунку абсолютних ПОК π_{im} ромбічних кристалів на основі поляризаційно-оптичного методу дослідження ПОЕ. Експериментально визначено піхвильові напруження та відповідні ПОК різниці ходу π_{km}° . Розраховані на основі коефіцієнтів π_{km}° абсолютні ПОК π_{im} в межах похибки їх визначення співпадають за величиною з ПОК π_{im} , визначеними інтерферометричним методом. Перевагою поляризаційно-оптичного методу вивчення ПОЕ є його мала трудоємкість порівняно з інтерферометричними методами. Показано, що для встановлення всіх абсолютних ПОК ромбічних кристалів на основі ПОК різниці ходу необхідно провести ще три незалежні інтерферометричні вимірювання.

Література

- Борн М. Вольф Э. Основы оптики. М.: Наука, 1970. – 855 с.
- [2] Коломийцев Ю.В. Интерферометры. Л.: Машиностроение, 1976. – 295 с.
- [3] Мицик Б.Г. Фотопружність анізотропних матеріалів. – Львів: Ліга-прес, 2012. – 400 с.
- [4] Мицик Б.Г., Андрущак А.С., Гаськевич Г.І. Повне вивчення п'єзооптичного ефекту в кристалах лангаситу, УФЖ, т. 52, № 8. – С. 800-809 (2007).
- [5] Mytsyk B.G., Andrushchak A.S., Demyanyshyn N.M. et al. Piezo-optic coefficients of *MgO*-doped *LiNbO*₃ crystals, Appl. Opt., vol. 48, N 10, p. 1904–1911 (2009).
- [6] Мыцык Б.Г., Андрущак А.С., Кость Я.П. Статическая фотоупругость кристаллов фосфида галлия, Кристаллография, т. 57, № 1. – С. 131–137 (2012).
- [7] Сонин А.С., Василевская А.С. Электрооптические кристаллы. М.: Атомиздат, 1971. 328 с.
- [8] Нарасимхамурти Т.С. Фотоупругие и электрооптические свойства кристаллов. – М.: Мир, 1984. – 623 с.

- [9] Mytsyk B. Methods for the studies of the piezo-optical effect in crystals and the analysis of experimental data.
 I. Methodology for the studies of piezo-optical effect, Ukr. J. Phys. Opt., vol. 4, N 1, p. 1-26 (2003).
- [10] Feldman A. Measurement of the photoelastic constants of optical materials, Opt. Eng., vol. 17, N 5, p. 453-462 (1978).
- [11] Schwab C., Robinc P. Photoelastic properties of cuprous halides, Opt. Comm., vol. 4, N 4, p. 304–306 (1971).
- [12] Карпович И.В., Луцив-Шумский Л.Ф., Мокрый О.М. Пьезооптические постоянные кристаллов *КН*_{2(1-x)}*D*_{2x}*PO*₄, УФЖ, т. **32**, № 7. – С. 1016–1018 (1987).
- [13] Narasimhamurty T.S., Veerabhadra R.K, Pettersen H.B. Photoelastic constants of ADP, J. Mater. Sci., vol. 8, N 4, p. 577-580 (1973).
- [14] Влох О.Г., Луцив-Шумский Л.П., Пылыпышин Б.П. Об электрооптических и пьезооптических свойствах кристаллов КH₂PO₄ и NH₄H₂PO₄ при высоких температурах, Кристаллография, т. 16, № 4. – С. 828–829 (1971).

- [15] Влох О.Г., Луцив-Шумский Л.П., Пирогов Ю.А. Фотоупругость и электрооптический эффект в кристаллах KH_{2(1-x)}D_{2x}PO₄ при запрещенной деформации, УФЖ, т. 23, № 1. – С. 146–148 (1978).
- [16] Narasimhamurty T.S. Photoelastic Behavior of Rochelle Salt, Phys. Rev., vol. 186, N 3, p. 945–948 (1969).
- [17] Най Дж. Физические свойства кристаллов. М.: Мир, 1967. – 385 с.
- [18] Горбач С.С., Пахнев А.В., Шаскольская М.П. Фотоупругие свойства кристаллов // Обзоры по электронной технике. Серия: Материалы. - М.: ЦНИИ Электроника, 1974. – № 16 (256). - 86 с.
- [19] Стадник В., Габа В. Рефрактометрія діелектричних кристалів з несумірними фазами. – Львів: Ліга-Прес, 2010. – 352 с.

- [20] Stadnyk V.J., Romanyuk M.O. Piezooptic properties of $(NH_4)_2BeF_4$ crystals // Phys. Stat. Sol. (a). 1996. vol. 158, N 1. 289-296.
- [21] Mytsyk B.G., Demyanyshyn M.N., Andrushchak A.S. et al. Piezooptical coefficients of $La_3Ga_5SiO_{14}$ and $CaWO_4$ crystals: A combined optical interferometry and polarization-optical study, Opt. Mater., vol. 33, N 1, p. 26–30 (2010).
- [22] Martynyuk-Lototska I., Dudok T., Mys O., Vlokh R. Elastic, piezooptic and acoustooptic properties of SrB_4O_7 and PbB_4O_7 , Opt. Mater., vol. 31, N 4, p. 660–667 (2009).
- [23] Mytsyk B., Demyanyshyn N., Martynyuk-Lototska I., Vlokh R. Piezo-optic, photoelastic and acousto-optic properties of SrB_4O_7 crystals, Appl. Opt., vol. 50, N 21, p. 3889–3895 (2011).

СОЧЕТАНИЕ ПРЕИМУЩЕСТВ ПОЛЯРИЗАЦИОННО-ОПТИЧЕСКОГО И ИНТЕРФЕРОМЕТРИЧЕСКОГО МЕТОДОВ ДЛЯ ОПРЕДЕЛЕНИЯ АБСОЛЮТНЫХ ПЬЕЗООПТИЧЕСКИХ КОЭФФИЦИЕНТОВ РОМБИЧЕСКИХ КРИСТАЛЛОВ

Демьянишин Н. М.

Национальный университет "Львивська политэхника", ул. С. Бандеры, 12, Львов, 79013, Украина

На примере кристаллов бората стронция описан метод определения абсолютных пьезооптических коэффициентов ромбических кристаллов на основе пьезооптических коэффициентов разности хода, определенных поляризационно-оптическим методом. Записано соответствующие соотношения. Показано, что для определения всех двенадцати абсолютных пьезооптических коэффициентов необходимо провести также три интерферометрических измерения.

Ключевые слова: поляризационно-оптический метод, пьезооптические коэффициенты, ромбические кристаллы.

78.20Hp

УДК: 548.0:515.511

COMBINATION OF ADVANTAGES OF POLARIZATION-OPTICAL AND INTERFEROMETRIC METHODS FOR DETERMINATION OF THE ABSOLUTE PIEZOOPTIC COEFFICIENTS OF RHOMBIC CRYSTALS

Demyanyshyn N. M.

Physic-Mechanical Institut 5 Naukova Str., Lviv, 79601, Ukraine

Piezooptic coefficients of propagation difference were determined with the help of polarizationoptical method for strontium borate crystals. The obtained coefficients were used to determine the absolute piezooptic coefficients of rhombic crystals. The corresponding relationships were recorded. It was shown that three interferometric measurements must be conducted for determination of all twelve values of absolute piezooptic coefficients.

Key words: polarization-optical method, piezo-optical coefficients, rhombic crystals. **PACS:** :

УДК: 548.0:515.511