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Ha ocHOBi BUKOPHCTAHHS TEXHOJIOTiii TPUBUMIPHOr0 TEKCTYPYBaHHSI 3alPONOHOBAHO
MeTOo BidyaJizauii eleMeHTapHUX 00 €MiB KOMipKOBHX Mojesiell KOMIO3UIiliHNX MaTepiaJiB,
0 HAa BigMiHy Bix BizoMux miaxodiB BimoOpaxkae KOMMO3MIII B3a€EMHO OPTOrOHAJIbLHHX
IUIOLIMH TEeKCTYPHHUX MepepisiB, 3 MOXKJINBICTIO 00epTaHHA He TEKCTYPHM, a caMOro o0 €KTa.
e nae MokIUBicTH Kpale JeTali3yBaTH KiHleBe 300paskeHHd il yac 30epekeHHs] BITHOCHOI
NMPOCTOTH 00YHUCIIEHb.

KirouoBi ciioBa: 00’€MHHIl peHIepHHI, KOMNO3MUiHMII MaTepiaj, ejleMeHTapHUM
00’ €M, KOMipKOBa MOJIeJIb.

Basing on three dimensional texturing technologies was proposed a visualization method
of representative volume elements of composite materials cellular models. In contrast to the
known approaches, the method renders a composition of mutually orthogonal texture cut
planes with the ability to rotate no texture, but the object itself. This enables better detailed
final image with maintaining of therelative calculations simplicity.
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Introduction

The development of composite materials design methods requires every time greater detalization of
corresponding physical and mathematical models. Active usage of composite structures microlevel detailed
models causes the development of visualization tools with the purpose for analysis or verification at the
design process. Since the work with a composite material microlevel model provides processing of enough
large amounts of data, the actual task of engineering design systems implementation, which can be used on
ordinary persona computers, is appearing.

One of the common ways to research complex composite structures is to do their description by
microlevel cellular models, which represent a three-dimensional matrix of some scalars. Such volumetric
data arrangement gives the ability to use volume rendering techniques for visualization, including three-
dimensional texturing, which are hardware supported by common personal computer graphic devices.

This paper proposes a visualization method of representative volume elements of composite
materials cellular models, which in contrast to known approaches is using mutually orthogonal texture cut
planes rendering with the ability to rotate no texture, but the object itself. This enables better detailed final
image with maintaining of the relative calculations simplicity.

Composite Materials Cellular M odels Representative Volume Elements
Microlevel models involve the construction so-called representative volume element (RVE) —
usually a volume Q c R® of heterogeneous material, sufficiently large to describe it statitically, i.e. the
smallest composite material volume, for which macroscopic representation of spatial characteristics is
sufficiently accurate model of effective response on corresponding outer influence [1]. In construction of
the RVESs is convenient enough to use the cellular structure models, in the form of a large number of
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regular voxel-cells that simultaneously represent a regular finite-element discretization [2], [3]. Advantages
of approach include: simplicity and relatively small number of computations in discretization; the
possibility of direct usage of domain decomposition methods for calculations and corresponding effective
implementation on devices with big number of computing nodes [4]; universality, which allows one to
construct in one way such composite material complex structure models, as a model of random scalar
fields, random cellular models, models with deterministic inclusions, and the combination of these models
with the ability to build functional transition layers.

Construction of the RVE is the task of composite materials structure modeling that prior to physical
processes analysis in these materials [5]. Classically, the heterogeneous systems microlevel model differential
balance equations that describe physical processes, consider the structure of the CM as a combination of
component material characteristics that are represented by equations coefficients and topology of the material,
which is described by the integration borders where these equations are defined. The pair:

@.D)={J(2,.D,) @)

where D, — the set of characteristics of p -th component, and Q, — corresponding geometric area, i.e. its

topology; completely describes the composite material microlevel structure model. By using this
formalization, the RVE can be conveniently presented as a cubic matrix of scalar intensities, i.e. cells that
accept scalar values in a certain range, for example from 0 to 1. With a large number of cells, by defining
the intensities intervals as a separate composite phases €2, and giving them an appropriate characteristics

set D, itis possible to construct the model of complex structure (Fig. 1).

Fig. 1. Example of representative volume elements in the form of a 256x256x256
elements matrix that represents composite materials microlevel structure models:
a — scalar random fields; b — random ellipsoid particles; ¢ — fibers; d — cellular structures

Volume Rendering

Volume rendering — the technique which is used to obtain a flat two-dimensional image from
discrete volumetric data set [6], which is commonly represented as a three-dimensional scalar fields.
Volumetric models can be obtained either by constructing a polygonal mesh based on input data, e.g. by
using marching cubes algorithm [7], or by so-called direct volume rendering. There are several approaches
for the implementation of last:

e the direct approach — the direct mapping of each volumetric data element by converting them
into the appropriate pixel projection into graphics device frame buffer;

¢ volume ray casting, which like a two-dimensional ray tracing technique provides: "ray casting"
phase that defines three-dimensional elements on which the ray that released from the image projected
plane falls; sampling phase in which the position of found elements will be simplified and aligned along
the ray; shading phase in which the color of each element will be found depending on its orientation
relative to the camera; compositing phase in which all found colors will be arranged in some way into the
resulting image pixel;
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e splatting (throwing snowballs), in which the volumetric data elements are drawn in the order of
distance from the projection plane in the form of some primitives, such as disks, color and transparency of
which vary depend on diameters;

e texture-based volume rendering, which uses the hardware texturing tools for direct volumetric
data rendering.

Thanks to domain decomposition and significant development of hardware graphics devices, volume
rendering tasks can be relatively easily implemented in acceptable time on ordinary personal computers.
Particular attention is, given to the three-dimensional texturing tools [8], [9], which are included in the
standard libraries such as OpenGL starting from version 1.2 or DirectX from version 10.

Composite M aterials Representative Volume Elements Rendering | mplementation
Unlike to known [8], [9] volume rendering approaches that are based on three-dimensional
texturing, which implements volume ray casting and displays a certain number of texture cut planes with
the ability of that texture rotation, taking into account the power of modern ordinary personal computers
graphics cards, here is proposed a method that renders a composition of mutually orthogonal texture cut
planes with the ability to rotate no texture, but the object itself. This enables better detailed final image
with maintaining of the relative calculations simplicity.

The general composite materials cellular models
repr esentative volume elements visualization algorithm

Input:  An array of real numbers within 0 to 1 diapason with size N°, where N — the number
of cells along RVE side.
1:  Create a memory buffer with size N°x4 bytes (byte per each RGBA channel).

2:  Fill the buffer according to input data by using grayscale palette or rainbow palette
depending on what RVE is describing — composite structure or some simulated
potential field. If some cell hasn't be rendered, assign zero value to corresponding
alpha-channel.

3: By using corresponding API, create a three-dimensional texture from filled memory
buffer.

4:  Configure texture rendering parameters.

5. For each RVE cut plane, by corresponding API tools, draw textured quad — 3N quads
in total.
Output:  RVE image.

Before drawing process begin, it is necessary to enable by corresponding API tools the alpha test
with parameter to draw elements, alpha channel of which is greater than zero. If there are not used
transparency effects and colors blending, then have to be enabled texture rendering parameters:

e clamping — clamp border texels to edge;

o texel filter — draw nearest;

e texture environment mode — modulate textures;

e enable lights;

e enable depth test;

e disable blending.

If there are uses transparency effects and colors blending the rendering process occurs in two stages
[10]: first into the graphics device frame buffer is copied information about cells transparency, and then
according to it transparency is copied information about colors. For the first stage have to be enabled
texture rendering parameters:

e clamping — clamp border texels to edge;

e texel filter — draw nearest;
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e texture environment mode — replace textures;

e enable depth test;

¢ Dblending function — (source alpha : 1 — source alpha);

e separated blending function — for RGB — (0 : 1), for alpha channel — (1 : 0).

For the second stage:

e clamping — clamp whole texture;

o texel filter — linear interpolation;

e texture environment mode — replace textures;

e enable depth test;

e blending function — (1 : 1 — source alpha);

e separated blending function — for RGB — (destination alpha : 1 — destination alpha), for alpha
channel - (0: 0).

Described steps were implemented under Windows 7 x64 with C++11 by using Qt SDK 5.4.1,
MinGW 4.9.2 compiler, and OpenGL 3.0 + Extension Wrangler Library. Graphics device was AMD
Radeon HD 6300M Series.

The fragment of OpenGL initialization function:

QGLFormat aGLFormat;

aGLFormat .setSampleBuffers (true) ;

aGLFormat.setVersion (aGLFormat.majorVersion () ,aGLFormat .minorVersion () ) ;
QGLFormat: : setDefaultFormat (aGLFormat) ;

glClearDepth(1.0f) ;

glDepthFunc (GL_LEQUAL) ;

glEnable (GL _ALPHA TEST) ;

glAlphaFunc (GL_GREATER, 0.0f);

glEnable (GL_BLEND) ;

glBlendFunc (GL_SRC_ALPHA, GL _ONE MINUS SRC ALPHA) ;
glEnable(GL_COLOR_MATERIAL);

glEnable (GL NORMALIZE) ;

glColorMaterial (GL_FRONT AND BACK, GL_AMBIENT AND DIFFUSE) ;
glLightModelf (GL_LIGHT MODEL_ TWO SIDE, GL_TRUE) ;

GLfloat light0 ambient[] = { 0.2f, 0.2f, 0.2f, 1.0f };
GLfloat light0 diffuse[] = { 1.0f, 1.0f, 1.0f, 1.0f };
glLightfv(GL_LIGHTO, GL_AMBIENT, lightO_ambient);
glLightfv (GL LIGHTO, GL DIFFUSE, lightO diffuse) ;
glLightf(GL_LIGHTO, GL_CONSTANT ATTENUATION, 2.0f) ;
glEnable (GL LIGHTO) ;

The fragment of texture preparation function, for composite structure visualization:

GLbyte *RGBABuff = new GLbyte [N*N*N*4] ;
for(long i = 0; i< N*N*N; ++i){

RGBABuff[i * 4 + 0] = 255;
RGBABuUff[i * 4 + 1] = 255;
RGBABuff[i * 4 + 2] = 255;
RGBABuff[i * 4 + 3] = (ptrToRVEdata[i] > innerCutLevel) ? 255 : 0;

}

glBindTexture (GL_TEXTURE 3D, texturelIDs[0]);
// see https://www.opengl.org/sdk/docs/man3/xhtml/glTexImage3D.xml

glTexImage3D (
GL_TEXTURE 3D, // target, copy data to device
0, // level
GL_RGBA, // internalFormat
N, // width
N, // height
N, // depth
0, // border
GL_RGBA, // format
GL_UNSIGNED BYTE, // type
RGBABuUff ) ; // ptr to data

delete[] RGBABuff;
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The fragment of texture preparation function, for potential field visualization:

GLbyte *RGBABuff new GLbyte [N*N*N*4] ;
float delta = maxPotentialValue - minPotentialValue;
for(long i = 0; i< N*N*N; ++i)
int r, g, b;
float val = (ptrToRVEpotentialField[il
if(val >= 0.0f && val <= 1.0f)
RGBABuUff[i * 4 + 3] potentialFieldAlphalevel;
elsef

- minPotentialValue) / delta;

if(val < 0.0f) val = 0.0f;
if(val > 1.0f) val = 1.0f;
RGBABuff[i * 4 + 3] = 0;

}

grayscaleToRainbow(val, r, g, b);

RGBABuff[i * 4 + 0]
RGBABuff[i * 4 + 1]
RGBABuff[i * 4 + 2]

r;
gi
b;

glBindTexture (GL_TEXTURE 3D, texturelIDs[1]);
ngeXImage3D(GL_TEXTURE_3D,O,GL_RGBA,N,N,N,O,GL_RGBA,GL_UNSIGNED_BYTE, RGBABUff) ;
delete[] RGBABuff;

The rainbow palette function:

gray, int &r, int &g, int &b) noexcept {
//invert and group

void grayscaleToRainbow (const float
float inv = (1.0f-gray)*4.0f;

int X = std::floor (inv) ; //this is the integer part
int Y = std::floor (255* (inv-X)) ; //fractional part from 0 to 255
switch (X) {

case 0: r = 255; g =Y; b = 0; break;

case 1: ¥ = 255 - Y; g = 2555 b = 0; break;

case 2: ¥ = 0; g = 2555 b = Y; break;

case 3: r = 0; g = 255 - Y; b = 255; break;

case 4: r = 0; g = 0; b = 255; break;

The fragment of texture rendering function, without transparency effects and colors blending:

glNewList (firstDisplayListID, GL_COMPILE) ;
glEnable (GL_TEXTURE_3D) ;
glBindTexture ( GL TEXTURE 3D, textureIDs[0]) ;

glTexParameteri (GL TEXTURE 3D,
glTexParameteri (GL TEXTURE 3D,
glTexParameteri (GL_TEXTURE_ 3D,
glTexParameteri (GL_TEXTURE_3D,
glTexParameteri (GL_TEXTURE_ 3D,

GL_TEXTURE WRAP S, GL CLAMP TO EDGE) ;
GL_TEXTURE WRAP T, GL CLAMP TO EDGE) ;
GL_TEXTURE WRAP R, GL CLAMP TO EDGE) ;
GL_TEXTURE MAG FILTER, GL NEAREST) ;
GL_TEXTURE_MIN FILTER, GL_NEAREST) ;

glTexEnvi (GL_TEXTURE_ENV, GL TEXTURE_ENV_MODE, GL_MODULATE) ;
glEnable (GL LIGHTING) ;

glEnable(GL_DEPTH_TEST);

glDisable (GL_BLEND) ;
glColor4f (1.0f, 1.0f,
glBegin (GL_QUADS) ;

1.0f, 1.0f); // material color (for lightning)

for ( float fIndx = 0.0f; fIndx <= 1.0f; fIndx += 1.0 / N){

glNormal3f(0.0f, 0.0f, 1.0f);

glTexCoord3f (0.0f, 0.0f, fIndx); glvVertex3f(0.0f, 0.0f, fIndx);
glTexCoord3f (1.0f, 0.0f, fIndx); glvVertex3f(1.0f, 0.0f, fIndx);
glTexCoord3f (1.0f, 1.0f, fIndx); glvertex3£f(1.0f, 1.0f, fIndx);
glTexCoord3f (0.0f, 1.0f, fIndx); glvertex3£f(0.0f, 1.0f, fIndx);
glNormal3f(0.0f, 1.0f, 0.0f);

glTexCoord3f (1.0f, fIndx, 0.0f); glvVertex3f(1.0f, fIndx, 0.0f);
glTexCoord3f (0.0f, fIndx, 0.0f); glvertex3£f(0.0f, fIndx, 0.0f);
glTexCoord3f (0.0f, fIndx, 1.0f); glvertex3f(0.0f, fIndx, 1.0f);
glTexCoord3f (1.0f, fIndx, 1.0f); glvVertex3f(1.0f, fIndx, 1.0f);
glNormal3f(1.0f, 0.0f, 0.0f);

glTexCoord3f (fIndx, 0.0f, 0.0f); glvertex3f (fIndx, 0.0f, 0.0f);
glTexCoord3f (fIndx, 1.0f, 0.0f); glvertex3f (fIndx, 1.0f, 0.0f);
glTexCoord3f (fIndx, 1.0f, 1.0f); glvVertex3f (fIndx, 1.0f, 1.0f);
glTexCoord3f (fIndx, 0.0f, 1.0f); glvVertex3f (fIndx, 0.0f, 1.0f);

glEnd() ;

glEnable (GL_BLEND) ;
glDisable (GL_DEPTH TEST) ;
glDisable (GL_LIGHTING) ;
glDisable (GL_TEXTURE_3D) ;
glEndList () ;
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The fragment of texture rendering function, with transparency effects and colors blending:

glNewList (firstDisplayListID+1, GL_COMPILE) ;
glEnable (GL_TEXTURE_3D) ;
glBindTexture (GL_TEXTURE 3D, texturelIDs[1]);
glTexEnvi (GL_TEXTURE_ENV, GL_TEXTURE ENV MODE, GL_REPLACE) ;
glEnable (GL_DEPTH_TEST) ;
for (int i = 0; i<2; ++1i){
if (i == 0){ // Clear alpha buffer
glTexParameterf (GL TEXTURE 3D, GL TEXTURE MAG FILTER, GL NEAREST) ;
ngexParameterf(GL_TEXTURE_BD, GL_TEXTURE_MIN FILTER, GL_NEAREST) ;
glTexParameteri (GI, TEXTURE 3D, GI,_ TEXTURE WRAP S, GIL_CLAMP TO EDGE) ;
glTexParameteri (GL, TEXTURE 3D, GI,_ TEXTURE WRAP T, GIL_CLAMP TO EDGE) ;
glTexParameteri (GL TEXTURE 3D, GL TEXTURE WRAP R, GL CLAMP TO EDGE) ;
glBlendFuncSeparate (GL_ZERO, GL ONE, GL_ONE, GL_ZERO) ;
} else if (i == 1){ // Draw pixels
glTexParameterf (GL, TEXTURE 3D, GIL_TEXTURE MAG FILTER, GL_ LINEAR);
glTexParameterf (GL, TEXTURE 3D, GI,_ TEXTURE MIN FILTER, GI_LINEAR);
glTexParameteri (GL TEXTURE 3D, GL TEXTURE WRAP S, GL CLAMP) ;
glTexParameteri (GL TEXTURE 3D, GL TEXTURE WRAP T, GL CLAMP);
glTexParameteri (GI, TEXTURE 3D, GI, TEXTURE WRAP R, GI,_CLAMP);
glBlendFuncSeparate (GL, DST ALPHA, GIL_ONE MINUS DST ALPHA, GL_ZERO, GI_ZERO) ;
} else {
glBlendFunc (GL ONE, GL ONE MINUS SRC ALPHA) ;

glBegin (GL_QUADS) ;
for ( float fIndx = 0.0f; fIndx <= 1.0f; fIndx += 1.0 / N) {

glTexCoord3f (fIndx, 0.0f,
glTexCoord3f (fIndx, 1.0f,
glTexCoord3f (fIndx, 1.0f,

0.0f,

; glVertex3f (fIndx, 1.0f,
; glVertex3f (fIndx, 1.0f,
0.0f,

glTexCoord3f (0.0f, 0.0f, fIndx); glvertex3f (0.0f, 0.0f, fIndx);
glTexCoord3f (1.0f, 0.0f, fIndx); glvVertex3f(1.0f, 0.0f, fIndx);
glTexCoord3f (1.0f, 1.0f, fIndx); glvVertex3f(1.0f, 1.0f, fIndx);
glTexCoord3f (0.0f, 1.0f, £fIndx); glvertex3f (0.0f, 1.0f, fIndx);
glTexCoord3f (1.0f, fIndx, O. £); glvertex3f (1.0f, fIndx, 0.0f);
glTexCoord3f (0.0f, fIndx, £f); glvVertex3f (0.0f, fIndx, 0f) ;
glTexCoord3f (0.0f, fIndx, £f); glVertex3f (0.0f, fIndx, 0f) ;
glTexCoord3f (1.0f, fIndx, £); glvertex3f (1.0f, fIndx, 0f) ;
( £) ( )
( £); ( )
( £); ( )
( £) ( )

RPFRroOORRO

0
1
1
g glvertex3f (fIndx, 0.0f, 0.0f
0
1
1

glTexCoord3f (fIndx,

}

glEnd () ;

g glvVertex3f (fIndx,

glBlendFunc (GL_SRC ALPHA, GL ONE MINUS SRC ALPHA) ;
glDisable (GL_DEPTH_TEST) ;

glDisable (GL_TEXTURE_3D) ;

glEndList () ;

It is enough to call created display lists for rendering:

glCallList ( firstDisplayListID) ;

The examples of visualization are shown on Fig. 1, 2.

a b c

Fig. 2. An example of composite materials cellular models RVE visualization (128x128x128):
a — composite material structure; b — simulated temperature field; ¢ — combination of composite structure
and simulated temperature field with applying a cut on some temperature level

82



Conclusions
In this paper, basing on three dimensional texturing technologies was proposed a visualization
method of representative volume elements of composite materials cellular models. In contrast to the known
approaches, the method renders a composition of mutually orthogonal texture cut planes with the ability to
rotate no texture, but the object itself. This enables better detailed final image with maintaining of the
relative calculations simplicity.
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