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Виконано моделювання і статистичний аналіз випадкових даних, розподілених за 
законами Коші або Коші–Лоренца, Гіббса, Максвелла і  Больцмана, та змішаних 
розподілів на їх основі. Здійснено комп’ютерне моделювання статистичних середніх і 
дисперсії. 
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Introduction 

In the physical simulation, the statistics of the ratio of normally distributed random variables 
Y
X

 

obtained wide application. It is known as distributions of Cauchy*)[1–3]. It is a partial case of important in 
physics distribution of Breit-Wigner [4–5] with the parameters g  and 0x , which describes the section of 
resonance scattering with probability density 
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that is why it is used to simulate the thermal effects in the coolant channels of the nuclear reactor [6]. 
Recently, the distribution of Cauchy has been used in the tasks of assessing the consequences of 

natural disasters [7], accidents of complex technical systems [8], signal processing [9]. This is explained by 
the fact that the distribution of Cauchy diminishes more slowly than the Gaussian distribution. Therefore, 
the process or its fragment associated with the peaks of the sharp increase of probability in the random 
field of Cauchy appears more often than in the Gaussian field [10]. In addition, the processing of data of 
the systems with Cauchy distributions by classical for normal distribution method of the least squares can 
lead to serious errors. Therefore, in order to minimize gross errors in the processing of results, so-called 
robust methods are developed [11]. 

                                                      
Cauchy’s distribution was opened by Poisson to construct a counterexample for the central limit theorem 
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The maximum of the density function (1) corresponds to the coordinate 0max
xx

f
=

=
, which is 

determined as a solution of a differential equation 0=
¶

¶
x

fCa . 

The maximum value of the function (1) is: 
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The height of the Cauchy’s contour is equal to half the maximum at the coordinate points: 
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If we solve the differential equation 02
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=
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¶
x
fCa , then we obtain the coordinates of the points of 

inflection of curve (1): 
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at the height of the contour 
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Since the Fourier transform for the Cauchy function has a compact form: 
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then the Lorentz-Cauchy model is widely used in physics to simulate resonances. 
The Cauchy distribution is two-parameter. Normalized ( 1=Cas ) and centred ( 0=Cam ) function 

of density has the form: 
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In the unnormalized and non-centered representation, function (4) has the form 
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where Cam  and 0ñCas  are the random values. Here Cam  is local parameter and is not the mean, because 

Cauchy distributions do not have means. The value 0ñCas  is the scale parameter. Neither is ¾ the standard 

deviation, because Cauchy distributions do not have variances. Thus, the parameters CaCam s,  in the 
distribution (4a) are the parameters of location (mode) and scale (the half-width at half the height of the 
density curve). The Cauchy distribution is symmetric relative to 0=x  (or 0x ), so all its odd moments are 
zero. The integral distribution function has the form: 
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Not having the first and higher order of moments, the distribution of Cauchy does not obey the law 
of large numbers. For the Cauchy distribution, the position parameter Cam  coincides with the mode and the 

median of distribution, and the scale parameter Cas  with the width of the contour at half of its height. In 
the Cauchy distribution, the tails approach the horizontal axis much more slowly than in normal 
distribution, therefore, it is much more probable for the large and small values and as a consequence - the 
average does not exist. 

The Cauchy distribution is infinitely divided, so independent random variables in the right-hand side 
of the sum NxxxX +++= ...21  are also distributed according to the Cauchy’s law, but with the 

parameters 
N

mCa  і  
N
Cas

. It means that the average ( )Nxxx
N

+++ ...1
21  has the same parameters of 

distribution, as each value iX .  For the Cauchy distribution, the Lebesgue integral 
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is not determined for  1³n , neither mathematical expectation (although the integral of the first moment in 
the sense of the main value is equal to 
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nor dispersion, nor the moments of older orders of Cauchy’s distribution are not defined. Sometimes it is 
said that mathematical expectation is not defined, and the variance overlaps. It means that existing 
sampling values for average meaning  
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of random variables and mean square deviation Cas  do not coincide and do not have functional 
connection  with the parameters of distribution, because the points are selected irregularly to the point 

0=x  of the standard distribution (1). Since on the infinity the sub-integral function of the integral (3) 

changes as 
x
1

, then for the Cauchy distribution the integral of the moment of the first and higher orders 

does not have a finite value [12]. For the Cauchy distribution, the mathematical expectation equals 
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to the mode 0x , and the dispersion 
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is unlimited. Therefore parameter g  in fact characterizes the width of the density distribution curve, as a 
width of a peak at half of the height of FWHM.  

For the Cauchy distribution the rule of convolution is realized  
)()()( yxfyfxf CaCaCa +=× .                                                      (7) 

and for independent random variables NXXX ,...,, 21 , the value ( )NXXX
N

+++ ...1
21  is distributed 

with the probability density of that iX . Therefore, in fact, in the experiment there is no accumulation of 
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the mean in the vicinity of zero, which could take place in terms of the law of large numbers and the 
number of measurements does not affect the accuracy of its measurement. Since the distribution 
characteristics CaCam s,  for the Cauchy distribution do not have a functional relationship with the 
parameters of the distribution itself, we will analyze the statistical mean and dispersion of the distribution 
intermediate between the Gaussian and Cauchy distributions [13–15]. The intermediate distribution 
represents practical interest in terms of modeling the statistics of signal detectors [16]. 

The distribution of Cauchy, as the Gaussian distribution, is symmetric with respect to the mode. 
Therefore, we substantiate the formal rule «3s »*)for the distribution of Cauchy: 
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   (8) 

 
Modelling of the Cauchy-Lorentz optical resonance 

In the theory of probabilities, complex random numbers have been developed [17–18]: 
iYXZ +=                                                                    (9) 
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 leads to a proper definition of the variance of a complex 

random vector. A complex random variable is similar to a joint distribution of two random variables. A 
usual probability distribution function of random variable is characterized by the moment functions. The 
complex random variable is also characterized by moment functions and the first order moment or the 
mean of complex random variable Z is given by:  
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and dispersion 
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The rule “3s ” is actually developed and is valid for normal distribution 
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The method of complex variables is convenient to use for modelling optical resonance of Cauchy-
Lorenz, which in optics is called optical dispersion. Optical dispersion is associated with electronic 
processes that are accompanied by the propagation of electromagnetic wave in crystals. In 
phenomenological form, the phenomenon of dielectric resonance is modelled using Maxwell’s dispersion 
equations [19–22], which for non-magnetic substance ( m »1) in the complex form is written as follows: 
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where )(~ wn – is a complex function that binds to one another real refraction )(wn  and absorption )(wc  
rates.  

From the thermodynamic considerations [24], in the optics the connection between the indices )(wn  
and )(wc  is justified in the form: 
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from there 
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Here we restrict ourselves to the law of dispersion )(we  in a one-electron approximation. This 
approach is widely used in literature to simulate resonance transitions [23]. The essence of one-electron 
approximation is that in view of the interaction of the electric field of a light wave with the electron system 
of a crystal, into account is taken the so-called optical electron, which is weakly connected with the 
nucleus. 

   In the one-electron approximation, the dielectric permittivity function is formulated in the complex 
form [23]: 
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Here 0e  is the dielectric permittivity of the medium at low frequencies or the so-called background 
dielectric constant, pa4   is the force of the oscillator of the transition to the electronic state with the 
resonant frequency 0w , -g the fade parameter [24]. 

Figure 1 shows graphs of functions (12). In the region of the resonance frequency 0w  of the 
function ),( gwn and ),( gwc , there are sharply expressed nonlinear dispersions. The laws of the Cauchy-
Lorentz dielectric resonance lead to the appearance in the region of optical dispersion of wavelength 

intervals with normal 
wd

dn
>0 and abnormal 

wd
dn

< 0 process velocity. The area with an abnormal 



50 

dispersion combines branches 
wd

dn
>0 and is concentrated between the positions of the boundary 

frequencies of the transverse 0w  and longitudinal Lw  resonance excitations of the crystal:  
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This is a well-known Sachs-Ladyne-Taylor formula [23]. 
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Fig. 1. Graphs of functions 
 
The width of the longitudinal-transverse splitting TLLT www -=  depends on the amount of 

fading in the system of resonant excitations g  and in this area the absolute refractive index may be less 
than one, and the phase velocity of the light exceeds the corresponding for the vacuum 0c . With 
disappearing fading 0®g  the outline )(wc  obtains a delta-like kind. 

The dispersions of functions (11) are shown in Figure 1, and the hodograph of the complex function 
)(~ we  has the form of a circle (Fig. 2 (a)), which collapses with increasingg . This kind of hodograph 

reflects the fact that in the model of optical transitions, one mechanism of relaxation of energy (motion 
resistance of an electron is proportional to its velocity) is established. If they are more, then the form of the 
contour of the hodograph is complicated and converted into polymodal one. 

a                                                                                              b 
Fig. 2. a) the hodograph of the complex function; b) the resonance region the oscillatory characteristics  

of the interference processes of light waves substantially decay 
 

The Cauchy or Cauchy-Lorentz resonance greatly affects the dispersion of electronic processes in 
this spectral region. As it is evident from Fig. 2 (b), in this resonance region the oscillatory characteristics 
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of the interference processes of light waves substantially decay, since in this area the density of dissipative 
losses by the light wave of energy is significantly increased. The modulation of the spectrum by the 
Cauchy-Lorentz resonance is manifested in various regions of the spectrum of electron excitations of the 
crystal, including those associated with the peculiarities of its atomic-molecular structure. In Fig. 3 (a), it 
is depicted in the region of resonant excitation of optical phonons and excitons [25–29]. 

 

  
   a       b 

Fig. 3. The modulation of the spectrum by the Cauchy-Lorentz resonance  
in the region of resonant excitation of optical phonons and excitons 

 
The similarity of surfaces for various resonant excitations is due to the fact that the basis of the 

justification of the model of the optical oscillator is the same mechanism of dissipation of its energy, 
namely, the proportionality of the energy loss with the light wave of the velocity of the optical electron in 
the resonance flaring by its own electric field. Other aspects of simulation of electromagnetic processes in 
the material environment are fairly well-covered in literature, for example, in [30–31]. 

 
Statistical divisions of Gibbs, Maxwell and Boltzmann 

Micro and macro systems and their statistical implementation. In physics, for the simulation of the 
energy of a macrosystem or microsystem, depending on whether it is investigated in terms of the behavior 
of individual degrees of freedom, or the effects that are caused by their significant amount are studied, the 
Gibbs distribution is used. In the first case, the object of the research is the microsystems of individual 
molecules, atoms, microparticles, and in the second one – macrosystems in the form of physical bodies, 
consisting of a large number of them. The statistical method of studying physical objects is based on the 
concepts that are characteristic of the microcosm and proceed from the causal relationship between macro 
and micro phenomena; therefore, one can explain the laws of thermodynamics based on the laws of 
mechanics (classical or quantum) that regulate the micro phenomena and indicate the possibility of 
deviations (fluctuations) from the laws of thermodynamics. 

The state of the physical system is given if all of its physical characteristics are determined. There is 
a great number of such characteristics (physical quantities), but there is always a minimum set of 
independent parameters, having set which it is possible to determine all other quantities. These are the so-
called state parameters. In classical mechanics, such parameters are, for example, coordinates and impulses 
of all degrees of freedom of the physical system, that is, it is postulated that all physical quantities are 
functions of coordinates and impulses. It is this energy that is in Hamilton’s function. 

In quantum mechanics, the state parameters are quantum numbers – one for each degree of freedom. 
For example, it can be the main quantum number n, magnetic m and spin s for one dot particle that 
determine the wave function of the particle system. Therefore, in order to obtain macroscopic conclusions 
about the system from its microscopic properties, it is necessary to have a connection between microscopic 
and macroscopic states. Since one macro-state of the system corresponds to many of its micro-states, then 
by specifying a macro-state, we outline the set of available micro-states, the quantity of which is called 
statistical weight. Moreover, the realization of this or that micro-state can only be judged probabilistic, if 
this probabilistic information is possible to obtain from the data on micro-state. If such information about 
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the micro-states cannot be obtained, this means that they are all equally probable, as is the case in isolated 
systems under fixed conditions. Consequently, there is a probabilistic relationship between the macro- and 
micro- states of the system, which precisely determines the dependence of its macroscopic properties on 
microscopic ones. 

The probability of a micro-state is one of the main concepts of the statistical method of describing 
the system. In connection with the objective necessity of this concept, we introduce the notion of a 
statistical ensemble as an analogue of the concept of an elementary event in the mathematical probability 
theory. Then, by definition, the probability of finding a system in this state will be equal to the ratio of the 
number of systems in this micro-state, to the total number of micro-states. 

The statistical ensemble is just selected as a set of objects for the study of physical systems. The 
statistical ensemble is a sufficiently large set of macroscopically accurate copies of the physical system, 
having all the macro parameters set equally. The probability of all available micro-states determines the 
distribution of the system by microstate-statistical distribution. Moreover, as the experience proves, the 
macro process in the system is irreversible and it is due to the fact that it is the transition of the system 
from less probable states to more probable. Macro process stops when, under given external conditions, the 
system has taken the most probable state, that is, has thus acquired an equilibrium state. The equilibrium 
state is described by the smallest number of system parameters. The transition of the system to a non-
equilibrium state is unlikely. 

If the system is isolated from external conditions (the so-called thermostat), then all its micro-states 
are equally probable and the macro-state determines one statistical ensemble – micro-canonical, as 
established in physics, by the intrinsic energy and volume. If the system is not isolated, that is, it interacts 
with the thermostat (temperature and volume are given), then the characteristic of the probability of the 
system being in a certain state is the so-called statistical weight. 

Gibbs distribution. The classical micro-state of the system is determined by the generalized impulses 
P  and particle coordinates Q . Moreover, if in the quantum approach the set of values of the parameters of 
micro-states is discrete, then in the classical case it is continuous. In classical physics, the universal 
distribution of Gibbs is known as a function of the values of generalized coordinates QP, : 
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which is used to model the energy of the system. Since the component parts (bricks) of the system - the 
particles move and can interact with each other. The total energy of the system is given as a function of the 
impulses ip  and the coordinates iq  of the particles in the form of the Hamilton function1*). For one 
particle, the Hamilton function reduces to the sum of kinetic and potential energies, therefore, in the 
Cartesian system, the Gibbs distribution is written in the form 
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If we are interested only in the distribution of velocities, then by integrating the Gibbs distribution in 
all coordinates, we get the well-known Maxwell distribution: 
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It is possible to introduce the surface of a stable, complete kinetic energy of n  particles in a three-
dimensional Euclidean space: 
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In quantum mechanics, Hamilton’s operator 
Ù

H  corresponds to Hamilton’s function. 



53 

Then, if each velocity projection has the same energy kT
2
1

, then at ¥®n  the distribution of each 

of the components goes to the Maxwellian. 
 
Distribution of Boltzmann. If we are interested in the particle distribution by coordinates, then by 

integrating the Gibbs distribution at all velocities, we obtain the well-known Boltzmann distribution: 
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The formula (1.13.4) includes both the potential energy of the particles in the external field, and the 
potential energy of the interaction between the particles. From (18) it follows that relative value ZYX ,,  if 
the supply of potential energy is true: 
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Then, for the Boltzmann distribution function, the factorization condition is fulfilled 
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Maxwell distribution. Let kuuu ,...,, 21  are independent standard (normalized and centred) 
distributed relative value. The density of probability of this system is determined by the formula 
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the number of items k  is the number of degrees of freedom, then we can construct a density function with 
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At 2=k  the well-known Rayleigh distribution law is obtained ( )2/exp)( 2ccc -=f , and at 

3=k we obtain Maxwell’s law of distribution ( )2/exp2)( 22 cc
p

c -=f . Thus, Maxwell’s 

distribution is directly related to 2c  distribution of the relation  
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if to put in formula (20) 3=n . 
Maxwell’s distribution is used to calculate the probability of a random point falling into the sphere 

and a layer between two concentric spheres in geometry, where the scattering center coincides with the 
center of the sphere and the center of the spherical layer. Other generalized laws of Maxwell’s distribution 
can be found in [32]. 

The density of the Maxwell distribution is described by the function: 
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where 0ñs . For it, the central moments are: 
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The cumulative distribution is described by the function 
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If each of the independent Cartesian projections of the velocity vector is distributed by the Gaussian law 
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then the function of the density distribution of the speed module has the form 
 

                             
Fig. 4. The function of the density distribution of the speed module 
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and its surface and corresponding lines of the level are depicted in fig. 4. The basis of the justification of 
function (26) is the equation of probability balance 
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of the equation for the density of the joint distribution of three independent relative values 

( ) ( ) ,
2

exp
2

1)(
2

1exp
2

1
2

1

2

1

2

1)()()(),,(

2

2

3
2

222
23

2

2
2

2
2

2
2

2

2

2

2

2

2

÷÷
ø

ö
çç
è

æ
-=÷

ø
ö

ç
è
æ ++-=

=××=××=
---

s
J

ps
JJJ

sps

pspsps
JJJJJJ s

J

s

J

s

J

ZYX

ZYXZYX

ZYX

eeeffff

     (28) 

and the equality of the product ZYX ddd JJJ ××  as the volume of the elementary cube  

(Fig. 5 (b)), of the volume of the elementary spherical ring in Fig. 5 (c)  JJp dd 24 , from which we 
obtain that 

24pJ
J

JJJ
=

××
d

ddd ZYX .                                                          (29) 
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a    b    c 
Fig. 5. Maxwell’s functions (a); the volume of the elementary cube (b); the volume of the elementary spherical ring (c) 

 
Maxwell’s functions represent the product of two functions of a quadratic 2J  and exponents 
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, the graphs of which are depicted in Fig. 5 (a). By comparing the functions (26) and (28) to 

each other, we obtain that the mean square deviation equals  
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To the extremum of the function (26) (mode of distribution) corresponds the most probable value of 
speed iJ . Having solved the differential equation for an extremum 
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we get that to the Maxwell’s distribution mode corresponds the most probable value of speed 
sJ 2=i .                                                                    (32) 

We substantiate the standard valuation for the function (32): 
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Then the average velocity J  will be equal 
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which is in agreement with (23) taking into account (32). The average of the square of velocity is equal to 
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Therefore, the dispersion of the velocity of independent components J  і 2J : 
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from where the mean square deviation is 
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After integrating the function (24), the finite expression for the Maxwell integral distribution 
function acquires the form [1.23] 
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Fig. 6. The graph of the function (38) 

 
The graph of the function (38) is shown in Fig. 6. The first item in (38) is a function of errors, and 

the second item is a differential Rayleigh function, reduced to a dimensionless form. 
 

Summary 
The paper is simulation and statistical analysis of random data, distributed by the laws is executed of 

Cauchy or the Cauchy-Lorentz, Gibbs, Maxwell and Boltzmann and mixed on their basis distributions. 
Computer simulation of statistical mean and dispersion was carried out. 
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