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Подано апаратну реалізацію на основі програмованої користувачем вентильної 

матриці (ПКВМ) нейронної схеми, призначеної для ідентифікації К максимальних за 
значенями серед N невідомих дискретизованих сигналів, де NK1 <≤ .  Схема має низьку 
обчислювальну складність і складність схемотехнічної реалізації, високу швидкість 
опрацювання сигналів, здатністю обробляти сигнали з довільного скінченного діапазону, 
властивість збереження впорядкованості сигналів, а також відсутність потреби скидання і 
необхідної для цього схеми, що додатково підвищує швидкість опрацювання сигналів. 
Описано апаратну реалізацію схеми на основі ПКВМ. Пояснено структуру ПКВМ, а також її 
VHDL кодування. Наведено приклад моделювання, який демонструє ефективність схеми. 

Ключові слова: нейронна схема опрацювання дискретизованих сигналів, реконфігу-
рована обчислювальна архітектура, мова опису апаратного забезпечення, ВІС-технологія. 

 
A hardware implementation in FPGA based reconfigurable computing architecture of 

discrete-time neural circuit that is capable of identifying the K largest/smallest of any 
unknown finite value N distinct inputs, where NK1 <≤  is presented. The circuit has low 
computational and hardware implementation complexity, high speed of signal processing, it is 
capable to process signals of any finite range, possesses signal order preserving property and 
does not require resetting and corresponding supervisory circuit that increases a speed of 
signal processing. The hardware implementation based on the results of mathematical 
modeling KWTA Neural Network with the FPGA-based reconfigurable computing architec-
ture has been described. The issues of using hardware blocks combining VHDL coding have 
been discussed. Simulation example demonstrating the circuit performance is presented. 

Key words: discrete-time neural circuit, K -winners-take-all property, FPGA hardware 
implementation, reconfigurable computing architecture, hardware description language, VLSI 
technology. 

 
1. Introduction 

Neural networks of largest/smallest signal identification are known to select K  largest from N  
inputs, where NK1 <≤ . When K  is equal to unity, the network can distinguish the maximum/minimum 
from a set of N inputs [1–3]. Selection of K  largest elements from a data set of N  real numbers is a key 
task in decision making, pattern recognition, associative memories and competitive learning networks [4], 
[5]. Tasks of such type are naturally met in classification problems and applied for the neural network 
classifier development, for problem solving of pattern recognition and pattern classification [6]. Such 
networks are applied in telecommunications, particularly to control data packet switches [7]. Such 
operation has important applications in machine learning, such as k nearest neighbours classification, k-
means clustering, etc. [8]. These networks are used in machine learning, in mobile robot navigation, and in 
feature extraction [9, 10]. Such mechanisms are applied for modeling cognitive phenomena and spiking 
neural networks [11], [12]. Different kinds of neural networks have been proposed to solve the above 
indicated problem [1–5, 8, 9, 13–23]. Hardware implementation of the neural networks of largest/smallest 
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signal identification can be found, for instance, in [24]. Comparing with an analogue implementation, a 
digital hardware is more computationally precise and reliable as long as the requirements for the size and 
power efficiency are not high.  

In this paper, a hardware implementation of FPGA based reconfigurable computing architecture of 
discrete-time neural circuit built in one-layer competitive architecture performing the dynamic shifting of input 
signals to obtain K  winners is presented. The circuit that is composed of N  feedforward neurons and one 
feedback hardlimiting neuron used to determine the desired shift of inputs is implemented in a digital hardware 
by adders, digital integrator, switches and external sources of voltage or current, which are appropriate for real 
time signal processing using VLSI technologies [23, 24]. The architecture has low computational and hardware 
implementation complexity, high speed of signal processing, it is capable for signal processing of any finite 
range and possesses signal order preserving property. The circuit does not require resetting and corresponding 
supervisory circuit that simplifies the hardware and increases a speed of signal processing.  

     
2. A design of the circuit hardware implementation 

A functional block diagram of discrete-time dynamical  neural  circuit of largest/smallest signal 

identification presented in [23, 24] is shown in Fig. 2, where ))1k((xx )k( τ−=  is an input signal dynamic 

shift at the discrete-time moment  τ−= )1k(t )k( . The diagram consists of blocks of discrete-time summing 

∑, multiplication ×, integration 1z− , signum function sgn  (hardlimiter), external sources of constant 

signals )1(x,N,K2,A  and external source of controlled signal kα . Thus, the circuit can be implemented in a 
modern hardware using such traditional digital components as adders, hard-limiting quantizers (switches), 
digital integrator, and external sources of voltage or current. 

 

 
 

Fig. 1. Functional block diagram  
of discrete-time neural circuit presented in [1, 2] 

 
Note, that output signals of N blocks sgn could be also used as outputs b  of  the circuit. However, 

in this case the only number K  of winners from N   inputs would be determined. No information 
concerning  ordering of inputs which could be used further, for instance, for solving problems of sorting, 
classification, clustering, etc. would be available. 

As one can see, from hardware implementation complexity point of view, the circuit for processing 
input signals located in range ( )1,0a∈  should have one multiplier, 2N +  adders, N+1 hardlimiting 

quantizers, one digital integrator, 3 external sources of constant signals and one external source of variable 
signal. Note that in particular case of replacing kα  with α  an external source of variable signal is 
substituted by a source of constant which simplifies the circuit. For comparison, one of the most simple and 
fast competitive network proposed in [16] for processing such inputs requires two multipliers,  4N +  summers, 
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2N +  hardlimiting quantizers, one digital integrator, 5 external sources of constant signals and one external 
source of variable signal. One of the most simple continuous-time competitor from [20] needs N amplifiers, 
N+1 adders, one integrator, N hardlimiting quantizers, and 2 external sources of constant signals. Thus, the 
circuit presented in Fig. 1 has less hardware implementation complexity than other analogs. 

From a computational complexity point of view the circuit in the case of input signals, located in 
range ( )1,0a∈  requires a consecutive performing two multiplications, 4N +  additions/subtractions, two 

logic hardlimiting operations and one integrating operation on each iteration. If kα  is replaced with α , 
then the circuit requires only one multiplication instead of two. Competitive network from [16] requires in 
this case a consecutive fulfilling of two multiplications,  2N3 +  additions/subtractions, two signum 
function operations and one integrating operation for each iteration. Therefore the computational time of 
the circuit is less than that of other competitors [2, 13].  

A resolution ability of the circuit is infinite theoretically, i.e. if inputs are distinct, then the circuit 
can always identify them. Practical resolution ability can be limited by precision of the circuit hardware 
implementation. Since proposed circuit can process correctly any distinct inputs, therefore the accuracy 
performance of the circuit is the same as that of other analogs. 

A functioning of the circuit is independent on initial condition )1(x  which can accept arbitrary value 
in range [0,A]. Therefore, the circuit does not require periodical resetting )1(x  for repetitive  signal 
processing, additional supervisory circuit for resetting, and spend additional processing time on this 
operation [8, 16, 18, 19]. This allows to simplify the hardware and increase a speed of signal processing 
that is important for real time operation. An important advantage of the circuit is that in contrast to other 
analogs [8, 16, 20] it possesses an order preserving property of input signals.  

An implementation of many recurrent neural networks is usually simulated using software, but the 
processing speed in this case can be not fast enough to meet demands of real time. Therefore, microprocessors 
and digital signal processing are not suitable for parallel designs. Let us implement the neural circuit presented 
in [23, 24] in up-to-date digital hardware. The digital implementation comparatively to continuous-time analogs 
demonstrate a more high precision of signal processing, better repeatability, lower noise sensitivity, better 
testability, higher flexibility and reliability, as well as compatibility with other types of preprocessors [25]. The 
up-to-date digital neural network hardware implementations can be classified as FPGA-based implementations, 
DSP-based implementations, and ASIC-based implementations. Since DSP-based implementation is sequential, 
it does not preserve the parallel architecture of the circuit functional block-diagram presented in Fig. 1. ASIC 
implementation can be used for the circuit hardware realization, although it does not offer re-configurability by 
the user in order, for instance, to improve the circuit performance. Due to the relatively high capacity, high 
density, short design cycle and short time to market when using EDA tools, FPGA becomes the most applicable 
microelectronic technology in many recent applications [26]. The size and speed evaluation of FPGA reveal its 
low cost in terms of logic and memory [27–30]. Moreover, the FPGA implementation achieves a comparable 
accuracy with the traditional solutions based on general-purpose computers. To implement the circuit in a 
hardware, the FPGA based reconfigurable computing architecture is quite suitable because the parallel structure 
of FPGA matches the topology of the circuit and offers flexibility in reconfiguration. An FPGA as an 
implementation hardware can be chosen because it combines the reprogrammability advantage of general 
purpose processors with the parallel processing and speed advantages of customer hardware. Such 
computational characteristics of the circuit as modularity and dynamic adaptation can be realized in FPGA 
hardware. The circuit architecture and training algorithm can be implemented on a FPGA chip performing an 
on-line training. Therefore, using FPGA, the circuit can be implemented through parallel computing in a real-
time hand-tracking system [31, 32].  

  
3. An architecture of the circuit hardware implementation using FPGA  

Let us use FPGA chip Altera Cyclone III EP3C16 of MultiCore and Softprocessor technology. We 
use HDL Language since with it help we can develop input\outputs of the system, logical blocks, 
arithmetical blocks etc. In simplified form, the description of the components in VHDL consists of an 
interface specification and an architecture specification [23, 33, 34]. The VHDL model for the design is 
designed with three modules in one package. The top entity module is the main module to manage and 
control its other components (Fig. 2). Simulation of the VHDL code has to be carried out for two reasons 
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after describing a digital system in VHDL. First, we need to verify whether the VHDL code correctly 
implements the intended design. Second, it is necessary to verify if the design meets its specifications. The 
simulation is used to test the VHDL code by writing test bench models [34]. Top entity consists of 
description of existing system inputs and outputs that are galvanically connected to the appropriate port 
circuits of the FPGA IC. According to the description presented in Fig. 2, defined maximum and minimum 
level signals are being processed in the working mode. In case of processing data array values there should 
be described the procedures for booking the corresponding memory cells which in turn should be clocking 
by the common clock source. The proposed design consists of neuron architecture, activation signed 
function problem solving and network architecture. As the data flow inside the system require parallel 
computational, multiplier/accumulator architecture has been selected for implementation as shown in  
Fig. 3.  The architecture  gets  the input serially,  multiplies them with the corresponding weight value and 
accumulates their sum in a shift register. The processes are synchronized by clock signal which is the 
oscillator source for the whole circuit design. Implementation of fully parallel network is possible with use 
of FPGAs. Such the network is fast but inflexible because of a number of primitive arithmetic blocks must 
be equal to the number of connections in the network.  

 

 
 

Fig. 2. Top entity for VHDL model of the network 
 

 
 

Fig. 3. Multiplier/accumulator architecture 
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All the modules for the designed model are compiled for the Analysis and Synthesis check, Place and Route 
(Fitter) check, Assembler check and Classic Timer Analyzer check by using the Quartus II software. Simulation is 
the most important part for VHDL based hardware modeling flow. It is also one of the most difficult part not for 
the mechanism of the processes but because it needs to evaluate all possible processes and failure modes and 
requires to test them carefully. Fig. 4 shows a design of iterative KWTA network based on Fig.1. The design 
includes schematic description of the basic elements used in the project. For processing descrete-time sampled 
signals eight-bit unidirectional interface connected to external analog-to-digital converter is provided. Since the 
magnitude of the signal level should not exceed the level of applied voltage, there is realized a voltage limiter that 
runs the algorithm of voltage divider. The design contains summers, multipliers, integrators, switchers and external 
signal sources which are described in top entity of the project. Data transaction are implemented by using serial 
interface protocol RS-232. The main restrictions are the bandwidth of the channel and error corrections. To 
eliminate this disadvantage specialized interfaces for data exchanging can be used as well as EEPROM FLASH-
storage for preservation and archiving of transitional and final results of the scheme can be employed. For this 
purpose  external controller FLASH-drive has to be implemented and included to the overall scheme of operation. 
In this case, all intermediate data will be stored in memory during the experiment with minimal time latency for 
later analysis. A limitation of this method is impossibility of operation scheme configuration, analysis of the results 
in real time and operation monitoring of the system. 

  

 
 

Fig.4. Hardware-description design of functional block diagram  
of discrete-time KWTA neural circuit presented in [21, 22] 
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4. Simulation results of the circuit  
Let us consider concrete example adopted from [21, 22] with corresponding simulations which 

demonstrate signal processing by described above FPGA based hardware implementation of discrete-time 
neural circuit. 

Example. Let it be necessary to identify the four largest inputs, that is K=2, from vector 
],2.0,8.0,3.0,7.0,1[a −−−= i.e. 5N =  having been used the FPGA based hardware implementation of neural 

circuit described in [21, 22]. Let us take for this circuit 1Amin −= , 2A = , an initial condition Ax )1( =  and 

a decaying coefficient 7.0=α . Let us determine the discrete-time trajectories of the shift )k(x  and the 

outputs 5,4,3,2,1i,b )k(
i = . Such trajectories in normalized units are shown Fig. 3. As one can see, in the 

steady state, the components  ,0b2 > 0b5 >  correspond to the two largest components of vector a  – the 

winners and the remaining ones, 0b,0b,0b 431 <<< correspond to the losers. A convergence of the search 

process to a steady state is achieved in 6m =  iterations. 
Analyzing the data, we can conclude that the results of numerical experiments confirm mathematical 

calculations and modeling presented in [21] but it turned out that while collecting the required information 
from technical device identifying the number of iterations to convergence of search process fails, due to 
low bandwidth to data exchange process between FPGA-based system and PC with running software on it. 

 

 
 

Fig. 5. The trajectories of the outputs 5,4,3,2,1i,b )k(
i =  of the FPGA based hardware  

implementation of neural circuit presented in [21, 22] 

 
Conclusions  

A hardware implementation by FPGA of discrete-time neural circuit of largest/smallest signal 
identification designed based on input signal dynamic shifting is described. The circuit is stable and 
convergent to correct operation in finite number of iterations. The hardware implementation complexity of 
the circuit is less than that of other competitive networks. The circuit is capable to process any finite value 
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distinct signals and possesses signal order preserving property. Periodical resetting and corresponding 
supervisory circuit for repetitive signal processing are not necessary. Described circuit is better to use if it 
is necessary to have simple circuit with a high resolution ability, high speed of signal processing of wide 
range, independency on initial conditions and signal ordering preserving property. The described circuit 
that is implemented based on serial integral circuits is suitable for various applications.  
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