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3anponoHoOBaHO MeTO/O0JIOTiI0 CHMHTe3y paliajibHO-0a3MCHMX MepexX AJf BHpilleHHS
npodjemMu OiTKOBOr0 cepeIHBOr0 MepeAdadeHHs CTPYKTYpPH 3a [0NOMOIOI0 AJTrOPUTMY
BUOOpY KJoHIB. [1106 BupimuTH 110 MPo0aeMy 0y/10 BAKOPHUCTAHO METOA “ OMH NMPOTH BCiX' .
OO0uyHMCIIOBAIbHI eKCIEPMMEHTH 100 BUNPOOYBAHOIO 3pa3Ka MOKa3aad, IO TOYHICThb
NMPOrHO3YBaHHA csArace 10 72 %, 1o BKa3ye Ha BUCOKY TOYHICTh 3allPONOHOBAHOIO CIOCO0Y.

Karo4oBi ciioBa: anroput™ KJI0HAJABHOTO Bindopy, pagianbHa 0a3ucHa GpyHKILiA, MeTOd
“omuH mpoTH Beix” , NPOrHO3YBaHHSA, BTOPUHHA CTPYKTYpa Oijika.

In this paper we propose the methodology of team radial-basis networks synthesis for
solving the problem of protein secondary structure prediction using clonal selection algorithm.
To solve such problem the method of “one against all” have been used. The carried out
computational experiments on test sample have shown that the prediction accuracy allows to
achieve up to 72 %, indicating a high accur acy of the proposed method.

Key words: clonal sdection algorithm, radial basis function, “one against all” method,
predicting, the secondary structure of protein.

1. Introduction

Proteins are large biological molecules with complex structures and constitute to the bulk of living
organisms: enzymes, hormones and structural material [1]. The function of a protein molecule in a given
environment is determined by its 3-dimensional (3-D) structure [1]. Protein 3-D structure prediction
directly from amino acid sequences still remains as an open and important problem in life sciences. The
bioinformatics approach first predicts the protein secondary structure (PSS) which represents an 1-D
projection of the very complicated 3-D structure of a protein [3]. Secondary structures are regular
structural elements which are formed by hydrogen bonds between relatively small segments of the protein
sequence. Often the driving force for the formation of a secondary structure is the saturation of backbone
hydrogen donors (NH) and acceptors (CO) with intramolecular hydrogen bonds. This saturation allows the
protein to bury hydrophobic side chains initsinterior (hydrophobic core) without conflicting with the polar
backbone. There are three common secondary structures in proteins, namely a -helix, b -strand , and coil

[12] . An a -helix isformed from a connected stretch of amino acids. The a -helix is characterized by
hydrogen bonds along the chain, which are ailmost coaxial. The a -helix is the most abundant helical
conformation found in globular proteins. The average length of an a -helix is around 10 residues.
A b -strand is the principal component of a b -sheet. The b -sheet is characterized by hydrogen bonds
crossing between chains. Each participating b -strand in a b -sheet is not continuous in terms of the
primary sequence and does not even have to be close to another b -strand in the sequence. A b -strand has
a sequence of 5-10 residues in a very extended conformation. Approximately one-third of all residues in

globular proteins are contained in coils. The coils in a protein serve to reverse the direction of the
polypeptide chain. Cails vary in length.
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The goal of secondary structure prediction is to classify a pattern of residues in amino acid

sequences to a corresponding secondary structure element: an a-helix (H), g-strand (E) or coil (C, the
remaining type). Many computational techniques have been proposed in the literature to solve the PSS
prediction problem, which can be broadly fallen into three categories: (@) statistical methods, (b) neural
network approaches, and (c) nearest neighbor methods. The statistical methods are mostly based on
likelihood techniques [4, 5, 6]. Neural network approaches useresidues in alocal neighborhood or window
to predict the secondary structure at a particular location of an amino acid sequence [7, 8]. The nearest
neighbor method often uses the k-nearest neighbor techniques [9, 10]. SVMs have been earlier applied to
PSS prediction [11]. One of the drawbacks in this approach is that the method does not capture the global
information of the amino acid sequence dueto the limited size of the local neighborhood. Additionally, the
method only constructs a multi-class classifier by combining several binary classifiers.
Despite the existence of many approaches, the current success rates of existing approaches are insufficient;
further improvement of the accuracy is necessary. Most existing secondary structure techniques are single-
stage approaches, except the PHD [8] and PSIPRED [9] methods which combined two multi-layer
perceptron (MLP) networks. Single-stage approaches are unable to find complex relations (correlations)
among different elements in the sequence. This could be improved by incorporating the interactions or
contextual information among the elements of the output sequence of secondary structures. We argue that
it is feasible to enhance present single-stage approaches by augmenting with ancther prediction scheme at
their outputs and propose to use SVMs as the second-stage.

This paper investigates the use of multi-class RBF neural networks which we synthesize using clonal
selection algorithm for PSS prediction. We present new multi-class techniques based on binary classifiers
to PSS prediction.

2. Data and methods
2.1. Problem definition
One main sub problem of thedomainis ‘ Protein Secondary Structure Prediction’. The primary sequence of

aprotein can berepresented as[13] {A R, N, D,C,Q,E,G,H,I,L,K,M,F,P,S,T,W,Y,V}" , where the
letters are the one letter codes of the amino acid residues (total 20 possible amino acids) and n is the
length of the protein to be predicted. The secondary structure of the sequence having length n is

{a b, c}n , Where a, b, c aredifferent secondary structure classes. So, the problem of secondary structure
prediction can be represented as a mapping problem as follows [13]:
{ARN,D,C,QEG,H,I,LK,M,FPSTWYV}®{a,b,c"

2.2. Orthogonal encoding of amino acid

Orthogonal encoding of amino acid types has been used in many bioinformatic neural network
models: 20 input units are assigned to describe one protein residue. In the 20-dimensional space, the vector
[1, 0,0, 0...0, 0, Q] represents alanine, and [0, 0, 0 ...0, O, O, 1] stands for valine. With this encoding, a
typical input window of 13 residues requires 260 (13" 20) input units. It can easily lead to large input
layers, many connecting weights, and hence complex models. Without sufficient data to support training,
over-complex models are prone to overfitting. Unfortunately, in many bicinformatic problems, huge data
sets can be simply unavailable. Even when they are available, analysing them is often very computationally
demanding. Simplified encoding schemes use less input units to describe a given amino acid sequence;
thus, we can use smaller models to describe the same phenomena. By introducing these simplified models,
we can reduce the reliance on huge data sets and improve performance. To increase the level of neural
network generalization, in work [14] defined a 10-unit input scheme for representation of amino acid type.
Each amino acid was described using ten numbers. In work [15] their representation was based on the
amino acid features described by: each unit corresponds to one biochemical feature; amino acids sharing
many features have similar codes. In work [16] suggested two differing properties, ‘‘ sequence-derived
hydrophaobicity’’ and ‘‘ sequence-derived polarity’’, based on correations in protein sequences. In work
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[17] applied an adaptive encoding neural network to find automatically a classifier with a low-dimensional
encoding matrix. Their encoding scheme was tested on the prediction of cleavage sites in human signal
peptides of secretory proteins.

2.3. Data Set

The set 126 nonhomologous globular protein chains used in the experiment of Rost and Sander [18],
referred to as the RS126 set, was used to evaluate the accuracy of the classifiers. The dataset contained
23349 residues with 32% a -helix, 23% b -strand, and 45% coil. Many current generation secondary
structure prediction methods have been devel oped and tested on this dataset.

The RS126 set is available at http://www.compbio.dundee.ac.uk/~www-jpred/datal. The single stage
approaches and second-stage approaches were implemented, with multiple sequence alignments, and tested
on the dataset, using a sevenfold cross validation technique to estimate the prediction accuracy. With
sevenfold cross validation approximately one-seventh of the database was left out while training and, after
training, the left one-seventh of the dataset was used for testing. In order to avoid the selection of
extremely biased partitions, the RS126 set was divided into seven subsets with each subset having similar
size and content of each type of secondary structure.

2.4. Synthesis of radial-basis network
As the classifier, in general, is called a function that for object attributes vector makes the decision:
to which of classes it belongs:

FA"®Y. 1)
The function F reflects the vector characteristics space in the space of class labes Y. In the case of
two classesY ={0,1} , '1' corresponds to case of event you are looking for; '0'- an event not found. We

consider the option of training with a teacher (supervised learning), when for the classifier training
available a set of vectors {x} for which is known their trueidentity to one of the classes.

In binary classification the class identifiers can be interpreted as states of the system (active or
passive, normal or abnormal), which are presented by number of properties.

Thevector of properties determines the system state. Each state of :(xil,K,xL)T [0,1]" isrepresented by

setU i [0,2]". The properties vector dements can be scaled or normalized in theinterval [0,1] .

The properties vector set of Positivi U represents the normal state of system. Its complement is

called Negativ and determined as Negativ = U - Positiv. In some cases, we will define a set Positiv

(or Negativ), using its characteristic function [26] ¢ pogyiy :[0.4]" ® {03} :
ro i 1 if xI Positiv

Cpogtiv(x):% 0 if X1 Negativ @)

For a given set of positive examples Positivel Positivwe have to evaluate the characteristic function
(cpogtiv) Of normal space, which should have the ability to solve whether the observed state of positive or
negative.

The entire sat of neural networks D be divided into subsat A caused by the chosen topology [27] of RBF-
neural network (number of RBF-neuron network is G). Within each class RBFN; I RBFN the neural networks

are characterized by an additional sat of parameters. the number of inputs n; the sat of synaptic weights of the
output IayerW:{vJ,i =1K, p} ; the number of RBF-neurons of network G:{gi,i =1K, p} ; the centers of

RBFC :{ci,i =1K, p} : the parameters of RBFS:{s li=1K, p} : the parameter of the output neuron activation
function of i-th network A :{a‘,i “1K, p} - in the case of RBF-neural network scale s:{si i =1K, p} of RBF

shiftsto time axisT :{ti i=1K, p} . Thus, parameters vector RBF-neural networks g ={GW,C,S,A} isformed.
Thenatural criterion for sdecting RBF-neuron network will function defined by the standard RMS for any input.
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Thus, the task of RBF-neural network synthesis can be reduced to optimization problems such as:
F =F{g")=minF(q) 3)
af£x £Eb,..a £x £Db,,
where the function F is not imposed any restrictions, such as differentiation, Lipschitz condition,
continuity, etc.

The problem solution of multiparametric function optimization of the form (3) could be used the
appropriate operators of clonal selection.

RBF-network consists of input, single hidden (radial-basis) and linear (output) layer. Input layer
consists of sensors that connect the network with the external environment. The hidden layer neurons act
by the principle of centering on the elements of training sample. As the center stands the weight matrix
(W"). Box (dist) the Euclidean distance between input vector (X) and the corresponding center is
calculating. Around each center there is aregion, called the radius. Radius (sensitivity of the network) is
adjusted by means of the smoothing coefficients vector (s 1S m).

(x-¢)?

The conversion function (usually Gauss- f(x)=e 2" ), which varies from 0 to 1, determines the
output of hidden layer. Output layer contains the usual linear or sygmoidal neurons and by adjustment of
their weights (W') determines the output network.

The behavior of RBF-network depends largely on the number and position of radial basis function of
hidden layer. Indeed, for any real n-dimensional input vector X = (Xl, Xyy ooy X ) where

x1 X1 A, thenework output will be determined as follows:
g : ‘
Y =a Wy i (d|St(X1 Wi )1 S k)1 4)
k=1

wherew, T W' - is the weight of linear layer; W, 1 W' - centers of radial-basis functions. If as basic
functions used Gauss-function one, then

dist(x, W))* | _a1 =
f 0= AW =1 m, ©)
2
Architecture of RBF-neural network used by us for solving the classification tasks presented in
Fig. 1. The hidden layer neurons are the RBF-neurons. As the RBF parameters used its scale (s) and shift

(t) interms of the time axis.

Output layer contains the usual linear or sigmoidal neurons and by adjustment of their weights (W')
determines the output network.

S1, T

Fig. 1. Generalized RBF-neural network
architecture for solving classification problems[ 19

1 Smy Tm
—

The input layer . Hidden layer

QOutput layer
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Based on the architecture, and at P =1 (for time series), the output of the neural network will be
determined as follows:
m
o]
Yi :avvlk@k(x13<1Tk)1 (6)
k=1

where X:(Xl, Xyy ey X ) XT Xi An- an arbitrary n-dimensional vector of input variables;

n

Wll( T W'arethe wei ghts of linear layer; S, - the scale parameters for the hidden layer neurons; T, isthe

displacement parameters for the hidden layer neurons.
Based on the architecture of neural network (Fig. 2), as parameters are customizable, one can
distinguish the following [19]:

I Sy | G W G, I c

ml Tt iR m m

Fig. 2. Encoding configurable parameters RBF neural network in the form of antibodies (chromosomes)
where: N —number of inputs; M— number of neurons; f - ON/ OFF neuron (0 or 1); C— RBF centers;

W — synaptic weights of output layer; S — RBF parameter; a— parameter of function activate the output neuron.

In general, the procedure of the synthesis of each neural network for each class, are performed in
accordance with the procedure presented in Fig. 3.

In this chapter the synthesis RBF-neural networks, that aimed at solving classification tasks. The
classifier, in general, is a function that on attributes vector base of the object makes a decision, which is a
class it belongs, respectively (1). In the binary classification the class identifiers can be interpreted as states
of the system (active or passive, normal or abnormal), which presented by the number of properties. Types
of basis functions, their number, type and parameters of activation function in the linear layer, are setting
up as the parameters of AlS.

Study and synthesis of neural networks groupsis carried out by the scheme shown in Fig. 3

As an abjective function and the function affinity selected the RMS error of network on the training
data. Thetraining procedure has the following characteristics [19, 20]:

— selection is implemented on the tournament selection, which allows to control convergence and to
maintain the diversity of population at the required level;

— because of the binary encoding specific, scheme of mutation has been proposed, whereby the
probability of single bit line changing depends not only on antibody affinity in general, but also on the
significance of this bit.

In the case of RBF-neural networks, the network behavior is largely dependent on the number and
position of radial basis function of hidden layer. Indeed, for any real n-dimensional input

Vector X = (%, Xy, ..., X, ), where X1 X 1 A, the network output will be determined as follows:

m .
Yi =ki°i_lV\)|kfk(d'5t(X1VVli)1Sk)1 (7
where wl, T W', i =1, p arethelinear layer weights; w1 W' arethe center of radial-basis functions.

If as basic function is used the Gauss function, then

. r\2 —_—

fk(x):-w,k:]ﬂm_ (8)
%k

In the context of the classification problem debugging the network is to find functions

y:A_ ® A that satisfy the equation (7.5) at P =1. Let we have the sample is composed of Straining
data points Xy, ..., Xg, X; T A . If you know the output value for each of these pointsd,,..,dg, d;T A,
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then each basis functions can be centered on one of the points X; . Thus, in the limiting case the number of

centers and, accordingly, the hidden layer neurons is equal to the number of data points in training
samplem=S.

Input
configuration settin

Identification of the class
For each class i on the decision rule
TN in relation to the results
; model testing

I Create a random population | v
.)I The inverse transform of each row |

of solutions (antibodies)
iOulpul of results ;
in the structure of RBF neural network v

Evaluation of neural networks End
for synthetic learning sample

Selecting n series of decisions
with better results
Cloning of selected rows
and creating a population of clones

Processing population of clones
hypermutation operator

The inverse transformation of each
number of population of the Clones
in the structure neural network

2

Evaluation of each of the synthesized neurall
network on the training set of data

Selection from a population of clones n
solution which corresponds to the best
structures of neural networks and
transferring them to the main population

Replacement in the general population ¢
worst solutions that fit neural networks,
new random solutions (antibodies)

Evaluation of each
a neural network
testing model
of a class i

Testing
a condition stop

Fig. 3. The procedure of the RBF-neural network
synthesis using the clonal selection

Synthesis of collective neural networks, where each neural network recognizes only a single class, is
similar to the procedure described for RBF-neural networks according to the adjustment parameters
presented in Fig. 4.

Many discriminative methods, including Support vector machine, neural network and classifiers
based on the artificial immune systems, are often most accurate and efficient when dealing with two
classes only (they can deal with more classes, but usually at reduced accuracy and efficiency) . For large
number of classes, higher-level multi-class methods are developed that utilize these two-class classification
methods as the basic building blocks.

To solve the problem we used the strategy of oneversus-all  based on  multiparameter optimization
function of the form (3) use the corresponding operators clona selection algorithm [21]. Types of basis functions
and the activation function of the linear layer are defined as parameters to clonal sdection algorithm. Learning and
synthesis collectives of neural networksiis performed according to the scheme shown in Fig. 4.
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Class a-helix

Training Dataset
(Protein chains)

Class B-strand

RBF-neural
network

Synthesis

Learning

Clonal
algorithm

The simplest approach is to reduce the problem of classifying among K classes into K binary
problems, where each problem discriminates a given class from the other K —1 classes [22]. For this
approach, we require N = K binary classifiers, where the k th classifier is trained with positive examples
belonging to class k and negative examples belonging to the other K — 1 classes. When testing an unknown
example, the classifier producing the maximum ouput is considered the winner, and this class labd is
assigned to that example. In work [22] state that this approach, although simple, provides performance that

Class coil

<] RBF-neural
network

Synthesis

Learning

Clonal
algorithm

RBF-neural
network

Synthesis

Learning

Clonal
algorithm

Detectors Set:
RBF-network o -helix

RBF-network B-strand
RBF-network coil

Detectors Set of
RBF-networks to
Phase Recognition

Fig. 4. Synthesis of binary classifiers collective RBF-neural networks

is comparable to other more complicated approaches when the binary classifier is tuned well [23].

Data Item
(Sequence of protein)
to be checked

o| Neural Net

Class

rd win

= max(Class

Class winner

o—helix >

g o -helix
\l' . Class “o -helix” I_
Recognize? —>
| « ‘o |
| Non Class “a -helix
Neural Net
> - strand
y S
- \I Class “pB—strand”, |_
Recognize? >
HI Non Class«B—strand” |
Neural Net
—> coil
I S
Recognize? S ass col
Ll
N i1 |
| Non Class “coil

Fig. 5. Testing of synthesized neural networks
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The identification of the system state performed by the expression (9):
Class,, = max(CIasgzhe,iX,Cla&sn_stand ,Cla$coi,) 9)

2.5. M easur ements of accuracy
The most commonly reported measure of secondary structure prediction accuracy is the success rate,

or Q,. Thisisthe overall percentage of correctly predicted residues of all 3 types[24] , i.e,
(10)

Qs(%) — Rnelix + Fhea + Rcoil 100

Here, R, is the number of correctly predicted residues of type i, and N is the total number of
residues.

Although theQ, score provides a quick measure of the accuracy of the algorithm, it does not
account for differing success rates on different types of secondary structure. We therefore also calculated
the correlation coefficients [25] for prediction of helix C,, , sheet C, and coil C..

C = (p.on,)- (u,>0,) (11)
Jin +u)(n, +0,)(p, +u)(p, +0,)

where p, isthe number of positive cases that were correctly predicted, n, isthe number of negative cases

that were correctly rejected, 0, is the number of overpredicted cases (false positives), and u, is the
number of underpredicted cases (misses). Similar expressions hold for C, , and C_;, . The Q, measure

will be used to assay the overall success rate of network models during learning, although it is not as good
an indicator astheindividual correation coefficients.

3. Results and discussion

We studied the dependence of testing success rate on the size of the input window using a standard
network with 15 hidden units (RBF-functions). The results shown in Table 1 indicate that when the size of
the window was small the performance on the testing set was reduced, probably because information
outside the window is not available for the prediction of the secondary structure. When the size of the
window was increased, the performance reached a maximum at around 20 groups (6 on either size of the
center residue).

Table 1
Dependence of testing success r ate on window size
Window size Q, (%) C, C. C.
2 51 0.49 0.50 0.48
4 55 0.50 0.52 0.54
6 54 051 0.53 0.52
8 56 0.52 0.52 0.54
10 56 0.54 0.53 0.53
12 58 0.54 0.55 0.57
14 60 0.57 0.58 0.57
16 64 0.61 0.66 0.59
18 65 0.61 0.65 0.65
20 73 0.69 0.68 0.68
22 69 0.67 0.65 0.68
44 50 051 0.46 0.49
54 48 0.41 0.55 0.45
64 45 0.49 0.38 0.48
74 39 0.44 0.35 0.40
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We used 12 RBF-neurons in hidden layer, window size 20, and different number of epochs. Results
arein Table2

Table 2.
Design of neural networks for different number of epoch
Number of Tt
umber o
training epochs Q% Q%
(training set) (testing set)

1 100 455 434
2 200 50.1 48.2
3 300 53.2 499
4 400 59.6 55.8
5 500 60.1 57.2
6 600 63.0 60.8
7 700 64.9 61.6
8 800 65.6 61.2
9 900 67.1 63.1
10 1000 68.2 64.1
11 1100 68.4 64.6
12 1200 72.1 70.0
13 1300 74.5 72.2
14 1400 75.8 73.2
15 1500 75.7 72.1

4. Conclusion
The paper shows the results of research carried out by the authors of the combined classification
algorithm based on group RBF-networks for solving the problem of classification of mass spectra.
Analysis of the problem solutions demonstrates the effectiveness of this algorithm that uses parallel-
distributed organization of calculations. Feasibility of using it explains their high flexibility, the ability to
search for paralld, resistant to noise, associative memory, self-organizing, structural flexibility and high
adaptive capacity.

1. Nguyen M.N., Rajapakse J.C. Multi-Class Support Vector Machines for Protein Secondary
Sructure Prediction, Genome Informatics 14, 218-227, 2003. 2. Clote, P. and Backofen, R,
Computational Molecular Biology, Wiley and Sons, Ltd.,, Chichester, 2000. 3. Mount, D.W.,
Bioinformatics. Sequence and Genome Analysis, Cold Soring Harbor Laboratory Press, 2001. 4. Garnier,
J., Osguthorpe, D.J., and Robson, B., Analysis of the accuracy and implications of simple methods for
predicting the secondary structure of globular proteins, Journal of Molecular Biology, 120:97-120, 1978.
5. Garnier, J., Gibrat, J.F., and Robson, B., GOR method for predicting protein secondary structure from
amino acid sequence, Methods Enzymol, 266:541-553, 1996. 6. Gibrat, J.F., Garnier, J., and Robson, B.,
Further developments of protein secondary structureprediction using information theory, Journal of
Molecular Biology, 198:425-443, 1987. 7. Jones, D.T., Protein secondary structure prediction based on
position-specific scoring matrices, Journal of Molecular Biology, 292:195 202, 1999. 8. Rost, B. and
Sander, C., Prediction of protein secondary structure at better than 70% accuracy, Journal of Molecular
Biology, 232:584-599, 1993. 9. Salamov, A.A. and Solowyev, V.V., Prediction of protein secondary
structure by combining nearest-neighbor algorithms and multiple sequence alignments, Journal of
Molecular Biology, 247:11-15, 1995. 10. Salamov, AA. and Solovyev, V.V., Protein secondary structure
prediction using local alignments, Journal of Molecular Biology, 268:31-36, 1997. 11. Hua, S and Sun, Z.,
A novel method of protein secondary structure prediction with high segment overlap measure: support
vector machine approach, Journal of Molecular Biology, 308:397-407, 2001. 12. Lipo Wang and Xiuju Fu
Data Mining With Computational Intelligence Berlin: Springer-Verlag, 2005, pp. 276, (ISBN 3-540-24
522-7). 13. Sudipta Saha Protein Secondary Structure Prediction by Fuzzy Min-Max Neural Network with

259



Compensatory Neuron / Thesis submitted in partial fulfillment of the requirements for the degree of Master
of Technology In Computer Science & Engineering/ Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur-721302, West Bengal, India May, 2008, 126 p. 14. Skolnick, J.,
A. Kolinski, and A. R. Ortiz 1997. MONSSTER: a method for folding globular proteins with a small
number of distance restraints. J. Mol. Biol. 265:217-241. 15. Taylor, W. R & Thornton. J. M. (1984).
Recognition of super-secondary structure in proteins. J . ..Yol. Bioi. 173. 487-514. 16. O. Weiss and H.
Herzel. Measuring Correations in Protein Sequences. Z. Phys. Chem., 204, 183-197 (1998). 17. Jagla, B.
and Schuchhardt, J. 2000. Adaptive encoding neural networks for the recognition of human signal peptide
cleavage sites. Bioinformatics 16: 245-250. 18. Rost, B. and Sander, C., Prediction of protein secondary
structure at better than 70% accuracy, Journal of Molecular Biology, 232:584-599, 1993. 9. Jlumesunenxo B.1.,
Degpenose A.O., [ioux O.0. Memooonozcis cunmesy KOAeKMUGY pAIANbHO—OAZUCHUX Mepexc Os
P036’ A3y8anns 3a0au Kiacupixayii 3a 00NOMO02010 an20pummy KIOHAILHO20 8iobopy Il Haykoei npayi
YAV im. llempa Moeunu. Haykoso—memoouunuii scypuan. Cepia “ Komn’romepui nayxu” , — 9V im.
Ilempa Mozcunu. — 2009. — Bun. 93. — Tom.106. — C.111-123. 20. Jlumsunenxo B.U. Hcxyccmeennvle
UMMYHHbLE CUCNIEMbl KAK Cp@@CI’I’l@O MH@meu@HOZO nocmpoeHust onmumMdailbHblX Mooenel ClONCHbIX
o6vexmosl| Ipobnemvr ynpasnenus u ingpopmamuru. — 2008, — Me3. — C. 30-42. 21. Chris H.Q.Ding and
Inna Dubchak Multi-class protein fold recognition using support vector machines and neural networks /
Bioinformatics, Vol.17 no. 4, 2004 p. 349-358. 22. Ryan Rifkin and Aldebaro Klautau. Parallel networks
that learn to pronounce english text. Journal of Machine Learning Research, pages 101-141, 2004.
23. Mohamed Aly. Survey on Multi-Class Classification Methods. Technical Report, Caltech, USA, 2005.
24.N. Qian T. J. Sginowski Predicting the Secondary Structure of Globular Proteins Using Neural Network
Models/ J. Mol. Biol. (1988) 202, p. 865-884. 25.Matthews, B.W., Comparison of the predicted and
observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta 1975, 405, 442-451.
26. Fabio Gonzalez. A Study of Artificial Immune Systems Applied to Anomaly Detection [Ph.D. thesig].
USA The University of Memphis; 2003. -184 p. 27. Tiomepes B.B. Memoo 3601104UOHHO20 HAKONACHUSL
npu3HaKkoes Ol ABMOMAMUYECKO20 nocmpoOeHus HelZPOHHblx cemeil // Buruuciumenvnvie memoowr u
npoepammuposarue.- 2001.- T.2.- C.88-108.

260



