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The article analyzes existing and perspective systems of homomorphic encryption and 
their practical application. The author considers some models of homomorphy cryptographic 
algorithms, which may be useful from a practical point of view. One of the interesting and 
practically valuable encryption schemes is cryptographic algorithm, which is constructed on 
matrix polynomials. Also considered are isolated cases of homomorphic encryption, a 
protected cloud database model based on a completely homomorphic encryption scheme. 
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ДЛЯ ШИФРУВАННЯ ДАНИХ У ХМАРНОМУ СХОВИЩІ 
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Проаналізовано наявні та перспективні системи гомоморфного шифрування і їх 
практичне застосування. Автори розглянули деякі моделі гомоморфних криптографічних 
алгоритмів, що може бути корисно з практичного погляду. Однією з цікавих і практично 
цінних схем шифрування вважається алгоритм, побудований на матричних поліномах. 
Розглянуто також окремі випадки гомоморфного шифрування, модель захищеної хмарної 
бази даних, яка ґрунтується на повністю гомоморфній схемі шифрування. 

Ключові слова: гомоморфний, криптоалгоритм, шифрування, хмарні технології, 
сховища даних. 

 
Problem statement 

Of considerable interest for analysis and practical use is homomorphic cryptography, or 
homomorphic encryption. Homomorphic encryption allows you to execute certain types of computations in 
encrypted text and receive encrypted results of calculations, which, when decoded, are consistent with the 
results of operations performed with open text. The theoretical and practical aspects of homomorphic 
encryption are closely related to the problem of cloud computing security. It is believed that the cloud 
computing ideology has become popular since 2007 due to the rapid development of communication 
channels and the rapidly growing needs of users. 

The reasons are obvious for the growing popularity of cloud technologies, and the possibilities of 
their application are very diverse. The user saves both on maintenance and personnel, and on 
infrastructure. No need to buy software licenses, organize and maintain your own servers, hire experienced 
administrators. All of these problems are transferred to the service provider. In addition, this approach 
allows standardization of software even if different enterprise operating systems (Windows, Linux, 
MacOS) are installed on enterprise computers. 
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Problems of information security in cloud technologies have been actively analyzed late enough 
when the clouds were already actually implemented by technology. The practice of cloud computing has 
shown that there is not enough cryptographic means available to protect information. Let's explain it in this 
example. Assume that the cloud S contains a lot of users (clients) p1, …, pi, …, pn. 

Pi has confidential xi data stored in the cloud. This cloud service is called Storage aaS 
(repository as a service). The user of Pi can refer to the cloud requesting to calculate the value of 
some function F, which depends on confidential data. The request must consist of a description of 
the function F, the user ID and its public key pki. The cloud should check the credentials of pi for 
calculating F (xi). Such verification can be implemented using the standard procedure of electronic 
digital signature (EDS). If the user has confirmed his rights to calculate the F function, then the 
cloud must calculate the value of E (pki, F(xi))  and send it to the user. As E can to take the 
functions of encryption of some public key cryptosystem.  

A user who places his confidential data in a repository and inquires for the calculation of the 
function F does not trust the cloud and must take appropriate measures and impose requirements to 
ensure their safety. Obviously, it would be much safer to transfer data in such a way that during the 
operations that are carried out over them, the information about these data has not been 
disseminated at all. Therefore, first of all, the data must be encrypted, and they must be sent to the 
server already in an encrypted form. This means that the encryption must be done by the user. 
Secondly, it is necessary to process this data without decrypting, as for the transmission and storage 
of a secret key, it is necessary to adhere to certain procedures, especially complex, if the 
information is processed in a distrust environment. 

It turned out that the protection of information in cloud computing is much more complicated than 
those tasks for protecting information that are solved by known cryptographic means. Public key 
cryptosystems for solving this problem are not always appropriate. In 1978, the authors of the well-known 
RSA public key algorithm, Michael Dertuzos, Ronald Rivers, Leonard Adleman, first proved that the 
method that allows successful operations on encrypted data without distorting or decrypting them is the so-
called homomorphic encryption [8]. In their work they described the concept of homomorphic encryption, 
as well as wondering if such an encryption is possible in principle and for which algebraic systems such a 
homomorphism exists. 

One of the most is interesting and important tasks facing modern cryptography is the computation of 
encrypted data without their prior decoding. The question of the fundamental possibility of such 
calculations remained open for a long time, and it must be said that the authors of the RSA encryption 
scheme believed that such calculations were impossible in principle. The section of cryptography devoted 
to a scheme that allows computation over cipher text is called homomorphic cryptography, and the 
corresponding schemes are homomorphic. In this case, there are completely homomorphic and partially 
homomorphic encryption schemes. In a completely homomorphic encryption scheme, the operation of 
adding and multiplying cipher text is homomorphic. More precisely, the following relationships are 
performed: 

21212121 ))()((,))()(( mmmEmEDmmmEmED +=+´=´ ,   (1) 
where E(m) – encryption function, and D(m) – decryption function. 

If in some encryption scheme at least one of these conditions is fulfilled, then this scheme is called 
partially homomorphic. Examples of partially homomorphic cipher circuits are quite numerous. For 
example, the RSA scheme itself is homomorphic with respect to the multiplication operation, as well as the 
El-Gamal scheme. The RSA scheme and the El-Gamal scheme, for example, are partially homomorphic, 
namely the cipher text multiplication operation, is homomorphic [2]. 

In the article we consider a relatively new direction in the construction of cryptographic algorithms 
based on a homomorphic encryption system. 
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Analysis of recent research and publications 
Homomorphic encryption is a form of encryption that allows you to perform a certain algebraic 

operation over the open text by executing an algebraic operation over the encrypted text. Let E(k, m) be an 
encryption function, where k is an encryption key and m is an open text. The function w is called 
homomorphic with respect to the operation over open texts, if there is an effective algorithm M (requires a 
polynomial number of resources and operates in polynomial time), which, upon receipt of any pair of 
encrypted text of the form (E(k,m1),E(k,m2)), yields an encrypted text c=M(E(k,m1),E(k,m2)) such that 
when decoding c will be open text m1×m2 [4]. 

As a rule, the following particular case of homomorphic encryption is considered. For this 
encryption function E and operation *1 over open texts there is an operation *2 over encrypted texts, such 
that from encrypted text E(k,m1), E(k,m2), when decrypted, extracted open text m1 *1 m2. In this case, it is 
necessary that c, E(k,m1), E(k,m2), at the given, but with an unknown key, it would not be possible to 
effectively check that the encrypted text c received from E(k,m1), i E(k,m2). 

Any standard encryption system can be described as three operations: key generation (KeyGen), 
encryption (Encrypt) and decrypt (Decrypt). 

Homomorphic encryption system, in addition to the three above-mentioned operations, includes a 
calculation operation (Eval) [4]. Thus, homomorphic encryption is a sequence of four operations: key 
generation, encryption, computation, decryption (Fig. 1): 

· generation of keys: the client generates an open key pk (public key) and secret key (secret key) 
for encrypting the open text; 

· encryption: using the secret key sk, the client encrypts the plain text PT (plain text), 
creates Esk (PT) and, together with the public key, pk sends the encrypted CT text (cipher text) to the 
server; 

· computing: the server receives a function F for computing CT-encoded text and executes it 
according to the requirements of this function using pk; 

· decryption: to get the desired result, the value Eval(F(PT)) obtained during the calculation is 
decrypted by the client using its secret key sk. 

 

 
Fig. 1. An algorithm for homomorphic data encryption in cloud storage: own 
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If a cryptosystem with such properties can encrypt two bits, then since the addition and 
multiplication operations form a complete Turing basis over the bits, it becomes possible to compute any 
Boolean function, and hence any other computable function. 

For more than 30 years the problem of completely homomorphic encryption has remained 
unsolved – the creation of a system that is homomorphic with respect to operations of adding and 
multiplying simultaneously. Only in 2009, a postgraduate student at Stanford University and a trainee 
at IBM, Craig Gentry, theoretically substantiated the fundamental possibility of creating such an 
encryption system. In the Gentry scheme [5], the properties of a homomorphism, both in terms of 
multiplication and addition, are fulfilled, that is, it is an algebraic homomorphic system. The proposed 
Gentry system can be used to ensure the confidentiality of data in any kind of processing in a non-
trusted environment, such as cloud computing or distributed computing. However, the Gentry model 
was too impractical. With the increase in the number of operations generated over encrypted text, the 
complexity and size of the encrypted text increase with incredible speed. Despite the fact that in recent 
years, many improvements have been made to this scheme, it is still a quicker theoretical model, 
which cannot yet be applied in practice. 

 
Formulating the whole of article 

On the example of specific algorithms and schemes, we describe multiplicative, additive [1, 2, 3] 
and mixed [6, 7] properties of homomorphic encryption. The above algorithms and schemes are public, so 
let's give a detailed description of only some of them; with respect to others we restrict ourselves to a short 
listing of their main properties and areas of application. 

The RSA encryption method (abbreviation for the names of the creators – Rivest, Shamir, Adleman) 
was proposed in 1977 as an implementation of the idea of the founders of cryptography with the public key 
of Diffie and Hellman [2]. 

Consider the situation when the open text is represented by the number m, so that 0 < m < N. User B 
wants to send a secret message to him. To do this, he makes publicly available two N numbers (constituent 
module) and e (public key) that satisfy the following conditions: N = pq, where p, q are large prime 
numbers that B holds in secret; p,q ≥ 2256; e is chosen mutually simple with φ(N) = (p-1)(q-1). 

User A, who sent the message m, encrypts it as follows: 

)(mod)( NmmE q= . (2) 
To decipher B, the number d is the same as that 1 ≤ d ≤ N-1 & ed = 1(mod φ(N)). That comparison is 

solved in a unique way, since (e, φ(N))=1. To solve the equation ed = 1(mod φ(N)), user B must calculate  
φ(N) that it is not difficult for him, as φ(N)= φ(pq)= φ(p) φ(q)=(p-1)(q-1). Any other user who knows only 
N is forced to find p and q, that is, to decompose the number of N into simple factors, and this problem for 
large p and q has a significant computational complexity 

Next, having available y=E(m)=mθ(mod N), User B calculates the value D(y)=E(m)=yd(mod N), 
which is the open text m. Indeed, using the Euler theorem, we obtain: 

)(mod)()( )(1)( NmmmmmyyD kNkNdd ===== + jjq .                                 (3) 
The RSA cryptosystem is homomorphic with respect to the operation of multiplying open texts. For 

any two open texts m1, m2. 
)()(mod)()( 212121 mmENmmmEmE == qq .                                         (4) 

As for the El-Gamal cryptosystem, consider the cyclic group of order G p and g, which are the 
generating elements of the group. As a secret key, a random element of d group Z(p-1) is selected. The 
corresponding public key e is calculated by the formula e=gd. 

The encryption function for the message m looks like this: 
),(),( rr gmemeE = ,                                                                (5) 

where r – a random element of the group Z(p-1). 
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Decryption of cryptograms (c1, c2) is performed as follows. is calculated: 
rdd gc =2 ,                                                                        (6) 

whence: 

2

1
c
cm = .                                                                            (7) 

El-Gamal's cryptosystem is homomorphic to the operation of multiplying open texts. If 
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21 meEmeEggmmeemmeE rrrr == .                                (8) 
Peier's Cryptosystem is based on the probabilistic asymmetric transformation algorithm and is used 

in cryptographic protocols with a key. 

Let p and q be two prime numbers, n = pq,  λ = mod(p-1, q-1). Choose a random number g of k
nZ 2  

and calculate )(mod))mod(( 12 nngL -= lm , where 
u

uuL )1()( -
= . 

The open key is a pair (n, g), and the private key is a pair (λ, μ). 

To encrypt plaintext nZm Î  is selected a random number k
nZr 2Î  and calculate 

)(mod)( 2nrgcmE nm== . 

Decryption is performed according to the formula )(mod))(mod( 2 nncLm ml=   . 
The property of a homomorphism will have the following form: 

))(mod()())(()()( 21212121
2121 nmmErrgrgrgmEmE nmmnmnm +=== + .               (9) 

Let's consider already known Gentry scheme for completely homomorphic encryption on an 
example of calculations in Z2. First we generate keys. Choose an arbitrary odd integer 12 -= kp . This 
number p is a secret key. Let's try to encrypt the bit )1,0(Îm . To do this, we generate a number  

mrz += 2  where r is an arbitrary integer. This means that: )2(modmz = . 
Encryption is that for each number m the matching number is assigned zpqc += , where q – an 

arbitrary integer. So, qmkqrqkmrcmE +++=+++== )(2)12(2)( . The exact number is 
calculated c. 

To decipher, we take the numbers c, p, q, where p, q are known. We will decrypt using a secret key p: 

)(mod))(mod(2))(mod2(
)(mod)(mod)(mod))(mod()(mod

pmprpmr
pzppqpzppqzpc

+=+=
==+=+=

                 (10) 

Then we calculate: mmprpC === )2(mod)2))(mod(mod(2)2))(mod(mod(  . 
Encryption is homomorphic with respect to adding and multiplying operations. Consider a couple of 

bits )1,0(, 21 Îmm  and compare for them: 222111 2,2 mrzmrz +=+= . Choose a secret key 12 += kp . 

Then 22221111 )(,)( pqzcmEpqzcmE +==+==  – encrypted texts for m1 and m2 respectively. 
The operation of adding over the encrypted numbers will look like: 

)()(2)()()( 21212121212121 qqmmrrqqpzzccmEmE +++++=+++=+=+ .          (11) 
The multiplication operation over the encrypted numbers will look like: 

21
2

222121122121

21
2

22212211

21
2

2221212121

)()(24

)()2)(2(

)()()(

qqpqzqzpmmmrmrrr

qqpqzqzpmrmr

qqpqzqzpzzccmEmE

++++++=

=+++++=

=+++==

                           (12) 
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And when decoding we get: 

212121 )2))(mod)(mod(())()(( mmpccmEmED +=+=+ .                             (13) 

212121 )2))(mod)(mod(())()(( mmpccmEmED == .                                 (14) 
An essential disadvantage of this scheme is that computing leads to an accumulation of error and, 

after it exceeds p, decrypt the message becomes impossible. One solution to this problem is to decrypt data 
after a certain number of operations, but this option reduces the computing performance and requires 
constant access to the secret key. The stability of the Gentry scheme on the basis of ideal lattices (lattices 
with properties of the ideal on a certain number of numbers) reduces to the NP-complete problem of 
finding the shortest vector. There are many works aimed at the development of ideas proposed in it and the 
elimination of shortcomings. In particular, the scheme of BGV (Brakerski, Gentry, Vaikuntanathan) was 
proposed. The authors presented an alternative to completely homomorphic encryption based on LWE 
(Learning with Errors) [5], which made it possible to reduce the complexity of constructing a 
cryptosystem, but inherited the main drawbacks of the Gentry scheme: the existence of a growing error in 
the encrypted text; increase the size of the encrypted text. 

Depending on the circumstances, the property of homomorphism can be regarded as both dignity 
and a cryptosystem as a defect. This applies, for example, to the RSA cryptosystem, in which the 
decryption function is used in the EDS scheme. The signature of the message m is calculated by the 

formula )(mod Nms d= , where d is the secret key component. Obviously, this is a homomorphism 
transformation with respect to the multiplication operation. So, we can offer the following way of forgery 
of signatures. If s1, s2 messages are known m1, m2, then the message m1m2 of the message will be s1s2, 
respectively. However, in practice, this vulnerability does not pose a threat to the stability of the EDS 
scheme, since they are not signed by their own messages, but the value of the hash functions of the 
messages. However, the homomorphism of the signature generating function imposes an additional 
requirement on the hash function, which does not follow from standard definitions of the cryptographic 
hash function.   

Most algorithms of homomorphic encryption, the stability of which is based on the complexity of 
discrete logarithms in the finite field, is quite easy to transfer to the case of elliptic curves. Crypto systems 
based on elliptic curves outperform other public key systems in two important parameters: the degree of 
protection of the calculation for each key bits and the speed of the software implementation. This is 
explained by the fact that for calculation of inverse functions on elliptic curves, only algorithms with 
increasing labor intensity are known, whereas sub exponential methods are proposed for ordinary systems. 
When providing the same stability of the cryptographic protocols, the calculation is performed 
approximately 20 % faster in the group of points of the elliptic curve, than for the groups of the final field. 

The most voluminous operation in cryptosystems based on matrix polynomials is the multiplication 
of cipher text with matrix polynomials, so the computational complexity of the entire scheme will directly 
48depend on this operation. In turn, the multiplication of matrix polynomials depends on two algorithms: 
the matrix multiplication algorithm and the polynomial multiplication algorithm. 

The algorithm for multiplying polynomials, suitable for the scheme described, has an asymptotic 

complexity of operations )()( ...5849,13log2 dOdO =  over the coefficients of polynomials, and where d is 
the largest of the degrees of polynomials. The algorithm for multiplying two matrices )( NN ´  has the 

asymptotic complexity of elementary operations )( ...373,2NO . 
If )(lON =  and the degree of the cipher text is the equal of polynomials, we find that the total 

number of operations on the elements Zp has an asymptotic complexity )( 76,3lO» . 
At present, the best estimate of computational cost in the calculation of homomorphism is 

)()( 5,3ll Og = . Such computational complexity has the scheme described in [5]. 
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Here it is worth noting that when evaluating the computational complexity of the encryption scheme 
based on matrix polynomials, it was considered the multiplication of matrices )( NN ´  from dimension 

requires operations )( ...373,2NO . Indeed, there is an algorithm capable of multiplying two matrices at a 
given time, and this is the Coppersmith-Grape algorithm improved by Williams [6]. However, in practice, 
the Coppersmith-Vineyard algorithm cannot be used at present, since it has a very large constant of 
proportionality and begins to gain in performance in comparison with other known algorithms only for 
matrices whose size exceeds the memory of modern computers  

On the other hand, the well-known Strassen hypothesis states that for an arbitrarily small algorithm 
0>e , with a sufficiently large natural n, guarantees the multiplication of two size matrices nn ´  for 

operations )( 2 snO + . 
The cryptosystem on matrix polynomials inferior to the asymptotic estimations of the system 

described in [6], but from the practical point of view, it now represents value, since it allows for wide 
parallelization. In particular, an experiment was conducted with the use of technology for mass parallel 
computing by CUDA of firm Nvidia, which showed an advantage over the time of computing 
cryptosystems on matrix polynomials. 

The best estimate of the computations in homomorphic calculations belongs to the Gentry 
cryptosystem [6]. IBM has implemented the so-called homomorphic encryption library called 
“Helib” (https://github.com/shaih/HElib). This library contains the implementation of a 
cryptosystem, which is considered today asymptotically better than computing costs among 
homomorphic encryption systems. 

For a comparative analysis of the cryptosystem described in the article and the modified Gentry 
cryptosystem [6], a cryptosystem matrix on matrix polynomials was implemented in which the CUDA 
parallel computing technology was used to multiply the matrices and polynomials, and the modified 
Gentry system was taken from the HElib library. 

A number of experiments with different parameters of crypto stability were carried out. We 
evaluated the time required for the following operations: encryption; decryption; multiplication. 

 
Table 1 

Evaluation of cryptosystem performance on matrix polynomials using parallel computations 

Parameter λ Encryption Decryption Multiplication of cipher text 
16 4 ms 13 ms 8 ms 
24 79 ms 13 ms 15 ms 
32 1,5 s 14 ms 22 ms 
64 2 min 20 ms 1 s 

 
Table 2 

Evaluation of the performance of the modified Gentry cryptosystem 

Parameter λ Encryption Decryption Multiplication of cipher text 

16 2 ms 6 ms 5 ms 

24 40 ms 11 ms 12 ms 

32 1 s 15 ms 50 ms 

64 5 min 200 ms 10 s 

 
Based on our performance estimates in Tables 1 and 2, it is clear that in practice the 

cryptosystem based on matrix polynomials does not yield to the improved Gentry encryption model, 
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and even benefits from the use of parallel computing technologies. We conducted an experiment for 
the maximum value of the parameter 64=l  and already at the value 32=l  we have obtained that 
the Gentry model, which is considered to be asymptotically the most “fast”, yields the model on 
matrix polynomials 

On the basis of the foregoing, it can be argued that in practice, cryptosystems designed to apply 
homomorphic encryption must satisfy at least the following requirements: 

· A set of supported mathematical functions should cover the everyday needs of 
programmers; 

· The accuracy and speed of computations should not degrade during computations; 
· The stability of the algorithm should exclude the attack by a complete override. 

 
Presenting main material 

Fully homomorphic encryption can solve the problem of using a cloud database for storing 
information in an open form by the fact that all data that will be stored in cloud storage will be encrypted, 
moreover, access to decrypted data will only be the owner of the repository. Also, third parties accessing 
this cloud storage will not be able to receive information about requests sent by the owner to the cloud, as 
well as the results of relevant queries. The fully homomorphous encryption model for implementing a 
reliable cloud storage is described below. 

Relational database is represented by a set of rectangular pages. For simplicity, without loss of 
dependencies, we can assume that the database consists of one table. The table has attributes maaa ,...,, 21   

and consists of a multitude of records n
iiR 1}{ = , where m

jjii wR 1, }{ ==  – he value of the record Ri in the 

attribute aj. 
Consider the case when the customer needs to do two types of query requests: 

) v= (a OR ... OR ) v=(a OR ) v=(a  WHEREdb FROM * SELECT ktk2 t21 t1               (15) 

) v= (a AND ... AND ) v=(a AND ) v=(a  WHEREdb FROM * SELECT ktk2 t21 t1          (16) 
Queries type (15) will be called disjunctive, and queries type (16) – conjunctive. Now let's consider 

how it is possible to build a reliable cloud data warehouse, having a completely homomorphic encryption 
scheme. 

Let S be some cloud server that stores the base n
1ii}{Rdb ==  belonging to client K. Periodically, 

client K refers to the server S with requests. As a result, he must obtain a list of records that correspond to 
the WHERE condition on the client request, and it is necessary for the server S to know nothing about the 
value vi of the condition of the WHERE request of the client, as well as the records in the database that 
satisfy the query condition. 

One approach to solving this problem is as follows: 
· In the first step, the client K receives the entry numbers t21 i ..., ,i ,i  that match the query. This 

step must be implemented so that S recognize it does not t21 i ..., ,i ,i ; 

· The client K extracts from the database with the numbers t21 i ..., ,i ,i  one by one so that S does 
not recognize the value of the indices. 

In order for the server S, as well as third-party users not to be able to access the client base K, 
is stored in encrypted form. In fact, S stores the value of each attribute for each entry in an 
encrypted form. Let encryption use a completely homomorphic encryption scheme E, and sk – a 
secret key. 

How does a customer get secured indexes? Customer K wants to hide the value k  i  1 ,vi ££ , so he 

needs to encrypt them. On server S client K transfers bets k  i  1 ),(v E ,a iz1 ££ .  
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In turn, S should hold the following calculations for each entry ( ){ } niwER m
jjii ,...,1,

1, ==
=

 carry 

out the following calculations:  
1) for everyone k ..., 1, = z j to calculate )(v E ),(w E f = e kzj i,k , where f is a function that 

checks for equality zj i,w   kv  and is homomorphic, that is (1) E = ei , in the case of equality, zj i,w , jw  

and (0) E = ek  in another case;  
2) depending on the type of request, perform the following: 

· conjunctive inquiry: )e ..., ,e ,(e H = e t21AND
`
i , where t21t21AND e ..., ,e ,e)e ..., ,e ,(eH = ; 

· disjunctive quest: )e ..., ,e ,(e H = e t21xor
`
i , where )   ( Hxor  – a function that calculates XOR 

from arguments; 

· the server S sends the vector K to the client )e ..., ,e ,(e = R ```
es n21

. 

To remove entries from the database by their indexes, the client K can use the standard secret 
information reception protocol. At the moment a large number of different secret information protocols 
have been developed, but there are very few protocols for open data with the ability to protect them from 
unauthorized access at the system level. 

 
Conclusion 

Based on the above, it can be argued that in the near future methods of homomorphic encryption will 
have a significant impact on the market of cloud services and the appearance of modern information 
technology. However, until there are effective algorithms for fully homomorphic encryption that provides a 
level of performance suitable for practical use, and even more so for real-time applications, no effective 
algorithms have been created. All proposed schemes cannot be implemented in practice and are not ready 
for implementation in real systems, as they result in accumulation of errors and rapid increase of encrypted 
texts. In this case, partially homomorphic systems (in terms of addition or multiplication operations) are 
successfully used in cloud computing, electronic voting, secure information retrieval, feedback systems 
and others. 

It should be borne in mind that some homomorphic cryptosystems can be subjected to intentional 
external influences (vulnerable to attack with adaptively picked cipher text), and therefore not always 
suitable for secure data transfer. An assessment of the crypto stability of homomorphic systems requires a 
separate study. 

Unlike lightened cryptography for homomorphic encryption, the corresponding international 
standards have not yet been developed; however, work is actively under way to create acceptable solutions 
that allow the safe processing of confidential data in clouds and other applications. 
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