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The mathematical model to determine the physical constants on the boundary of the 

metal and inert gas environment developed based on the basic equations of surface physics and 
thermodynamics of nonequilibrium processes. These physical constants are included into the 
state equation, taking into account internal mechanical stresses caused by redistribution of 
conduction electrons. Using the experimental values of surface tension and energy of the 
contracted media, we determined physical characteristics of the surface layer, in particular on 
the boundary of the aluminium (germanium) and the inert gas environment. 
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МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ПРОЦЕСІВ  
У ПРИПОВЕРХНЕВИХ ШАРАХ ТВЕРДИХ ТІЛ  

ЗА МІЖФАЗНОЇ ВЗАЄМОДІЇ 
 

На основі базових  рівнянь фізики поверхні та термодинаміки нерівноважних 
процесів  розроблено математичну модель для визначення  фізичних постійних на 
границі металу з інертним газовим середовищем, що входять у рівняння стану, з 
урахуванням  внутрішніх механічних напружень, зумовлених перерозподілом електронів  
провідності. З використанням експериментальних значень поверхневих натягу та 
енергії для контактуючих середовищ визначено фізичні характеристики поверхневого 
шару, зокрема на межах алюміній(германій) – інертне газове середовище.  

Ключові слова: моделювання,механічні напруження, механоелектричні процеси, 
приповерхневий шар. 

Introduction 
The traditional approach of quantitative description of the interfacial interactions usually involves 

finding energy options of the interfacial interaction and calculation physical characteristics of surface 
layers. These physical characteristics are characterize the spatial (coordinate) distribution of charges, 
mechanical stress inside double layer, thickness of interacting phases, surface charge, etc. Also they 
interconnect state parameters in the relevant state equations. It is clear that adequate values of the such type 
of characteristics should match the main real energy characteristics of the surface layers, such as the 
surface tension σh and the surface energy γ. 

For the solution this problem is usually used algorithmic approach of imitative simulation. The 
disadvantage of this approach is the some ambiguity of the values of the obtained physical parameters of 
materials with reliable values of energy characteristics (σ, γh). 

We use a slightly different approach and solve the problem of determining the energy characteristics 
σ and γh formally. 

The aim of this work is to develop a mathematical model to determine the physical constants of 
materials in state equations, taking into account internal mechanical stresses caused by the redistribution of 
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the conduction electrons. This model based on the principles of surface physics and thermodynamics of 
nonequilibrium processes without the use of cumbersome approaches of statistical physics. 

 
1. Theoretical preconditions for mathematical modeling  

of charges distribution and mechanical stress 
Research object. As the model object of research we choose a defect-free uniform metallic 

deformed elastic sphere of radius R. The research subject is the macroscopic correlations of surface physics 
and thermodynamics of nonequilibrium processes, which used to determine surface tension and energy. 

We formulate one-dimensional correlations for modeling mechanical stress and redistribution of 
electric charges (free for metals and related to semiconductor or insulator) with r coordinate, where r – 
radius vector of a point in a spherical coordinate system. The sphere (Vm area, r < R) is placed in a uniform 
inert gas environment (Vc area, r > R), which pressure is equal p = 100 kPa. The electric double layer 
generated conduction electrons and metal ions and located on the sphere surface on the spherical ring, 
which thickness h (R > r > R-h) [1]. 

We simulate the metal sphere using two-component homogeneous solid environment consisting of 
two continuous continuums: the conduction electrons and grid ions, for which carried out the hypothesis of 
continuity and local thermodynamic equilibrium [2,3]. 

The electric double layer is formed on the border of metal (the sphere) and external inert 
environment. This layer corresponds to the gradient of the electron density in the small border layer 
(thickness is less than 20 nm) [1]. During this process the electric shells of the thin border atoms are 
deformed. These deformations are manifested in the change of grid parameters. Based general ideas 
surface physics and continuum mechanics we put the deformations of atoms in correspondence to the 
mechanical stresses. Also we consider the distribution of electrical charges and mechanical stress are 
interrelated. To find the distribution of electrical charges and mechanical stress in a thin surface layer of 
metal we use Poisson's equation (for electrical charges) of the balance of items of solids and determination 
of surface tension and energy. 

Selecting state parameters. To describe mechanoelectric distributions in the sphere we consider two 
pairs of parameters of the thermodynamic state : a) for redistribution of electrical charges – concentration 
of electrons Ce, ions Cion and the chemical potentials Me, Mion corresponding them (concentrations are 
dimensionless, dimension of chemical potentials – J / kg); b) for the stressed state – tensors of deformation 
ê  and mechanical stresses σ̂ [2–5]. 

These settings we substitute in the extended Gibbs equation for state function U -  is internal energy 
([U] = J / kg) σ̂ [2–4]: 

3

, 1

1
ij ij e e ion ion

i j
dU TdS de M dC M dC

=
= + ⋅ + + σ

ρ
.                                      (1) 

Where S, T-entropy and temperature of the local element respectively ([S] = J • (kg*K) -1, [T] = K); 

ρ – specific density of material ([ρ] = kg • m-3); eij, ρij – components tensors of stresses σ̂  and 

deformations ê  (i, j = 1, 2, 3; [σij] = Pa). Given that the mass of the electron by three orders less than the 
mass of the ion, we can take dCіon ≈ 0. 

Then we multiply and divide expression Me⋅dCe by a constant ze, where ze – electric charge of unit 
mass of conduction electrons ([ze] = Cl • kg-1). Result of multiplication is Ce⋅ze =ω=ωV/ρ; where ω, ωV  – 
specific electric charges of local element calculated per unit mass and unit volume respectively: ([ω] = Cl • 
• kg-1, [ωV] = Cl • m-3). The relation Me/ze  = Φ= Φ0 + ϕ is called modified chemical potential of the 
conduction electrons (MCPCE) ([Φ] = [ϕ] = В). 

In this case, the Gibbs equation (1) can be written (including replacement of multiplication result 
Me⋅dCe=Φ⋅dω) for the free energy F=U–TS–ωΦ) in the form of [2–4]: 

3

, 1

1
ij ij

i j

dF SdT de d
=

= − + σ ⋅ + ω Φ
ρ .                                                (2) 
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From (2) follow the state equation in general form: 

.;    ;    
, ,,

F F F
S ijdT de dije const e T constij ijT const

 ∂ ∂ ∂    = − = =     Φ   Φ= =  Φ=
σ ρ ω ρ             (3) 

In the next we confine the isothermal case and we aren't considering the state equation for the entropy. 
Methods for formulating state equations based on relations (2), (3) are shown, for example, in [2–4]. With this 
purpose usually functional for free energy F is decomposed in the Taylor series on the state parameters in the 
neighbourhood of the specified equilibrium state. After that decomposition of the functional limited of second 
component of decomposition is substituted in (3). Then we are get the linear state equations. 

Using the principles of the explained technique, according to (2) and (3), we are obtain linear state 
equations for tensor components of mechanical stress σij and density of electric charge ω [3-5]: 

2
2

3ij t ij ijK G e K T Kb Ge
  = − − ⋅Δ − +  
  

σ α φ δ ,                                     (4) 

( )V tC T bKe= = − ⋅Δ +φω ρω ρ φ γ .                                                  (5) 

Where δij – Kronecker symbols; e = eii/3 – the first invariant of deformations tensor; ϕ = Φ – Φ0 – 
rejections of the modified chemical potential Φ of conduction electrons from its equilibrium value Φ0  in 
the volume of the body away from the surface; ΔT = T – T0 – temperature changes (T0 – temperature values 
in the initial equilibrium state); K, G – factors of the comprehensive compression and shear; Cϕ – specific 
capacitance; b – electrostrictive coefficient of volume expansion; αt – temperature coefficient of volume 
expansion; γt – temperature coefficient of changes MCPCE. 

Galvani potential. To analyze the redistribution of the conduction electrons of the neighbourhood of 
the metal surface we are considering Galvani potential (difference of internal electrical potentials - Δψ). 
This potential defines difference of the electrical potentials between two points in different phases [6]. 
These phases can be two different solids (eg, two mechanically connected metals, metal and 
semiconductor, etc.). 

Electrochemical potential eμ  for conduction electrons in the metal including definition of Φ  can be 

represented as [6,7]: 

( )e ez= Φ +Ψμ ,                                                                  (6) 

where Ψ – the potential of the electric-field intensity (scalar electric potential). ψ = Ψ – Ψ0 - deviations of 
potential  Ψ  from its original equilibrium value Ψ0 (potential Ψ is defined up to a constant [6]). 

If two phases α and α have the one common charged particle (for example, electron), then their 
electrochemical potentials eαμ  and eβμ are aligned [6] and as the result we get the ratio: 

( ) ( ),    ,    ,    ,e e e e ee z z= Φ +Ψ = Φ +Ψ = Φ +Ψ =Φ +Ψα α β β β α β α α β βαμ μ μ μ  

( ),    0,    0,Δ = Ψ −Ψ =Φ −Φ = −Δ Δ + Δ = Δ + =β α α βψ φ ψ φ ψ φ  

( )0 00,    constΔ + +Φ = + +Φ =ψ φ ψ φ .                                                (7) 

As in this case, the Galvani potential is determined using difference of chemical potentials 
Δ = ΔΨ =Φ −Φα βψ  (6). This similar to definition of  potential difference of MCPCE. Therefore in the 

further transformations we use Δψ = –Δϕ (symbol Δ means the deviation of potential). 
Using last relations (6.7) ψ+ϕ+Φ0=А=const we provide analysis of particular case, when phase α is 

metal and phase β is not electroconductive inert gas environment, which  we take А = 0 (because the 
electrochemical potential is determined up to a constant). 

In the external inert environment (outside sphere in volume Vc) for electric potential [2, 3] is: 
0 ,cΔΨ =                                                                      (8) 

from which follows that Yс=Aс, where Aс is constant. Taking the electric potential at infinity equal to zero, 
we obtain Yс=Aс=0 in the volume Vc. 
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Since the electric potential Ψ on the border of arbitrary medium is continuous, then for the 
boundaries of the phase α (on the surface Γ) from (7) follows the limit relation: 

0 00,      +Φ = = −Φφ φ .                                                         (9) 

 
2. Determining distributions of electrical charges and mechanical stress 

2.1. Basic equations of mechanoelectrics for metal 
In accordance with the fundamentals of electrostatics and nonequilibrium thermodynamics [4, 5, 7, 8] 

we can show the electric potential Y using Poisson's equation (10) and the stress tensor we can show as 
part of the equilibrium equation (11): 

0 0 ,VΔΨ = Δ = − = −εε εε φ ρω ω                                                 (10) 

ˆ 0,Div E+ ⋅ ⋅ =


σ ρ ω                                                         (11) 

ˆ ,e Defu= 
                                                               (12) 

where u


– is the movement vector in spherical coordinates ( ,0 , 0)),ru u=  which is associated with the 

tensor of deformations ê  by the geometric equation (12) [9]. 
Boundary conditions on the surface G of the distribution of the electroconductive body and inert gas 

environment, taking into account (8) [2.3, 8] can be represented as:  

( ) ( )0 0
1

;   | | | | ;   ;   .
2n c c n cn cp E E E E= + Ω + Ω = − Ψ = Ψ = −Φ

    σ εε φ         (13) 

where cp


 – the environment pressure to the normal n


 to the surface G; W – surface charge;  

e – permittivity material; ,   cn nE E
 

 – components of the electric-field intensity of environment and metal to 

the normal to the surface G. 
The problem of the distribution of electrical charges and the mechanical stresses corresponding them 

in double electrical layer (4), (5) (10)–(13) we can formulate in a spherical coordinate system (r, q, a). For 
this we move the origin of coordinates in the geometric center of the sphere. Then we obtain:  

( )2
2

1 3
;

3 4r V r
d d d

r u K E
dr dr K G drr

   ⋅ = −   +   

φβ ω                                  (14) 

2
2

2
0 0

2
,     ;

Cd d bK
k e k

r drdr

 ⋅
 + ⋅ − ⋅ = =
 
 

φρφ φ φ
ε ε

                                (15) 

2
0  ;V k bKe= = +ω ρω ε φ                                                     (16) 

( )2
2    , , ;

3ii iiK G e bK Ge i r
 = − − + = 
 

σ ϕ α θ                                         (17) 

0 2 ;  ;   ;   ;r r
rr rr

du u
e e e e e e const

dr r
= + = = = + +Φ =θθ αα θθ φ ψ  

;     ;r o r o o
d d d d

E E
dr dr dr dr

= − = Ω = − = = −ψ φ ψ φε ε ε                                    (18) 

2 2
0 0

0;   
2 2rr r r

∂ ∂   = −Φ = − ⋅ = ⋅   ∂ ∂   

ε εψ φφ σ  at r = R.                                   (19) 

 
2.2. Method of determining distributions φ, σx, σy 
Since the expression (14) is nonlinear (expression ωV⋅Er  is the ponderomotive component), then we 

are solving the system of equations (14), (15) taking into account (16)–(19) for finding the distributions of 
potential ϕ and mechanical stresses σr, σθ, analytically using the method of small parameter b?∗=b⋅Φ0,  
limiting of the four approximations of the decomposition. Methodics of using the small parameter method 
for solving problems of mathematical physics is described in [10]. 
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We represent the components ur of movements and ϕ (deviation of MCPCE) as series of the small 
parameter:  

( ) ( ) ( ) ( )2 3 4
0 0 1 0 2 0 3 0 4 ru u b u b u b u b u= + ⋅Φ ⋅ + ⋅Φ ⋅ + ⋅Φ ⋅ + ⋅Φ ⋅                             (20) 

( ) ( ) ( ) ( )2 3 4
0 0 1 0 2 0 3 0 4 b b b b= + ⋅Φ ⋅ + ⋅Φ ⋅ + ⋅Φ ⋅ + ⋅Φ ⋅φ φ φ φ φ φ                              (21) 

Relation for the potential j and mechanical stress sr, sq we get from (14)–(19) for the area "Vm" taking 
into account the shift Zb of double electric layer relatively border of the body [11]. The results of the 
solution (14)–(19) we write in the abbreviated form: 

0 0( , , , , );      ( , , , , );r rf r b k R f r b k R= Φ ≈ Φθ θσ σ                                       (22) 

( )
( )0 0( , , , )   ;r

sh krR
f r k R

r sh kR
= Φ = −Φφφ  ( )( )0

0 2
0

2 exp ;
2

e
b

q W
kZ

k
Φ = ⋅ − −

ε
                      (23) 

    
5 533

1 arcsin  ,
4 2 3 3 5 3

V VF
b

F F F V F

E EE
Z

k E E E E

  
= + − −   +  

π
                          (24) 

where  ,    rf fθ – are symbolizing complex relations which considered four approximations of the small 

parameter b⋅Φ0?; EF – Fermi energy; EV – electronic work from metal; kF – Fermi wave vector; We – the 
volume density of the conduction electrons of the metal far from the surface (at a distance of more than  
30 nm) ([We] = m-3); q0 – electron charge. 

Shifting Zb of the double electric layer (24) corresponds to the relationship equations (14) and (15). 
Note that represented above expression (.23) for F0 is similar to the expression from work [11] derived 
using the methods of statistical physics. The formula for ϕ (23) obtained from the solution of (14)–(21) 

(including four approximations (21)), and similar to the first relation (23) for ϕ including Zb (24) (for 
sphere with a large radius R), given in work [11] virtually identical to within corrections, the magnitude of 
which less than 4 %. This indicates that the result of four approximations (ϕ1, ϕ2, ϕ3, ϕ4) for ϕ manifested 

in shifting Zb. Therefore we can  replace the complex expression like (21) using compact relation for ϕ (23). 
 
2.3 Limiting transition to the flat border 
In relations (22), (23) make sense move to the flat distribution border of environments, because 

effective thicknesses of the double electric layer (surface area) not more than 18 nm [1.11]. 
In expressions (22), (23) we carry the limiting transition R∞, where σrrσx, σθθσy, and 

coordinate r corresponds to x. Then the resulting relations in abbreviated form become:  

( )0 0 0( , , ) exp ;      ( , , , );y yf x k kx f x b k= Φ = −Φ ⋅ − ≈ Φφφ σ  

2 2 2 3
0 0 0

1 1
 ( , , , )

2 2
kx kx

x x of x b k k e b K e− −
∗≈ Φ = − ⋅ ⋅Φ ⋅ − ⋅Φ ⋅ ⋅Φ ⋅ −σ ε  

( ) ( ) ( )
( )

2 2 3 3
2 32 2

0 0 2

3 9 1
1

2 3 4 4 3 202 3 4

kx kx
kx kxK e K e

b e b e
K G K G

− −
− −∗ ∗Φ Φ   − ⋅Φ ⋅ + − ⋅Φ ⋅ + −   +    +

 

( )
( )

4
4 4 2

0 3

9 1
1 ,

108 3 4

kx kx
x

K
b e e C

K G

− −
∗

 − ⋅Φ ⋅ + Φ + 
 +

                                 (25) 

where  fy  –  is the complex relations; 
2 2

0

3 4
ok

K G∗
⋅ ⋅Φ

Φ =
+

ε
 

 
3. The method of determining the physical characteristics of the material 

3.1. Representing systems of nonlinear equations 
Traditional approaches to assess of the physical k, b characteristics of the surface layer of metal in 

the state equations (16), (17) are providing usage approaches of statistical physics or quantum mechanics, 
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which often lead to ambiguous results. The proposed approach uses a method of the decomposition of 
displacement variables and potential ϕ to the small parameter. Also this approach isn't expect explicit usage 
of theories of statistical physics or quantum mechanics. 

Formal expressions for solution of previous problem (25) we are substitute in the system of the four 
equations [1, 4, 5], in which the surface tension sh and energy g are defined as: 

0
,    ,

h

y h y zdx = =σ σ σ σ                                                         (26) 

 ,e м+ =γ ξγ γ                                                                  (27) 

0

( )
0,       e м C

k
k k

 ∂ +∂  = = =
 ∂ ∂  

φργ ξγγ
ε

                                          (28) 

sy + p = 0 (for x = h) (p = 100 kPa – atmospheric pressure).                          (29) 

where 
0

h

e ew dx= γ  – the electrical component of the surface energy (SE);  
0

h

м мw dx= γ  – mechanical 

component of SE; 
2

0

2ew
x

∂Ψ =  ∂ 

ε
 and 

2( 4 ) (1 )

2
x x y y

мw
E E

− −
= +
σ σ νσ ν σ

 – densities electrical and 

mechanical components SE; h – effective thickness of the surface layer; E, ν – Young's modulus and 
Poisson's ratio, respectively;. 

Expressions (26), (27) describing the determination of energy characteristics of surface layers. 
Relation (28) is a condition of dynamic quasiequilibrium of particles (electrons and ions) that form the 
double electric layer on the surface of the body. Expression (29) is the condition of the effective thickness 
of the surface layer. The stresses sy  are stretch (positive) in the boundaries of the surface layer, and p = 100 kPa 
(atmospheric pressure) corresponds to compressive (negative) stresses. Expression |sy|=|p| is  at some 
distance from the surface h, therefore the resulting stress will be zero (|σy|–|p|=0). 

The system of equations (26)–(29) is applied to the physical characteristics of the material x, k, b, h  
for the first time. In other works [4.5] relations (26)–(29) were, but in there them are used for determine the 
change of surface tension and energy, and а x, k, b, h are considered constants (defined using methods of 
statistical physics or quantum mechanics [1, 11, 12]). 

 
3.2. Features of the method of calculation of physical quantities x, k, b, h 
Relations (26)–(29) are a system of equations to determine the physical x, k, b, F0 and geometric h 

characteristics of the surface layer. The corresponding algorithm for determining x, k, b, F0, h  we present 

in three stages. First step, using the equation of equilibrium of  σ̂ (14) and (15) for j, which follows from 
the Poisson equations, state equation (16), (17) and also boundary conditions (19), we find five 
approximations of distributions normal mechanical stresses sr, sq   from coordinate r (in particular,  
(22)–(24)) using the technique of [4, 10] and using method of decomposition ϕ and displacements ur in the 
ranks by the small parameter b? = bF0 (20), (21) . At the second step, we direct radius R to infinity and 
obtain analytical expressions for j, sx, sy (25) depending on the x and the parameter k, not specifying 
numeric constants for the material. At the third step, we substitute expressions for ??? ϕ, σx σy in the 
relations σ  (26)–(29). For the system (26)–(29) we must set only numeric values σh, γ, E, ν, ρ, EV, which 

are known from experiment [13–19] and EF, We, are obtained from reliable results modeling methods of 
solid state physics ρ  [20] (σh  is determined on the basis of the experiment, and for γ  is known partial 
results of experimental studies and theoretical models [19, 20]). 

Thus, at the third stage as a result of calculations (simulation modeling), we get four important 
physical properties of metal – ξ, k, b, h. On these basis we can determine the size and Φ0 (23), through 
which we are formulating the boundary condition (19) for the modified chemical potential ϕ of conduction 
electrons. 
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Electric component of surface energy γe  we are submit through capacitance of the surface electrical 

capacitor C and potential (Galvani potential) ΔΨ using relations of electrostatics [8]:  
2 2

0/(2 )   / 2 ,      / 2 ,      2 / ,м C C C k d kγ = Ω ⋅ = ⋅ ΔΨ = ε ⋅ =                         (30) 

where d – the effective distance between the plates of the capacitor surface (within the double electric layer). 
 
3.3. The results of calculation of physical quantities. Checking of convergence. 
The presented algorithm for estimation characteristics of the material ξ, k, b, h  tested for aluminium 

and germanium (at 20 0С). Values of σh, γ, E, ν, ρ, EV  were determined by the results of theoretical and 
experimental studies (mostly known tabular data) [5, 13–20] (Table 1). 

 
Table 1 

Physical characteristics of aluminium and germanium 

Physical 
characteristics 

Al Ge 
Physical 

characteristics 
Al Ge 

E, GPa 140 108 EF, eV 7,50 – 

ν 0,30 0,30 EV, eV 4,12÷4,38 – 

ρ, kg ·m-3 7860 2159 We, m
-3 7,98⋅1028 4,0⋅1028 

K, GPa 110 110 σh, Н·m-1· 1,68÷2,35 1,117 

G, GPa 39 49 γ, J·m-2 1,60÷2,01 1,231 

 
E – Young’s modulus; E – Poisson's ratio; ρ – density; K – module of volume compression; G – 

shear modulus; EF – Fermi energy; EV – electron work function; We – concentration of conduction electrons 
in the metal and particle density which correspond of bound charges in the semiconductor; σh – surface 

tension; γ – surface energy. 

It should be noted that the proposed approach for finding ξ, k, b, h can also be applied to 

semiconductors and dielectrics, but instead the potential Φ (MCPCE) should be considered potential 
chemical Zc, which correspond to the particles that form the bound electric charge (in this paper for silicon 
atoms) [8, 21]. In addition, a shift of the double electric layer on the surface is not taken into account for 
these materials.  

Table 2 
Physical properties of the surface layers of materials 

Material 
№ z/n Physical characteristics 

aluminium germanium 
1 F0, Н·m

-1 4,114 ― 
2 Z0, N·m

-1  ― 5,210 
3 ξ 0,201 0,581 
4 b, В-1 0,203 0,117 
5 k, m-1 1,19·1010 1,68·1010 
6 γе, J·m

-2 1,117 0,697 
7 ξ· γm, J·m-2 0,695 0,405 
8 Ω, Cl·m-2 0,406 0,313 
9 h, nm 0,822 0,961 
10 С, F·m-2 69,5 53,5 
11 Δψ, in 6,04 ― 
12 ΔZ, V ― 5,21 
13 d=2k, nм 0,138 ― 
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Where F0 – equilibrium chemical potential of the electrons in the volume of solids; Z0 – the 
chemical potential of particles that correspond bound electrical charge in a semiconductor; ξ – 
dimensionless coefficient that describes change in surface energy by changing the mechanical 

component of surface energy  e м
м conste

=
 ∂ + = 
 ∂ = 

γγ ξγ γ ξ
γ γ

; b – electrostrictive coefficient of 

volume expansion; k – value, which inverse to distance at which space charge in the surface layer 
varies in e – times. The components of surface energy: γе  – electrical component, ξ⋅γm – mechanical 
component; Ω – surface charge; h – the thickness of the surface layer; C – the capacity of the double 
surface layer; Δψ – Galvani potential; ΔZ – difference of the potentials of double electric layer on 
the semiconductor surface (corresponds to related charges); d=2/k – the distance between plates of 
the surface capacitor. 

The resulting physical quantities received during calculations using (31) are given in Table 2. These 
data correspond to aluminium and germanium without impurities at a temperature Т=20 °С and 
atmospheric pressure p = 100 kPa in the external gas environment. Very important is the significant 
difference in the values of the electrical and mechanical components of the surface energy of the metal (Al) 
and a semiconductor (Ge), which is caused by the different nature of the formation of a are double electric 
layer (free and bound charges, respectively). 

As a result of calculations for aluminium received b? = bF0 = 0,9 < 1; F∗ = 0,066. Condition b? < 1  
provides the ability to use the method of small parameter [10.22]. 

Estimation of convergence of calculations of physical quantities we produce for the expression σx 

(25) for copper. Analysis σx (25) allows to confirm the convergence of σx, if the series was formed by the 
coefficients of approximations  

( ) ( ) ( ) ( ) ( )

2 3 4 5

2 3 4 5

3 3 9 27 27
1,   ,   ,   ,  ,   ,  

3 4 3 4 4 3 4 20 3 4 40 3 4

K K K K K

K G K G K G K G K G+ + + + +
              (32) 

ie, 1; 0.686; 0.157; 0,108; 0.0037; 0.00042 ..., the same. 

We can compare the series (32) with Dirichlet series 
1

1
s

n n

∞

=
  (majorizing in respect to (32), which 

responds to the Riemann zeta function), where n = 1, 2, 3 ... – natural numbers, Re (s)> 1. Dirichlet series 
for s  > 1 is converged. Taking, for example, s  = 1,2, we obtain numerical values for Dirichlet series: 1; 
0.435; 0.268; 0.189; 0.145; 0.116 … 

In accordance with the feature for compare of the series (32) with Dirichlet series, we can 
argue that a number (32) is also converged, and fractionals bF0, (bF0)

2, (bF0)
3, ... in (25) are 

reinforcing convergence. 
 

Conclusions 
1. Using basic equations of surface physics and thermodynamics of nonequilibrium processes we 

developed a mathematical model to determine the physical quantities characterizing the redistribution of 
conduction electrons (related charges) and mechanical stress in the surface layer of metal (semiconductor) 
which correspond them. The presented model takes into account the condition of the dynamic 
quasiequilibrium of conduction electrons (related charges) in the double electric layer on the metal surface 
(semiconductor). 

2. On the basis of the proposed model we developed the method of determining the physical 
characteristics of the material which including in the linear state equation (physical equation), the boundary 
conditions for the chemical potential F0(Zc) and mechanical stress σx. 

3. Also we determined the most important physical quantities for metal surface – capacitance 
of the double layer  С and the Galvani potential ΔΨ, which can be used to diagnose structural 
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elements in aggressive environments, as well as to determine the energy characteristics of the 
surface and interphase layers. 
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