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Two problems are analyzed in the paper: 1) prediction and identification of critical loads 
and concrete strength in compressed R/C columns, 2) identification of compaction 
characteristics in granular soils. The main goal of the paper is to compare the numerical 
efficiency of the Method of Gaussian Processes with the results obtained by means of other 
methods (Extended Back Propagation Neural Network, Semi Bayesian Neural Networks and 
Bayesian methods). 
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Проаналізовано: 1) передбачення і визначення критичних навантажень і міцності 
бетону в стиснутих залізобетонних колонах, 2) визначення характеристик стисливості в 
сипучих грунтах. Основна мета статті: порівняти чисельну ефективність методу 
гауссових процесів з результатами, отриманими із застосуванням інших методів. 

Ключаві слова: гаусові процеси, штучні нейронні мережі, байєсівські методи, 
залізобетонні стиснуті колони, сипучі грунти, критичні навантаження, характеристики 
стисливості. 

1. Introduction 

A research group, under the supervision of Prof. Waszczyszyn, has developed research  
on applications of  Artificial  Networks (ANNs) in the analysis of structural and civil engineering problems 
[1, 2]. It has been stated that ANNs are especially suitable in the inverse analysis, i.e. regression analysis  
in which either excitations or material parameters are identified for known structural responses  
or material features. 

Quite recently, the authors have focused their attention on the Bayesian methods and their 
applications in the Semi Bayesian Neural Network (SBNN) and, especially, in the Method of Gaussian 
Processes (MGP). In case of SBNN, the vector of connection weights w is the model main attribute, 
similarly as in the deterministic Extended Back Propagation Neural Network (BPNNext). MGP is similar 
to radial basis function neural networks but without application of w. The main attribute of GPM is the 
correlation matrix of input data, see [3, 4]. On the base of analyzed examples, it has been proved that for 
small and medium sets of data MGP seems to be more numerically efficient than BPNNext and SGNN. 

Two problems of structure and soil mechanics are discussed in the presented paper. The first 
problem concerns the prediction or identification of the critical load or the strength of concrete in 
reinforced compressed columns. The other problem deals with the identification of compaction parameters 
of granular soils. 
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In both discussed problems the target output sets were adopted, either from buckling tests on 
laboratory models or from in situ tests on granular soils. The main goal of the paper is to conclude that the 
application of MGP can give results of identification parameters of high accuracy and that the GP method 
is numerically more efficient than BPNNext and SBNN. 

2. Some basics of Gaussian Processes 

The Gaussian Processes are based on the covariant functions of the distance between pattern points 
in the input space: 
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The functions mnc are components of the covariance matrix C with the regularization parameter 2
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the matrix diagonal, cf. [3]. 
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Computations in our paper were based on the squared exponential covariance function SE, see [4], of 

weighted distance between points m and n : 
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where the vector of parameters Θ has D+3 parameters, where D is the dimensionality of the input space: space : 
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In the second identification problem, see below Fig. 4a, the other function, called Rational Quadratic 
function RQ, see [4], was also applied. 

3. Prediction of critical loads and identification of concrete stress in R/C compressed columns 

Computational data 

This study case is based on laboratory tests, related to two databases: i) PEER (Pacific Earthquake 
Eng. Res. Center, Univ. of California), see [5], ii) K. Chudyba Ph.D. Thesis [6]. From theses databases P = 
92 patterns were completed. cf. [7], and then this set was randomly split into the learning and testing sets, 
composed of L = 65 and T = 35 patterns, respectively. 

Two problems were analyzed:  
I) Prediction of the critical load Pcr :  

crc)17( ,}{ Pyf ,x ==× Ca ,                                                  (6I) 

II) Identification of the concrete strength fc : 

,,}{ ccr)17( fyP ,x ==× Ca                                                 (6II) 
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where the subvector } ,,,, , y1)(6 frbLH,B ρ{ Ca    =×  has the following components: B, H, L − dimensions of 

columns, ρ, rb, fy − reinforcement percentage, number of longitudinal bars and steel yield stress. 
 
BPNNext and neurocomputing  

Back Propagation Neural Network (BPNNext) was applied for the validation of results obtained by 
MGP. The BPNNext was formulated according to the manual MATLAB Neural Networks Toolbox, see 
[8]. The error measure of BPNNext was formulated in the following form: 
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In the measure (7) the first term corresponds to the mean square error and the second term is related 
to the neural network MLP (Multilayer Perceptron) for γ  = 0. The regularization parameter γ  ≠ 0 is 
automatically optimized by means of procedures listed in [7]. 

The one hidden layer networks, see Fig.2, were designed by means of the classical cross-validation 
method, applying the training set T as the validation set. Bipolar sigmoid functions were adopted in the 
hidden layers and the linear output was assumed.  

 
 

a 

 

b 

 

Fig. 1. BPNNext for:  
a) Prediction of critical load Pcr , b) Identification of concrete strength f c 

The networks were trained applying the Levenberg-Marquardt learning method. After the training 
procedure was over, the distribution of training and testing point was obtained, as shown in Figures 2a, b. 
The distribution of points p on the plane ( t p, y p.) was explored for the formulation of cumulative curves. 

Following the previous papers, see e.g. [9], the bounds Re ≤ ± B % are introduced in Figs 2 as lines 

corresponding to relative errors for points p, for which |Rep| ≤ B % , where:   

Rep = ( y p./ t p− 1)×100% .                                                                (8) 

Having defined Re, the cumulative function, called in [9] the Success Ratio function SC (Re), can be 
formulated: 

SR = (SRe/S)×100% ,                                                                   (9) 

where: SRe − number of points ( t p, y p.) in the area  ± Re , S − total number of points corresponding to the 
learning and testing data sets, completed of either L or T pattern points, respectively. After the application 
of BPNNext the SC(Re) curves are plotted in Figs 3a, b. 
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Fig. 2. Distribution of points ( t p, y p) computed by:  
a, b) BPNNext, c, d) MGP 

 
 
a 

 

b

Fig. 3. Successes Ratio curves for:  
a) Critical load prediction Pcr ,  b) Concrete strength f c 
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MGP and comparison of results  

The computation by MGP was carried out by means of procedures of the NETLAB system, briefly 
described in the book [4]. The same learning and testing patterns were used as those in the application of 
BPNNext. In Figs 2c and 2d, there are shown results obtained by the application of MGP for two 
considered cases (6I) and (6II). The same concerns Fig. 3a and Figs 3b, where the MGP cumulative curves 
SR (Re) are compared with those curves corresponding to BPNNs application.  

Starting from the cumulative curves drawn for the prediction of P cr by MGP, it is visible that for SC 

= 80% and 90% the corresponding values of error bounds are |Re| = 14% and 20% , respectively. This 
means that 80% or 90% of the total number of patterns were predicted correctly within the error bounds 
mentioned above. In the case of the BPNNext network only the corresponding value |Re| = 36% was found 
for SC = 80%. The values listed above of the error bounds are plotted in Figs 2a, 3a. 

In the case of concrete strength f c identification by BPNNext, the corresponding values for 80% and 

90% patterns are correctly predicted with |Rep|≤ 12% and 16% . The application of MGP enables 

obtaining better evaluation of correctly identified values of the concrete strength f c. The corresponding 

figures are |Rep|≤ 7% and 11% for SC = 80% or 90%, respectively. 

4. Identification of compaction parameters in granular soils 

Engineering structures involving earthwork often require compaction to improve soil conditions. In 
case of granular soils, the Optimum Water Content (OWC) and Maximum Dry Density (MDD) are 
essential characteristics for the design of compacted earthwork. These characteristics can be found 
experimentally by means of the grain size distribution measured ‘in situ’, cf. [10]. ANNs were recently 
applied for the identification of OWC and MDD. It was proved that the networks supported on Bayesian 
methods, e.g. the so called Semi Bayesian Neural Networks (SBNNs), are computationally efficient. 

SBNN vs. GPM  

The SBNN is based on the extended error measure, similarly as BPNNext: 
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where: i − number of output OWC, MDD; w ∈ R W − vector of synaptic weights of the network. The 
Bayesian criterion MLL (Maximum Marginal Likelihood) was applied for computing the optimal number 

of neurons H opt in the hidden layer using only the learning set of patterns. The same criterion was applied 

for finding optimal values of hyperparameters α i  β i , see [4]. 
The inclusion of MLL criterion into the Levenberg-Marquardt learning method makes such an 

approach more computationally not only efficient but also more ‘costly’ because of the increase of the 
number of operations. That is why the MGP was applied as a simpler and quicker solution than by SBNN . 

Data and neurocomputing  

In the considered study case a set of pattern pairs P
p

pp t 1},{ =x  was composed of P =121 tests 

corresponding to the in situ measurement of postglacial soils from the north of Poland, see [9]. This set of 
data was randomly split into L = 0.7× P = 85 and T = 0.3×P patterns. 

According to [8] the input data are related to grain size distribution. After the correlation analysis 
a sequence of nine grain diameters {D x}(9×1) = {D10 , … , D90 } was adopted, where x [%] is the percentage of 
grain diameters below which the soil mass is placed. Besides these parameters, the uniformity parameter C U = 
D10 / D10 was also included into the vector of input data. Thus, the following input/output data were adopted: 

x(10×1) = {CU , Dx x = 10%, … , 90%} ,        y1 = OWC and  y2 = MDD .                    (10) 
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Following [9, 8] only one neural network output was adopted. When SBNN was applied, the 
Evidence procedure in the NATLAB system [4] was used to design the networks. The architecture 10−2−1 
was found for computing OWC values and 10−4−1 for computing MDD. 

The NATLAB system was also used for computing by the MGP. In Figures 4 the distribution of points p 
on the planes ( t p, y p.) is shown. In Figures 5 the SR curves are presented, obtained by MGP and SBNNs. 
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Fig. 4. Distribution of points ( t p, y p.) for the compaction characteristics, computed by SBNNs and MGP 

Comparison of results  

The approximate average bounds Re =± 25 % for OWC and Re =± 25 % MDD were drawn for the 
results obtained by GPM and SBNNs. As can be seen, the SC curves are close to each other, so we can 
deduce that the accuracy of computations by the GPM and SBNNs methods is comparable. This was 
proved in [9], where the network approximation errors were computed for different error measures. 
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5. Final remarks and some conclusions 

1. Two different problems were analyzed in the present paper. In the frame of regression analysis the 
internal reverse problems were analyzed. These problems correspond to the parametric identification of 

material characteristics (the strength of concrete f c in columns and compaction parameters OWC and MDD 
in granular soils). 

2. The accuracy of computed solutions was estimated by the Success Ratio curves SC (Re). These 
curves enable us to see the relation between desirable percent of correct placements of points ( t p, y p.), e.g. 
SC = 80% or 90%, in the areas |Re |≤ B % . 

3. Looking at Success Ratios it is visible that in the first problem the accuracy reached by MGP in 
the first problem is much better than by BPNNs. This concerns both the critical load prediction and 
concrete strength identification. 

4. In case of the identification of compaction parameters in grain soils, the application of MGP gives 
results comparable with those by SBNN. It is, however, worth emphasizing that the application of MGP is 
numerically ‘cheaper’ because of a significantly smaller number of operations than those needed in the 
application of SBNN 
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