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Po3rnsiHyTO aaroputM HewiTkoi KJjacTepu3amii JaHMX 32 HAsABHOCTI aHOMAJIBHUX
crocTepe:keHb. 3aNpONOHOBAHMII PEKYPCUBHMII aJropuMTM HeYiTKOI KJjacTtepu3amii JaHMX
IPYHTY€THCA HA BUKOPUCTAHHI MAaHXeTTeHCHhKOI METPHKH, 110 3a0e3Meyye BUCOKY HIBUAKICTH
00poOku iHdopMauii Ta NpocTy 00YMCIIOBAILHY peandizanilo. PesyabTar anpodauii Ha 1aHuX
MeANKO-01010TYHUX JOCTIIZKeHb MiATBePAKY€E e(peKTUBHICTb 3alIPONOHOBAHOI0 MIAXO01Y.

Kuro4oBi ciioBa: aaroputm HeyiTkol KJacTepusanii, MAaHXeTTEHChKa MeTPUKA, pyHKuUis
JlarpaHn:ka.

The problem of fuzzy clustering on the basis of the probabilistic fuzzy approach under
the presence of outliersin data is consider ed. Recur sive fuzzy clustering algorithm is proposed,
which optimizes the objective function based on Manhattan metrics provides high speed of
information processing and simple computational realization. The results of real data
clustering confirm the effectiveness of proposed approach in medical data mining tasks.

Key words: fuzzy clustering algorithm, Manhattan metrics, L agrange function

Introduction

Clustering and classification of datasets of different nature are now key problems of data mining,
and effective solving of this tasks is important for knowledge acquisition by analysis of observations.

Generally, cluster analysis is algorithmic basis of data classification by means of separation of the
available data into a number of classes (clusters) without a priori defined membership of any observation
sample to one of the class (unsupervised learning). In the traditional (crisp) approach it is assumed that
every observation belongs to only one class. The k-means algorithm [1] and the nearest-neighbor rule [2]
are most popular examples of this approach. It is much more natural to assume that every observation may



belong to several clusters at same time with certain degrees of membership. This assumption is the basis of
fuzzy cluster analysis [3, 4]. At present time many fuzzy clustering approaches are widely used, such as
Bezdek’s fuzzy c-means [3], the Gustafson-Kessel algorithm [5], fuzzy k-nearest neighbors [6], fuzzy shell
cluster analysis by Klawonn-Kruse-Timm [7], mountain clustering by Yager and Filev [8] e.a. The
approaches mentioned above are capable of efficient data clustering when the clusters are overlapping, but
only with the assumption that the clusters are compact, i.e. they do not have abrupt (anomalous) outliers.
Whereas real datasets usually contain up to 20% of outliers [9-11], the assumption of clusters compactness
may sometimes become inadequate.

This situation often happens when processing medical and biological data sets because human
subjective factor plays important role in these tasks.

The source information for all the mentioned algorithms is the data set of N n-dimentional feature

vectors X={x(1),x(2),...,x(N)} , x(k)T R", k=1,2,...,N . The output of the algorithm is the separation of

the original data into m clusters with some degree of membership m), (x(k)) of the k-th vector to the g-th

cluster.

In this paper, we make an attempt to derive an adaptive computationally simple stable fuzzy
clustering algorithm for recursive data processing in online mode as more and more data become available,
using Manhattan metrics.

Stable probabilistic fuzzy clustering algorithm
Probabilistic fuzzy-clustering approach belong to a class of objective function based algorithm [3]
that are designed to solve fuzzy clustering problem via the optimization of a certain predetermined
clustering criterion, and are the best-grounded from the mathematical point of view.
For pre-standardized feature vector (the standartization is performed component-wise so that all the

feature vectors belong to the hypercube [- 1, 1]"), the objective function is

E =8 & nf (x(k))d(x(k).c,) (1)
k=1 g=1
subject to constraints
éri m (x(k))=1, k=1..,N, )
o<éN m (x(k)) <N, g=1,...m (3)

Here m) (x(k))T [0,1] is the degree of membership of the vector x(k) to the g-th cluster, ¢, is the
prototype (center) of the g-th cluster, § is a non-negative parameter, referred to “fuzzifier” (usually f=2),

d (x(k),cq) is the distance between x(k) and ¢, in the adopted metrics. The result of clustering is assumed

to be Nxm matrix W ={ m, (x(k))} , referred to as “fuzzy partition matrix”.

Note that since the elements of the matrix W can be regarded as the probabilities of the hypotheses
of data vector membership to certain clusters, the procedures generated from (1) subject to constraints (2),
(3) are referred to as the ”’probabilistic clustering algorithms”.

The distance function d (x(k) 1 ) is usually assumed to be Minkowski I metrics [17]

>7q

1

o ez
d(x(k).c,) =g |x (k)- c,| £, p°1 (4)
i=1 7]
where x, (k) , ¢, are i-th components of (nx1)-vectors x(k), c, respectively. Assuming f=p=2 leads to the

most popular, simple and quite effective Bezdek’s fuzzy c-means algorithm [3]



)

¢, =4 . (6)

Simplicity of (5) and (6) is determined by using of Euclidean (quadratic) metrics, those derivates on
the estimated parameters are linear forms. It allows to obtain a solution in simple analytic form.
At the same time in medical tasks it is more naturally to use Manhattan metrics (p=1 in (4)), i.e.

d(x(k),cq)=§|xi(k)— cq,.|=|x(k)— cq| 7
i=1
whose gradient respectively ¢, has the form
Nch(x(k),cq):—sign(x(k)— cq) (8)

where

By introducing the goal function of probabilistic fuzzy clustering

E(m(0).) =8 & f ()]s () c,|=A & nf (+()}x(0)- <=

=éé@@®meﬂ) ©9)

k=1 ¢g=1

and taking into consideration the constraints (2) we can write the Lagrange function

L(m (k).c,.! (k)= aant’ alx l+al 98. m,(k)- 1 (10)

=1 g=1
where A(k) is an undetermined Lagrange multiplier that guarantees the fulﬁllment of the constraints (2),
(3). The saddle point of the Lagrange function (10) could be found solving the following system of
Karush-Kuhn-Tucker equations

., o,
m, (k)

1L (m, (k).c,.! (k) _
M (k) =0, (10

ém_ (a’(x(k),c,))E (12)
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but the third one

N

N, L(m(x(k)).c,. (k)= é} nf (x (k)N d(x(k).c,) =0 (13)

obviously has no analytical solution. The solution of (13) could be computed with use of a local
modification of Lagrange function [12] and the recursive fuzzy clustering algorithms [22]. Furthermore,
searching the saddle point of the local Lagrange function

L{m,(x(K)).c, ! (k))=qéi_lr’rf(x(k))d(x(k),cq)ﬂ (k)gé_lml(x(k))- 12 (14)

using the Arrow-Hurwitz-Uzawa procedure gives the following algorithm:

T af(x(k),c(k))“]b

im (x(K)- —
1| & [d(x(e)-)) (15)
icqi(kﬂ):cq,.(k)—h(k)ﬂLk(rQ(nglzzl)’cq’l () _

=c, (k) +h (k)P (x()) sign(x (k) - <, (K))
where h (k) is the learning rate parameter, c, (k) is the i-th component of the g-th prototype vector

calculated at the k-th step, or the same in vector form
1
d (X (k)’cq (k))W
m 1
a (a(x(k).c, (K)))* (16)

=1

i

{: m (x k
1
i

re, (k+1)=c, (k) +h ()} (x(k))sign(x(k)- <, (k).
that from computational point of view is essentially simpler that the robust fuzzy clustering algorithm,
proposed in [23].
Especially simple form this algorithm obtains when =2

' ) x(k)- ¢, (k) ’
8 [x(k)- ¢ (k) (17)
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Experiments
We have used the proposed algorithm in the problem of data clustering of data set from the UCI
machine learning database: "heart-disease" [24]. This data set contains 2 clusters. On fig.1 the results of
clustering labeled as ‘0’ and ’x’ are shown using two-dimensional projection from nine-dimensional of 1
and 3 properties. Centers of clusters was labeled as -’°. Using adaptive fuzzy clustering based on
Manhattan metrics provides satisfactory quality of clustering that is better than quality of clustering based
on standard fuzzy-c-means algorithm.

[

Conclusion
In the paper stable adaptive probabilistic fuzzy clustering algorithm based on the objective function
of a special form (Manhattan metrics), suitable for heavy-tailed data distribution with outliers, is proposed.
The algorithm could be used in a wide range of applications, such as medical data mining, fault detection,
pattern recognition in self-organizing mode when the size of the data set is not known a priori, and the data
must be processed in sequential mode, those is typical for medical and biological research.
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