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—iu%(w,u) + Co(w)/b(u’)f(ww')du’ =of(x,p), —co<z<oo, zER, —1<pu<1

—1

explicit examples of solution f(z,u), function Co(z),

b(u) are given. The solution f(z,u) is

presented as polynomial, or as series on Hermite polynomials, or as function of type f(z,u) =

= h(z)g (ﬁ

). Last examples give the solutions which belong to the space LQ(Di), Dy =

R4 x (—1,1) and correspond to bounded function Coz. For some type of coefficient Co(z), b(p)
a condition of absence of eigenvalue o in case of the space L?(D), D =R x (—1,1) is given.
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Introduction

There are many works conserning point spectrum of
transport operator of different types, including the es-
timates for the number of eigenvalues (see for example
[1]-[2], where the reader can find other references).

Does there exist the operator of given type such that
point spectrum contains given set of numbers? We do
not say about difficult inverse problem. Particular ques-
tion conserning some part of point spectrum only may
be interesting too. Recall for example addition and elim-
ination eigen values of Sturm-Liouville operators (see
[3]). Close question relating to prescribed eigenvalues
was considered in [4]. In the work [5] the author sup-
poses that some transport operator has not spectral sin-
gularities. We do not know if considered operator may
have spectral singularities. The operators of like type
are considered in given note.

I. Statement of the problem

We will study the existence of the solution of trans-
port equation (see [5])

1
—ipdL (z, p)+eo(x ib WY (z, p)dp'=o f(z, 1), (1)

—o00 < & < 00,

where o is a given number. Our aim is to indicate the
parameters co(x), b(p) and give the solution of the equa-
tion (1) for given value 0. We do not use directly the
notion of the operator. However, it is convenient for
us to consider f(z,u) for every p = const as an ele-
ment of some space of type Li(—oo,oo). We consider
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two methods of construction of the solution f(z,u). In
the beginning the value o # 0 is arbitrary complex num-
ber.

First method consists in representation of the solu-
tion as following series

= ful@)pt (2)
k=0

Substituing in (1), we obtain formally

_Wka

D)+ cole) [ o), =

=0 Z fr(@)uF
k=0

The coefficient at the powers p* gives
1

W o) [ b)) = ofols) (3
-1

Mi—ifii(x) = ofi(x), k=1,2,...

Last equation gives obviously

fr(z) = (i;)kf(gm(f), k=0,1,.. (4)
Then we rewrite (2) as
fe) =32 (L) 19w (5)
k=0

and (3) as

)Y Brfr(x) = o fo(x), (6)
t=0
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where

1
B z/b(u)u’“du, k=0,1,.. (7)
-1

So, this method consists in search for the function
fo(z) and b(p) such that the series (2) converges and
the equality (6) permits to define the function cq(x).

Second method is given in n.4, but there o is real
value, 0 £ 0, 0o < 0 < 0.

II. Case of the space L2(c0,0),
p(x) = exp(—|z])

We search the solution f(x, 1) as polynomial on vari-
able z. Let fo(z) be arbitrary polynomial, degfo(z)=N.
Then (see(4)) fr(z) =0, k> N and

N
v = fela)
k=0

According to (5) we have

N
©) Y Brfr(@) = o folw), 8)
k=0
where )
Br = /b(u)u’“du, k=0,1,..N. (9)

Now we choose arbitrary numbers 8y such that the poly-
nomial Z Brfrx(x) has not real roots. Then we define

co(z) from the equality (8) as rational function bounded
on real axis. Later we choose some function b(u) inte-
grable on (—1,1), which satisfies the relation (9). Ob-
viously, for every value p € (—1,1) the function f(z, u)
belongs to the space L?,(foo, 00).
So, we have following proposition.

Proposition. Let o # 0 be arbitrary complex value
and the coefficients ¢o(x), b(p) of the equation (1) are
arbitrary functions which satisfies the relations (4), (8)-
(9), where fo(x), degfo(xz) = N is arbitrary polynomial.
Then the polynomial

Fam) =3 — 59 ()t

= (o)

is a solution of the equation (1).

ITI. Case of the space L2(c0,00),
pla) = exp (-5

We search a serie on Hermite polynomials

N
x) = Z apHg(x)
k=0

, —00 < x < 00, (10)

(where oy, are unknown coefficients) for the function
fo(x) in the relations (5)-(6). Recall that (see[6])
Ho(x) = 1, Hy(z) = 2z, Ha(x) = 42? — 2, ... The
relation

H! (z) =2nH, 1(x), n=1,2,...

permits to present the derivatives of fo(z) again as serie
on Hermite polynomials. We have formally

Zaka ZQkO&ka 1( )

k=1

= 2(k + ags1 Hy().
k=0

If we repeat r times this calcul, we obtain

N
=" o Hy(z)
k=0

L r=1,2, .., (11)

where
ol =2 (k4 r)k+r—1)(k— Dagyr.  (12)
Substituing (11) in (5) we obtain

i (i (;;)%(c)> Hy (). (13)

k=0 \r=0

f(xvu) =

Now we are looking for the conditions on the coefficient
a, which guarantees the convergence of the series (10),
(11) and (13). We begin with the convergence of (13)
for every x = const. Using known estimate

\Hy(2)] < e5 25 VAL, k#1,2, ... (14)

we obtain corresponding majorant

> (X[ et
k=0
(oo}

Z( ‘*‘ |gtr| 27 (K + 7). .(k+1)> 25 VKl

k=0

)22\7

or (see(12))

As g <k, Vk! < k! we can rewrite the majorant
(oo} (oo} //L r
ZZH |aesr] 267 (K + 7)! (15)
k=07r=0 g

Denote by A arbitrary number such that
0 < A<min{l,|ol|},

such value A exists because o # 0. we suppose that
|| < 1, then

A}§}<1.
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Under the condition
lo| 2K < M - A*) k=1,2,...,M = const,  (16)

where M > 0 is arbitrary value, the serie (14) is conver-

(ZA’“)( (a)5]) ><oo.

0o o0 "
M ’7’ AkJrr

2.2 |,

k=0r=0
The series (10) is particular case of serie (11). So, we
must prove the convergence of the serie (11) for every
x = const and k = 0,1,... Corresponding majorant is

(see(14),(12))

Z’ak ’ |Hy(z 25 Vi <

oo
%Z‘ (r)
k=0

%Z 4 1)k 4+ DVE2S |, .
k=0

Under the condition (16) the serie

2 4 1)+ 1)V - AT

<
Z 2+ (k4 )l

oo k
<M-2"- ZQ%Qk 5 = Z(\%) < 00
k=0

converges as A < 1. The convergence is uniform in every
finite interval [a, b] of variable . So, the function fy(x)
is indefinitely derivables and its derivates are given by
(11). Now we will prove that for every pu € (—1,1) the
function f(x,u) (see(13)) as function on x belongs to

(5).

the space L2(—00,00), p(z) = exp
Recall (see()) that

a2 0, mzn
[ tmimion—{ ou 55
and if oo
©) =Y cxHy(x), o €C (17)
k=0
then
[ e Fl@P de=vE Y 2Hlal’, 0 =1 (3
. k=0

If we compare the series (17) and (13), we see that it is
sufficient to prove the convergence the serie (18), where

0o 2
P .
< (Z‘a‘ Jevkgr| - 25F (k+r)!> :
0

In view of the condition (16), we have

00 2
x| - 24K < M2 (Z !“]’”A'Hr) -
2
r=0

— \2A2K (i‘fj‘rAr)Q < M A%
=0

for k =0,1,... Therefore

Z |ck|22kk! < M, ZA% < 00
k=0 k=0

as A < 1. So, the serie (18) converges and

oo

[ e < o

We proved the following theorem

Theorem 1. Let ¢ # 0 be arbitrary complex
value and the coefficients c¢o(z), b(u) of the equation (1)
are arbitrary functions which satisfy the relations (4),
(6)—(7), where

= Z Ozka (l’)
k=0

and the coefficients oy, satisfy the condition (16).
Then the function (see(12))

- (S () ) men

k=0 \r=0
is a solution of the equatian (1). The solution f(z, u) as
a function on z every u € (—1,1) belongs to the space
x

1
L2(—00,00) with p(x fexp( 72)

IV. Case of the spaces L?(—oc,0) and
L*(0, 00)

, —00 < x < 00

f(x, 1)

We consider the equation (1) for real value o,
—00 < 0 < 00. Our second method consists in search-
ing the solution as following product of two unknown
functions

T
- o) = niala (). (19)
_ Ll (r)
k= g ('LO’) ak . . . aof _ 7 T
0 Substituing (19) with 2Z-(z,u) = h'(2)g (ﬁ) +
and (see(12)) +h(z)g’ (%) . i in the equation (1) we have
wl|" - K
|ck|2-2kk!<<z H laopr| - 27 (k7). (k+1)>< V) < i (2)g <i> _ih(e)g <z> .
r=0
48 MATEMATHUKA
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1

teo(2) / b )h()g (ff) d’ = oh(x)g (Z)

-1

and dividing by h(x) we obtain
W (x)

-y (3) - <fi> *
+eo(z /lb )g (

Denote

then
")+

Ay
o(put) / b(K')g (L“f) du' | = og(t)

Evidently, both expressions in brackets are constant
with respect to ut. Therefore

Wz) _ = cons
xh(x) =k k= t (20)
/b < ) dy' = iky, k1 = const (21)
k‘ﬁ —ig'(t) +iky = og(t). (22)

As a solution of the equation (20) we take

1
lz|", k= — 56 0<e< ,x;«éO. (23)

h(zx) =
We consider linear differential equation (22) in two

cases, where respectively ¢ € (—o0,0) or (0,00).
The equation

g(t) + (ltﬁ” - ia) g(t) =k (24)

has corresponding homogeneous equation

from which we obtain

(Ing(t)) = —% +io

or g(t) = Clt| ™ e“t, C = const. So, we search the
solution of the equation (24) under the form

g(t) = Ct) |t ~" e, (25)

! —k —k
As ([t])" = %1 then (|t\_k> = _k\tlltl" (£1) = —ky.

Therefore
g'(t) =0

(1) 117+ €7 — % g(1) + (1)

Then it follows from (24) that

C'(t) |t 7 et = Ky

S0
t
Ct) =k / I7|¥ e~ Tdr + Cx, t € (—o0,0) U (0, 00).
0

The conditions C(+o00) = C(—o0
the representations

) = 0 give evidently

Cyi(t) = —ky / I7|* e~ dr, t > 0 (26)
t
t

C_(t) =k / I7|¥ e~ dr, t <0, (27)

where C(t) defines C(t) for ¢ > 0 and C_(t) respec-
tively for ¢ > 0. The solution g(t) (see(25)) of the equa-
tion (22) in both intervals (—o0,0), (0, c0) is

Co) |t et >0
t) = ko 28
9t {C(t)|t Feiot <0 (28)
and the solution f(z, ) (see(19), (23)) is
" Cy (2)eE,  ap>0
[z, p) = ko 1o e (29)
" C-(%)e%, au>0

Note, that g(+0) = g(—0) = 0. Now we precise asymp-
totic behaviour when ¢ — +o00. Integrating par part we
obtain

oo

0o

k _—ioT tk —iot k k—1_—ioT

Ve dr = —e 4+ — [ 7" e dr, t > 0.
10 10

t t

The change &k — k — 1 gives

oo

, tk
/Tke_“"dr =—e "+ O(t" ), t > +00  (30)
io
t

and by analogy

k
. t . _
ke~ qr = —H et o (|¢F! , T — —o0.
I7|
i

Then it follows from (26)-(28) that g(t) = —%+
+0 (1), [t| = oco. The function g(t) is bounded if
t — oo therefore

k1

g(t) = ——+r(t), —co <t < o0,

io

where
Ir(t)| < ¢ C = const
14+t
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Substituing g(z) in (21) i.e.

where r(%)‘ SH%HT'<C’|%| for x # 0 we obtain
col@) = 2 10 (L), 1| = o0 (31)
0 _MO T 9

if

1
My = /b(u)du # 0
1
Now we consider the estimate of the solution (29) in

the case x > 0, u > 0.
According to (26), (30)

k
Ci(t)=—k {t e+ 0 (tk 1)] t — +oo
io
threrefore
M(o)tk, t>1
C+(®)] < { M(o), O0<t<1

for some M(o), Mi(0) = const independent from k.
Then it follows from (29)

el = { o)

As consequence

7|f(x,u)l2dx= /+7 |f(z, )| da <
0 0 u

or

Jiremra<S2 o<l uro @)
0

So, f(-,p) € L*(0,00), u # 0. Denote Ry = (0,00),
D, = Ry x (—1,1). Taking into account (32) we have
f € L*(Dy). In the case z € (—00,0) the same esti-
mate (32) holds, respectively f € L?(D_). So, we write
explicit form of the solution (see(26)-(27)) and (29)

E —ict Tk g
—ki|p| e o5 [ |r|" e~ dr, >0

R

f(m7/‘l“): x [ .
e [ |T|k€_WTdT, L0

—0o0

k
k1 |pl

and we can formulate following theorem.

Theorem 2. Let o € (—
trary complex number and

o0), 0 #0, ki be arbi-

1 1
k= 56 0<e< 3"
Then the function f(z, 1) defined by (33) is a solution in
the intervals (—o0,0), (0,00) of the equation (1) where
b(u) is arbitrary function integrable in (—1,1) and the
function cy(x) is defined by the relations (21), (28). The
solution f(x, ) in the case z > 0 or x < 0 belongs re-
spectively to the space L?(D,) or L*(D_). If the con-
dition

1
My = /b(u)du #0
-1

holds, then the function ¢o(x) is in (—oo
and

o0) bounded

1
co(z) = ]\Zo +0 <$) , |x] = oo

V. Absence of eigenvalues

We consider the equation (1), where o € (—o0, )
function b(ﬂ—“) is bounded and integrable in the interval
(=1,1) and ¢ € L*(—00,00) N L (—00, 0).

We suppose that there exists the solution f(x,p) #
0 of the equation (1) which belongs to the space
L?(D), D =R? x (—1,1).

At the beginning we verify that the function

1
= —co(z /1b (34)

is integrable in (—oo, 00). Really,

1 1
2 1 2

|F(2)] < |co( b(w)[* dp (@, )| dps
i\ /
therefore
[e%e] [e'e] 1 2
F@)dz<M [ leo@)| | [ 1f@wPde| do<
/ S
oo % co 1 2
<M |co(z)|? da f(z, )| dpdz | <oo,
J 1]
(35)

N|=

1

where M = [ [ |b(w)|” du

21

Now we define the function C(x, 1) by the relation
f(a,p) = C(, p)e'i®. (36)

Taking into account the notation (34) we write (1) as
following equation

i (2, ) = o)+ F(2).

50
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On transport operator with prescribed eigenvalue

Substituing (36) we obtain

0C(x,pu) 0 o,
= ﬁe F(x)

therefore

x

i [ e
Cla) == [ Py + i (37
—o0
It follows from (35) that there exist the limit

1113_1 C(z,pu) = A. But right side if (36) belongs to
xr—r+00
L?(R) therefore A= 0. Then from (37) it results that
i [ e
Gl === [ Py

— 00

So, substituing in (37) we have

C(z, 1) = *i/e_i%yF(y)dy- (38)
Using again (35) we see that
sup |C (e, 1) < o0
Z,H
then
M= Sup|#f(ff )| < oc. (39)

Substituing (38), (34) in (36) we obtain

]Z

1

)/b(u’)f(y,u’)du’ dy

-1

[z, p)

and later

OO

i f (z, )| <

700

|co(y I/" ' f(y, ') dp' | dy.

According to the definition (39) of the value M we have

[e’e) 1
b !
msu [ |Co(y)|dy‘/‘(:,)‘d ’
—00 —1

If f(x,p) # 0 then M > 0 and we obtain obligatory

ISZ |co<y>|dy-/11|’ﬁ”}d

As consequence we obtain following theorem.

Theorem 3. Let 0 € (—o0,0), % € LY(-1,1)
and c¢g € L?(—00,00) N L*(—00,00).

If
_/:‘b(:)‘du- 7|co(x)dx< 1

then the equation (1) has in the space L?(D) trivial so-
lution f(z, ) = 0 only.

Instead of conclusion note that items n. 2,3,5 be-
longs to Iv. and n.4 to Cher.

References

[1] Kuperin Yu. A., Naboko S.N. and RomanovR.V., ”Spec-
tral of one-velocity transport operator and functional

model” — Funktsional Anal. i Prilozhen., 33:3, 1999, P.
47-58.
[2] Stepin S.A., "Scattering and Spectral Singularities for

some Dissipative Operators of Mathematical Physics”, —
J. of Nonlinear Math. Phys., Vol.11, Supplement, 2004,
P. 194203, Bialowieza XXI, XXII.

[3] Chadan K. and Sabatier P.C., ”Inverse problems in
quantum scattering theory,” — 1977.

[4] Diaba F. and Cheremnikh E., ”On rank one perturba-
tion of continuous spectrum which generates prescribed
finite point spectrum,” — Meth. Funct. Anal and Topol-
ogy, v.14, n.1, 2008, P. 20-31.

[5] Ivasyk H, ”Spectral decomposition for some transport

operator”, — Eastern-european journal of Enterprise
Technologies (http://jet.com.ua), 1 / 4 (55), 2012,
P. 10-14.

[6] Abramowitz M. and Stegun I.A., ”Handbook of mathe-

matical functions,” 1964.

MATHEMATICS

51



Cheremnich E. V, lvasyk G. V.

O TPAHCIIOPTHOM OIIEPATOPE
N3 SAJAHHBIM COBCTBEHHBIM 3HAYEHUWEM

Yepemunix €. B, IBacwik I'. B.

Hayuonasrvnoti yrnusepcumem “JIvsuscvka nosumarruxa”,
ya. C. Bandepwi, 12, JIveos, 79013, Ykpauna

J1j1s1 HEKOTOPOTO TPAHCIIOPTHOTO OIIEPATOPA

1
—i,ug—i(w,,u) —l—co(as)/b(u')f(x,p,')du' =of(z,p), —co<z<oo, z€R, —1<p<1
21
IpeCTaBIeHo siBHble npumepbl pemenus f(z,u), byaxmuun Co(x), b(p). Pemenme f(z,p)
LIPEJICTaB/IEHO KaK MHOIOYJIEH, M/IM, KaK Cepus 1LOJMHOMOB DPMUTA, WM Kak (DyHKIMs Thia
fz,u) = h(z)g (%) . B mocneganx mprMepax mpeacTaB/IeHbl PEIIeHns, KOTOPBIE IPUHAIIekKAT
mpocrpanctey L?(D+), D+ = Ry x (—1,1) u coorBercTByer orpammuenHoii ¢pymkmmn Cox.

g mekoropeix Tunos ko3ddummentos Co(z), b(w) momano yciaosme orcyTcTBUa COGCTBEHHOTO
3HaueHHs 0 B ciaydae mpocrpancrsa L2(D), D =R x (—1,1).

KurogeBble cJioBa: TPaHCNOPTHBIT ONEpPaToOp, CMEKTP, TOHEHHbIT CNEKTP, COBCTBEHHOE 3HaYeHMe.
2000 MSC: 26A24
YIAK: 517.9

ITPO TPAHCIIOPTHUI1 OIIEPATOP
I3 SAJAHVM BJIACHUM 3HAYEHHAIM

Yepemunx €. B., Isacuk I'. B.

Hautonanvrut ynisepcumem “/Iveiscora noaimexnixa”
eys. C. Bandepu 12, 79013, JIveis, Ykpaina

st 1esiKOro TPAHCIIOPTHOTO OMepaTopa

1

—iug—i(m,u) —l—co(as)/b(u')f(x,p,')du' =of(z,p), —co<z<oo, z€R, —1<pu<1

—1

NONAHO #BHI mpukiaamu poss’s3anus f(z,u), byskmii Co(z), b(p). Poss’ssok f(z,p) npen-
CTaBJIEHO AK MHOro4jeH, abo, sk cepig nosinomis Epmira, a6o ak dbynxmia tuny f(z,u) =

= h(x)g (%) B ocrammix mpukIagax TOJAHO PO3B'A3KW, dKi HAJEXKATh MIPOCTOPY

L*(D1), Dy = Ry x (—1,1) i signorimaiors obmexeniit bynxmii Cox. Jas meskux THIHB KO-
edimienrie Co(x), b(p) mogano ymMOBY BIICYTHOCTI BJIACHOTO 3HAYEHHS O y BUIAJIKY POCTODY
L*(D), D =R x (-1,1).

Kuro4oBi cjioBa: TpaHCNOpTHUI ONepaTop, CNEKTP, TOYKOBUIA CMEKTP, BNACHE 3HAYEHHS.

2000 MSC: 26A24
UDK: 517.9
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