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Розглянуто проблему прогнозування фінансового ринку, якому властива 
довгострокова пам'ять. Використовується метод фрактального аналізу для виявлення 
фундаментальних характеристик за допомогою алгоритму R / S-аналізу. Відповідно до 
алгоритму розроблено програмний продукт, що дає змогу виявити і числово оцінити 
фундаментальні характеристики часових рядів, такі як наявність та глибина 
довготривалої пам'яті, трендостійкість (персистентність) тощо. 
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In this paper, we examine the problem of forecasting of the financial market where long-
term memory occurs. We apply the fractal analysis method to identify some fundamental 
characteristics. The basic element here is the R/S-analysis algorithm. Based on this algorithm, 
a software product was designed that allows identifying and computing numerically the 
fundamental characteristics of time series such as long-term memory availability and depth, 
stability of the trend (persistency) etc. 
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Introduction 
Today financial markets arouse a great deal of public interest. Regular traders, analysts who work 

for global corporations and state agencies all deal with financial analytics.    
There are many ways to analyze the events taking place in the markets. They include technical analysis, 

fundamental analysis, the Elliott Wave Principle and many other less known methods. However, one method is 
uniquely placed among all others due to its simplicity and originality. It is called fractal analysis.     

1. The analysis of recent research and purpose of papers 
The term fractal was coined by Benot Mandelbrot in 1975. The concept of fractals is that they have a 

large degree of self similarity within themselves. The fractal dimension  D of a profile or surface is a 
measure of roughness, with D  [n,n+1) for a surface in n-dimensional space and higher values indicating 
rougher surfaces. Long-memory dependence or persistence in time series or spatial data is associated with 
power-law correlations and often referred to as Hurst effect. Scientists in diverse fields observed 
empirically that correlations between observations that are far apart in time or space decay much slower 
than would be expected from classical stochastic models. Long-memory dependence is characterized by 
the Herst coefficient,  H. In principle, fractal dimension and Hurst coefficient are independent of each 
other: fractal dimension is a local property, and long-memory dependence is a global characteristic.  The 
basic tool for fractal analysis of time series is the algorithm of R/S analysis. The methodology of the R/S 
analysis was developed in the middle of the XX century by the British hydrologist Hurst, who was 
studying the time series of river flow volumes. While testing the hypothesis that these series were governed 
by the normal law, Hurst defined a new statistic - the Hurst exponent (H). In the course of his research, 
Hurst measured fluctuations of water in the reservoir relative to the average over time and introduced the 
dimensionless ratio by dividing the amplitude of R by the standard deviation S. This method of analysis 
was called the rescaled range method (R/S-analysis). Hurst found that most natural phenomena, including 
river flows, temperatures, precipitation, sun spots follow a “biased random walk” - a trend with noise. The 
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strength of the trend and the noise level can be measured by how the rescaled range changes over time, or 
in other words, by how the H exponent exceeds the value of 0,5.  

We describe the algorithm of the R/S-analysis as it is implemented in the modern methods of fractal 
analysis [1,2]. Given a time series: Z = {z } i = 1,2, … n ,                                                            (1)  
where we consistently highlight its initial segments:  Z = z , z , … , z , where τ = 3,4, … , n  
for each we calculate the current average: z  = 1τ z  

    

Then for each fixed Z , τ = 3,4, … , n , we calculate the accumulated deviation for its segments of 
length t: X , = ∑ (z − z  )    , where t = 1, τ    . 

After that, we calculate the difference between the maximum and minimum accumulated deviations:  R = R(τ) = max     (X , ) − min     X , , 
which is usually defined by the term «range of R». This range is rescaled, i.e. represented as a fraction   , 

where S = S(τ) =    ∑ (z − z  )      - is a standard deviation for the time series segment Z , 3 ≤ τ ≤ n , . 

The Hurst exponent H = H(τ) that characterizes the fractal dimension of the time series in question and the 
corresponding noise color is derived from the following equation   = (ατ) [1]. By taking the logarithm of 

both sides of this equation and assuming that =    , we get the Cartesian coordinates(x , y ), the H–
trajectory points, whose ordinates and abscissas are respectively:  y = H(τ) = 

    ( ( )/ ( ))    ( / )  ,   x = τ.                                                   (2) 

The R/S-trajectory required for the fractal analysis (1) is presented in logarithmic Cartesian 
coordinates as a sequence of points, whose abscissas are x = log (τ/2), and the ordinates are  y = log (R(τ)/S(τ)). By connecting the neighboring points (x , y ) and (x   , y   ),   where τ = 3,4, … , n − 1  with a line segment, we get a graphical description of the R/S-trajectory / 
(H-trajectory) in logarithmic coordinates (in Cartesian coordinates). One of the main fractal characteristics 
of a time series is noise color, which corresponds to this series at one or another point in time. The values 
of H ≥ 0,6  define a black noise. The higher the H value is, the greater stability of the trend this particular 
segment of the time series has.  

The H values within the range of ~0,5 ± 0,1 define a white noise, which is characterized by the 
“chaotic behavior of a time series,” and therefore, implies the lowest accuracy and reliability of the 
forecast.  

The H values within the range of ~0,3 ± 0,1  define a pink noise. The pink noise tells us that the 
segment of the time series in question is characterized by anti-persistency, meaning the time series reverses 
more often than a random series. 

As for the occurrence of long-term memory of the time series in question (1), it is impossible to 
make a definite conclusion, unless its H-trajectory stays in the black noise area for a long time and if the 
behavior of the R/S-trajectory is chaotic, starting from its initial points.  

The basis for claiming that the time series (1) has long-term memory is the fulfillment of the 
following conditions:  

1. The H-trajectory through some of its initial points goes to the black noise area, and for the  
R/S-trajectory, the above-mentioned “black noise” entry points demonstrate that there is a trend showing. 
The number, for which the following condition is met, determines the depth of this memory: at the point 
the trajectory gets decremented, the R/S-trajectory at this point demonstrates a sudden (dramatic) change in 
the trend.    
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2. If we randomly shuffle the elements of this time series and then present the resulting series to the 
input of the R/S-analysis algorithm, the output maximum value of the Hurst exponent and R/S-trajectory 
will be much lower when compared to the values for the initial time series, should this time series have 
long-term memory.   

2. The main material of research 
A software product was prepared for carrying out the R/S analysis. The system allows conducting a 

fractal analysis of the dynamic data and creating a forecast of the ARFIMA-class model, based on the 
previously obtained results. As an example of a time series, we will examine the dynamics of the Microsoft 
(MSFT) stock. The time series being used in this work is a sequential daily sample (of the n volume) for 
the period from January 3, 2005 to November 20, 2015 of the market statistics. Each element of the time 
series corresponds to the trading result for this specific financial instrument over one trading day. For each 
time series 1 2{ , ,..., }Z Z Z Zτ∈  a sequential R/S-analysis was conducted. As a result, the Hurst exponent  
( ( )H τ ) was calculated for each sequential segment of the time series Z of the length τ , and the H – and 
R/S-trajectories of the corresponding time series were built.  

The figures below show the H and R/S – trajectories at the output of the R/S-analysis. For the  
H – trajectory diagrams, there are segments of length of the τ  series along the abscissa axis. For the  

R/S – trajectory diagrams, there are values ln
2
τ  along the abscissa axis. 

 
Fig. 1. MSFT behavior of the prices from 03.01.2005 to 20.11.2015 

 

 
Fig. 2. R/S-trajectory 
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The Hurst exponent equals to 0.938537, this result shows that the stock is in the persistent interval. 
Let us change the interval length of the segments and calculate the Hurst exponent for each of them. 

 
Table 1 

The Hurst exponent on each interval segment 
Interval Hurst exponent 
3–103 0.982368626898 

103–203 0.990205696499 
203–303 1.02330704858 
303–403 0.966817092986 
403–503 1.05207625507 
503–603 0.90270971573 
603–703 0.0617441128309 
703–803 1.61274469297 
803–903 1.40252095788 

 
To solve the problem of time series forecasting, applying the Box-Jenkins methodology is essential. 

This methodology was first introduced back in the 1970s of the past century [2]. Is was based on the 
ARIMA(p,d,q)-class parametric model and focused on identifying the model and evaluating its parameters. 
When working on the time series analysis, the first step is to determine the order of integration of the 
series, i.e. to choose the parameter value d of the ARIMA(p,d,q) process. 

Long-memory processes are stationary processes whose autocorrelation functions decay more 
slowly than short-memory processes. Because the autocorrelations die out so slowly, long-memory 
processes display a type of long-run dependence. The autoregressive fractionally integrated moving-
average (ARFIMA) model provides a parsimonious parameterization of long-memory processes. This 
parameterization nests the autoregressive moving-average (ARMA) model, which is widely used for short-
memory processes. The ARFIMA model also generalizes the autoregressive integrated moving-average 
(ARIMA) model with integer degrees of integration. ARFIMA models provide a solution for the tendency 
to overdifference stationary series that exhibit long-run dependence. In the ARIMA approach, a 
nonstationary time series is differenced d times until the differenced series is stationary, where d is an 
integer. Such series are said to be integrated of order d, denoted I (d), with not differencing, I(0), being the 
option for stationary series. Many series exhibit too much dependence to be I(0) but are not I(1), and 
ARFIMA models are designed to represent these series. The ARFIMA model allows for a continuum of 
fractional differences, −0,5 <  < 0,5. The generalization to fractional differences allows the ARFIMA 
model to handle processes that are neither I(0) nor I(1), to test for overdifferencing, and to model long-run 
effects that only die out at long horizons. An ARIMA model for  the series y  is given  by  ( )(1 −  )   =  ( )  . 
where p(L) = (1 − p L − p L −⋯− p L ) is the autoregressive (AR) polynomial in the lag operator L; 
Ly = y   ; θ(L) = (1 + θ L + θ L + ⋯ + θ L ) is the moving-average (MA) lag polynomial; ε  is the 
independent and identically distributed innovation term; and d is the integer number of differences required 
to make the y  stationary. An ARFIMA model is also specified by (3) with the generalization that  0,5 <  < 0,5. Series with d ≥ 0,5 are handled by differencing and subsequent ARFIMA modeling. An 
ARFIMA model specifies a fractionally integrated ARMA process. Formally, the ARFIMA model 
specifies that    = (1 −  )  { ( }   ( )  . 

The short-run ARMA process p(L)  θ(L)ε  captures the short-run effects, and the long-run effects 
are captured by fractionally integrating the short-run ARMA process. Essentially, the fractional-integration 
parameter d captures the long-run effects, and the ARMA parameters capture the short-run effects. Having 
separate parameters for short-run and long-run effects makes the ARFIMA model more flexible and easier 
to interpret than the ARMA model. After estimating the ARFIMA parameters, the short-run effects are 
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obtained by setting d = 0, whereas the long-run effects use the estimated value for d. The short-run effects 
describe the behavior of the fractionally differenced process d

t(1 L) y−  whereas the long-run effects 
describe the behavior of the fractionally integrated ty  [4]. 

The model allows simultaneous occurrence of long-term memory in the price/earnings ratio series 
and in the volatility series, using various error distribution types and including some additional explanatory 
variables. The d value for our model equals H-0,5 = 0,439, that is why we needed to calculate the Hurst 
exponent. To build such a model, we first need to fractionally differentiate the initial series of the stock 
with respect to the d power. For a start, we need to expand the 1-0,439L difference operator in the Taylor 
series. This difference will account for the values for some previous periods. Before using the Taylor 
series, we need to prove that at the d power, the numerical series of coefficients at lag operators coincides. 
For this purpose, we shall use the Leibniz criterion:   

1) let us prove that ;...21 naaa >>>    

2) let us prove that na   tends to 0.  
Despite the fact that stocks have infinite long-term memory, in my opinion, the most logical and 

optimal solution would be to limit the number of the Taylor series terms for differencing. Therefore, we 
will show 36 previous days to calculate each of the differences.  

Table 2 
Shows computational results of coefficient values for each lag 

 

Lag d value Lag d value Lag d value 
1 0,43900 13 0.00757 25 0.00299 
2 0,12313 14 0.00681 26 0.00284 
3 0,06407 15 0.00618 27 0.00269 
4 0,04102 16 0.00563 28 0.00256 
5 0,02922 17 0.00517 29 0.00243 
6 0,02221 18 0.00477 30 0.00232 
7 0,01764 19 0.00442 31 0.00224 
8 0,01447 20 0.00410 32 0.00212 
9 0,01216 21 0.00384 33 0.00202 

10 0,01216 22 0.00356 34 0.00194 
11 0,01041 23 0.00337 35 0.00187 
12 0,00905 24 0.00317 36 0.00179 

 
After that, we obtained the resulting series on all the d values and weights that allowed us to see 

the memory length. The result can be seen in the diagram, which shows the number of successful forecasts 
along the Y axis and the number of days along the X axis. In the process, the system calculated  
200 passings with different series length.  

 

 
Fig. 3. Successful forecasting results are shown 
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As appears from the above diagram, in our case, the memory is 49 days. And it will allow us to 
create a model capable of making short-term stock forecasts. In the end, the cumulative error for the 
ARFIMA-model was 6 %.  

Conclusions 
In this work, we examined building a prognostic model of a fractal process. We described the 

general concept of building an ARFIMA-model and analyzed the interaction of the properties of a fractal 
process. Moreover, when making a forecast using the ARFІMA-model, we firstly conducted a full-fledged 
R/S-analysis of the initial time series and then used it to calculate the Hurst exponent. Based on these 
intermediate results, we can make some conclusions regarding the nature of the input data. Thus, it can be 
argued that with the help of this program system, we can obtain a reliable and effective forecast for any 
initial time series. So, as a result of this work, we were able to identify the main weaknesses and challenges 
of linear models of stationary time series with short-term memory. Using the R/S-analysis, we proved that 
time series with long-term correlation structures existed, which allowed us to rationalize the use of 
synergic methods for forecasting time series of such kind.  
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