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A mathematical model of the anisotropic materials strength under biaxial stress state
that was developed by earlier authors is specified considering the known dependence of the
elasticity modulus of the manner of loading characteristics and limits asymmetry of strength in
the areas of structural symmetry. Also there is a new method of developed model parameter
identification that isbased on passport specification related to wood characteristics of different
species. The numerical experiments were conducted and on the analysis of the results basisthe
adequacy of the model is substantiated.
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MATEMATHUYHE MOAEJIIOBAHHSA TA AHAJII3 MIITHOCTI
JAEPEBUHHU B YMOBAX /IBOBICHOI'O HAITPYKEHOI'O CTAHY

3 ypaxyBaHHSIM BiIOMHX 3aJ1e;KHOCTEH MOIYJIIB IPYKHOCTI Bif cioco0y HaBaHTa'KeHHS
Ta 0co0JMBOCTEeH acmMeTpii Mek MIIHOCTI y HanmpsMKax CTPYKTYPHOI cMMeTpii yTOYHEHO
paHilie po3pod/ieHy aBTOpaMH MaTeMATH4YHY MOJeJb MIIHOCTI aHi30TpPOMHHMX MaTepiadiB B
YMOBax [IBOBiCHOI0 HAIPY:KEHOI0 CTaHy. 3alpoONOHOBAHO HOBHMIl cnocid ineHTHdikaunii
napaMeTpiB po3po0seHoi Moesi Ha OCHOBI MACHOPTHUX (Pi3HKO-MeXaHIYHUX XapaKTepHUCTHK
AepeBUHM pi3HUX nopia. IIpoBeaeHo Ync/I0Bi eKcIepuMeHTH Ta HA OCHOBI aHAJTI3y OTPUMAaHMX
pe3yJbTaTiB 00rPYHTOBAHO aIeKBATHICTh 3a3HAYEHOI MOIETi.

KurouoBi cjioBa: mareMaTH4Ha MojAe/b, MilIHICTh, HANIpY:KeHHs, Aedopmanii, BiTHOCHa
00’ eMHa nedopmaisi, rycTHHA MOTEHUIiAIbHOI eHeprii.

Rationale. The rise of quality products and the reduce of energy costs at its production is one of the
main conditions for the successful development of woodwaorking enterprises. The decisive role in solving
this problem belongs to the study of short-term strength of wood with a complex stress state, because
strength is one of the factors that significantly limits the intensification of the dehydration timber
processes. The duration of the processes cannot be arbitrarily small, its value should be like the one that at
al points of dryable material stress tensor components do not exceed the limit values. Otherwise there will
be aresidua voltage which are major factors in reducing the material quality indicators. To determine the
limit stresses in the wood with the uniaxial stress state experimental methods of investigation are used and
the method of mathematical modeling is applied to the wood with a complex state of stress.

The results of mathematical modeling of materials anisotropic strength are provided in the works of
R. Mises, Mises — Hill, E. K. Ashkenazi, K. V. Zaharov, O. K. Mameystra, Holdenblata — Kopnovaetc.
However, the application of these criteria for the modelling of curves and surfaces with a two-axial
strength of timber, flat and volumetric stress state is not sufficiently substantiated. None of these models
are not adapted and not tested on wood of coniferous and hardwoods. The complexity of this problem
solution is that the input data to these models (criteria) is the persistable strength (for instance, boundary
displacement orthotropic material along diagonal planes of structural symmetry), which currently are not
subjects to experimental determination. Therefore, the task of modeling the strength of the wood is present-
day as of today there are no technical solutions to identify and control voltages in dried lumber and the
existing mechanical strength theory do not describe fully the strength of wood in a complex stress state.
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Mathematical model of wood strength. The lack of empirical data to determine the limits of pure
shear strength along the main diagonal and the structural symmetry planes of wood of different species
does not give the opportunity to confirm or deny the authenticity of the presently known strength criteria
for the test material. Therefore, in order not to carry out additional highly complex experimental trialing of
methods and techniques which are insufficiently substantiated, we will continue the research, purpose,
objectives and partia results of which are covered in the work [1]. In particular, we adapt the proposed in
this paper mathematical model of the strength of anisotropic materials to wood of coniferous and
hardwood. For this we add its dependence on material elasticity modules on the method of intensity and
condition of determination the constants of the model. The result is a mathematical model for determining
and predicting the strength of wood with a biaxia stress state. The components of this model are:

e mathematical model of the strength of anisotropic materials under biaxia stress state [1]
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¢ dependency of the modules of wood elasticity on the method of intensity [2]
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Hij — the Poisson ratio; E; —modulus of elasticity; o;; —the components of the stress tensor; a, b, c i k —

constant coefficients; E ES —wood modulus of elasticity the valuesin uniaxial tension and compression

in the direction of i — than isotropy.
Determination of the a, b constants and k model (1). In order to solve this problem we investigate

the curve (1) in points (0'11 =011, 0pp =0, O35 = O) and (0'11 =0, Gy = Opp; Og3 = 0) . For this we consider
such cases: (031 > 0; 0 — —0; 033 > +0), (011 > 0; 0 — +0; 033 > +0), (01 >0, 05 >0 053 —>+0),
(011 > +0; 055 >0; 033 > +0).
If the 0y, >0, 09 — -0, and o33 — +0 elastic modulus values E;;, E,, and Egg, according to
relations (2), are equal to Elpl, EZC2 and E§’3, respectively strength and the equation (1) isfollowing:
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In case 0y,>0, 05 —+0, and 033 >+0 — E;; =Ef, E,, =EJ,, Egy=E%, and the strength
equation (1) with provision for constraint (3) can be written as:
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If 6,y —>-0, 0,5, >0,and og3 —+0, then in such case E;; =Ef;, E,, =E},, Eg3=E};, and the
strength equation (1) isthe following:
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If O-ll —> +O, 622 > 0, and 633 —> +O, then aCCOI'dIng tO (2), Ell = Elpl, E22 = E;Z’ E33 = E§3, and
the strength equation (1) with provision for constraint (2) is:
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In case we subtract equation (6) from the equation (5), and equation(8) from the
equation (7), as a result, after some simple mathematical transformations we obtain a system of
equations:
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We simplify the resulting system of equations. To do thls the first equation of the

Eas

system is divided by — , and the second by — , then (9) the following result

isreceived:
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The solution of system (10) is formulae for determining the values of the ¢ and b constants of the
mathematical model (1):
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The k constant could be taken from the formulae below [1]:
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where (631,65 ) and (634;0,,) —the coordinates of randomly selected points on the strength curve of the
researched material.
In order to do this, select the strength of the desired curve point (afl;o) and (0; o{;) . Then the
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The results of mathematical modeling of wood boundaries stressed state and their analysis. In
order to find the numerical calculations of the (1)—«(4) mode agorithm [3] is used, the practical

implementation of which lies in: 1) the tabulation of functions ¢(o74,0,,) with the steps of tabulation
Aoy, and Aoy, ; 2) finding the argument o1, for fixed values of the argument 5, o, so that at least one of
the following conditionsis fulfilled:

9(011,02)>0, and @(0y1,09 + A0y, ) <0 or 9(0y1,02)<0, and @(011,05, +A0,,)>0, (23)
where ¢(07,,05) —function, which value is identically equal to the values of expression in the left-hand
side of equation (1); 3) the choice from o, and o, +Ao,, numbers where the absolute value of the
function ¢(031,0,,) isminimal; 4) construction of strengths curves of these points (31,05 ) .

With this algorithm boundary states of stress of pine and oak are calculated, the value of the physical
and mechanical characteristics are provided in table 1 below. In particular, the strengths curves of these
materials are plotted under biaxial stress state in the radial-tangential level of structure symmetry (Fig. 1).

Table 1
Sress-related characteristics of pine and oak with a temperature T=20 °C and a relative moisture of
W =12 %: the numerator —the value of traction, and the denominator — the value of compression

Wood Modulus of elasticity. Yieldsvalue. The Poisson ratio
Species GPa MPa
Ea E E Or Gt Har Hat Hrt Hra Hta Htr
- 119 0.54 0.47 3.23 2.63
Pine 11.9 0.67 0.55 510 750 0.03 0.037 0.38 0.49 0.41 0.79
14.2 118 091 8.0 6.5
Oak 14.2 1.40 101 _ _ 0.07 0.09 0.34 0.43 0.41 0.83

We make the analysis of the component origin of plotted curves that characterize such a boundary
stress material state, which characteristics are empirically determined. These points are the points of
intersection of these curves with the coordinate axes Ac, C¢, Bc, Dc and Ay, Cy, By, Dy, According to
Fig. 1, the value of Ac and Cc, Ay and Cj — points is the value of the limit strength traction and pine, oak
wood compression respectively to the radial direction of orthotropy and the ordinate B¢ and D¢, By and Dy —
points is the value of strength boundaries traction and compression of mentioned above timber speciesin a
tangential direction, that is currently known and given in the reference literature [2]. The analysis of these
points coordinates showed that the mathematical model (1)—(4) adequately reflects the strength of
anisotropy and asymmetry of wood in question along the main lines of symmetry. Indeed, as the abscissa
of the Ac point is greater than ordinate B¢, point and the absolute value of the abscissa Cc point is less than
the absolute value of the ordinate of D¢, point, the limit of short-term strength of pine traction in the radial
direction is greater than the tensile strength traction in the tangential direction. In the case of compression it
is vice versa: the absolute value of the tensile strength in the radia direction is smaller than the absolute
value of the tensile strength in the tangential direction that is confirmed by experimental results [2]. The
ratio of ultimate strength traction in the radial and tangential directions of the anisotropy for the pinethat is
true for the oak aswell isfound.

Thus, taking into account the results of the presently known experimental studies of short-term wood
strength with a uniaxial stress state in the anisotropy directions a mathematical model (1)—<4) adequately
describes the boundary state of pine and oak stress in a biaxia-stretching traction, compression-
compression and traction-compression. In addition, we would like to note that the characteristic of plotted
curves (Fig. 1) meet the basic requirements of building a heuristic known phenomenological theories of
mechanical solids strength [4, 5]: 1) the curves limiting stressed state (curves of short-term strength)
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should be smooth and convex; 2) the curves of short-term strength of the material should cover the origin
of the Cartesian frame of axis.
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Fig. 1. Curves of short-term strength of wood with a temperature7 = 20 °C,
relative moisture of W = 12 % and biaxial stress state in the radial — tangential structural symmetry plane:
1 - pine; 2 — oak

Conclusions

It is shown that the calculated curves of short-term pine and oak strength with a biaxial stress-strain
state in the radial-tangentia level of the structural symmetry describe satisfactorily the experimental tests
on the material strength of the uniaxial traction and compression in the radial and tangential directions of
anisotropy. In particular, it is sustained that: a) tensile strength of pine traction in the radial direction is
greater than tensile strength in tangential direction, and it is conversely in the case of compression: the
absolute value of the tensile strength in the radial direction is smaller than the absolute value of the tensile
strength in the tangential direction; 6) the absolute values of the maximum tensile strength in the radial and
tangentia directions of the pine wood anisotropy are less than the corresponding absolute values of the
maximum compressive strength.
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