
92                 ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля №4(193) Ч.2. 2013 
 

 

 

УДК 004.056 

SECURE INFORMATION FLOW ANALYSIS FOR HARDWARE  
DESIGN VERILOG AND VHDL LANGUAGE 

Lahno V.A. 

АНАЛИЗ ИНФОРМАЦИОННОЙ  БЕЗОПАСНОСТИ АППАРАТНОГО  
ОБЕСПЕЧЕНИЯ НА БАЗЕ ИСПОЛЬЗОВАНИЯ ЯЗЫКОВ VERILOG И VHDL 

Лахно В.А.

The paper analyzes possibility of hardware description 
languages VHDL and Verilog to create various components of 
information security. This can be used to ensure private keys 
are never leaked (for secrecy), and that untrusted information 
will not be used in the making of critical decisions (for safety 
and fault tolerance). 
Keywords: Information security, Information security, 
Information Flow Analysis, Hardware Security, Language-
Based Automated Verification, firewall.  

Introduction. The influence of information 
automation systems pervades many aspects of everyday 
life in most parts of the world. In the shape of factory 
and process control systems they enable high 
productivity in industrial production, transport systems 
they provide the backbone of technical civilization. One 
of the foremost transport businesses security concerns is 
the protection of critical information, both within their 
internal financial infrastructures and from external 
elements. Up to now, most of these systems are isolated, 
but for the last couple of years, due to market pressures 
and novel technology capabilities, a new trend has been 
rising to interconnect automation systems to achieve 
faster reaction times. Initially, such interconnections 
were based on obscure, specialized, and proprietary 
communication means and protocols. Now more and 
more open and standardized Internet technologies are 
used for that purpose. Studies show that most cyber-
attacks occur inside organizations, instigated by 
personnel with valid access to the system. This work 
describes the design, implementation, and testing of a 
security system that enhances the capability of transport 
businesses to protect information within the boundary of 
their networks [1, 2].  

Hardware designers need to precisely analyze 
high-level descriptions for illegal information flows. 

Language-based information flow analyses can be 
applied to hardware description languages, but a 
straight-forward application either conservatively rules 
out many secure hardware designs, or constrains the 
designers to work at impractically low levels of 
abstraction. We demonstrate that choosing the right 
level of abstraction for the analysis, by working on 
Finite State Machines instead of the hardware code, 
allows both precise information flow analysis and high-
level programmability. 

VHDL has been at the heart of electronic design 
productivity since initial ratification by the IEEE in 
1987. For 16 years the electronic design automation 
industry has expanded the use of VHDL from initial 
concept of design documentation to design 
implementation and functional verification. The use of 
VHDL has evolved and its importance increased as 
semiconductor devices dimensions have shrunk. Not 
more than 10 years ago it was common to mix designs 
described with schematics in favor of the hardware 
description language only. The use of VHDL has 
evolved and its importance increased as semiconductor 
devices dimensions have shrunk. Not more than 10 
years ago it was common to mix designs described with 
schematics in favor of the hardware description 
language only. 

In 1986, VHDL was proposed as an IEEE 
standard, It went through a number of revisions and 
changes until it was adopted as the IEEE 1076 standard 
in December 1987. The IEEE 1076-1987 standard 
VHDL is the VHDL used in this book. All the examples 
have been described in IEEE 1076 VHDL, and 
compiled and simulated with the VHDL simulation 
environment from Model Technology Inc. The synthesis 
examples were synthesized with the Exemplar Logic 
Inc. synthesis tools. 



ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля №4(193) Ч2. 2013                  93 
 

 

Verilog was started initially as a proprietary 
hardware modeling language by Gateway Design 
Automation Inc. around 1984. Verilog simulator was 
first used beginning in 1985 and was extended 
substantially through 1987. The standard, which 
combined both the Verilog language syntax and the PLI 
in a single volume, was passed in May 1995 and now 
known as IEEE Std. 1364-1995. After many years, new 
features have been added to Verilog, and the new 
version is called Verilog 2001. This version seems to 
have fixed a lot of problems that Verilog 1995 had. This 
version is called 1364-2001. 

The main part. Hardware Information 
Security. We use the Network Site Controller as an 
example hardware design and Verilog as an example 
hardware description language. Network Site Controller 
provides a centralized repository for all information 
pertaining to network sites of Transport Company. It 
manages all operational Service Agreements, such as 
Leases, Licenses, Utilities and Transmission, to simplify 
operational planning and management.  

We explore a new direction where we base the 
information flow analysis in hardware design, namely 
Finite State Machines. State machines are widely 
recognized as a natural way to describe hardware 
controllers, and most commercial Computer-aided 
design (CAD) tools can extract state machines from 
Verilog or VHDL programs automatically. 

A state machine can be expressed as a set of states 
and transitions among those states triggered by signals 
which are either inputs to the state machine or local 
data. The most natural way to implement a state 
machine using programming languages is to have a 
variable cur_state to store the current state, and case-
style statements to decide state transitions based on 
cur_state and some other conditions. 

Figure 1 shows how conventional information 
analysis is applied to such state machines 
implementations.  

 
 

  S0 

  S1 

  S2 

  Sn 

 
   
Car_state Security label  

. . . 

Meet of all information  
flows into every state 

Meet of all information  
flows out from every 
state 

 
States are represented as values of a single variable cur_state, 
associated with a single tag, and all information flows into and 

out from every individual state are combined 

Fig. 1. Existing program analysis on state machines 

The value of cur_state can be one of  S0, S1, S2,. . . , 
Sn, indicating the current state. When information flows 
are analyzed, cur_state is associated with a single 
security label. Such analysis does not take into 
consideration the fact that information flows are 
actually flowing through each individual state, hence 
there is no way to track the security labels of individual 
states when states are represented only as different 
values of the variable cur_state, making the analysis 
conservative. 

The key insight of our approach is that by 
analyzing hardware descriptions explicitly as state 
machines (i.e., as a reified set of individual states with 
accompanying transitions) rather than as an implicit 
state machine encoded using variables, the analysis can 
precisely track security labels for individual states. 

For example, execution leases are an architectural 
mechanism that enables trusted code to grant access to a 
limited amount of machine resources to untrusted code 
for a fixed amount of time. One can imagine a lease to 
be a sandbox of space and time which untrusted 
components can never go beyond. A lease starts by 
setting up a timer and transferring the control to 
untrusted components. After the timer expires, the 
control will be automatically transferred back to the 
trusted system. We assume a two label security lattice 
with security labels High and Low, where High 
indicates secret or untrusted, and Low represents 
unclassified or trusted. In such security lattice, 
information is allowed to flow from any data with a 
Low security label to data marked as High, while the 
other direction is illegal. As can be seen from the figure, 
the inputs to the lease controller include the timer_low 
which is a trusted value and data_high which is an 
untrusted value. The output is generated by state S0. The 
lease mechanism works as follows: Some trusted 
component (master state S0) initiates a lease to some 
untrusted cloud (simplified as two states in this 
example) by specifying a timer_low boundary. 

 

 

  S0   S1   S2 

Output 

Input: Timer (trusted) 

Set   
timer  
 

Input: Data (trusted) 

Timer 
expires 

Timer 
expires 

 
Fig. 2. State machine diagram of the lease controller 

The control transfers to slave state S1 which is 
inside the untrusted cloud, and either stays at S1 or 
jumps to S2 based on some untrusted data_high and 
loops inside the cloud until the timer_low expires. 
When the timer low expires the control automatically 



94                 ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля №4(193) Ч.2. 2013 
 

 

transfers back to the master state no matter what the 
current state is. The corresponding Verilog program is 
shown in Figure 1. 

Research results. The value of the state variable 
cur_state can be either 0 (master state) or 1, 2, 3 . . . (in 
the untrusted cloud). In master state S0, if the timer_low 
is activated, the state will transfer to S1 by assigning 
cur_state to 1. In slave state S1, if the timer expires, the 
state will transfer back to S0, otherwise data_high is 
processed and timer_low will be decremented.  

The corresponding program Verilog is shown 
below. 

 
module SM (…); 
input …; 
output ….; 
wire ….; 
…. 
// Indicating the state machine will execute  
// repeatedly 
always @ *  
begin 
case (cur_state) 
 
//Master State (trusted) 
0:  
if(timer) begin 
//Jump to slave state 
next_state <= 1;  
 
//Trusted Timer 
next_timer <= timer;  
end 
else begin 
next_state <= 0; 
next_timer <= 0; 
 
//Generate Output 
output = ...  
end 
//Untrusted Cloud (untrusted): 
1:  
if (timer == 0) begin 
 
//Jump back to master state 
next_state <= 0;  
end 
else begin 
 
//Do something with untrusted data 
//Untrusted Data 
 
if (data) begin 
//Keep jumping inside untrusted cloud 
next_state <= 2;  
end 
 
next_timer <= timer - 1; 
end 
2: ... 
3: ... 
end 
More complex state machine, such as a firewall, 

could not immediately be described in the language of 
Verilog or VHDL. 

A firewall is a dedicated appliance, or software 
running on a computer, which inspects network traffic 

passing through it, and denies or permits passage based 
on a set of rules. Its basic function is to regulate the 
flow of traffic between computer networks of different 
trust levels. 

Conventional firewalls operate at the network layer 
and their operation is based on stateful or non-stateful 
type. The later type has packet-filtering capabilities 
however; it is unable to make more complex decisions 
as regards to the stage or level of communications 
between the hosts. This leads to less security and 
functioning more like a router from the packet filtering 
point of view. Conventional firewalls working on the 
principle of stateful analysis poses a typical tradeoff of 
security Vs latency. More tightly the security 
implementations lead to increased latency causing 
jamming and congestion over the network.  As 
mentioned above, building custom silicon in FPGAs 
leads to significant advantages such as rapid design 
cycle, early time-to-market, easy transition to structured 
ASICs and reduced non recurring cost of engineering 
(NRE) costs. Although the designers are choosing 
FPGA as a prototyping element, it is observed that the 
target FPGA is just treated as a black box. This makes 
the system designer to miss many opportunities to 
optimize the design to fit within the FPGA [3-5]. 

There are three essential components of the 
behavioral synthesis model first the inputs or stimulus to 
the system, second a module library and third the spatial 
and temporal constraints. 

The behavioral specification is generally written in 
a high level general purpose language like C++ or in a 
Hardware Description Language like VHDL or Verilog. 

The second component of the behavioral model i.e. 
module library consists of storage units like registers, 
memories or FIFOs, execution units like adders and 
multipliers, and interconnect units like multiplexers and 
buses. Overall, the behavioral model provides valuable 
information like the constraints such as area, clock 
speed, power and the data dependcy or the temporal 
model of execution.  The behavioral synthesis is a 
process of constructing the register transfer model from 
its behavioral counterpart by adopting a process called 
as binding. 

Conclusion. This paper presents the possibility of 
using modern hardware description languages for the 
design of the system hardware information security. It is 
shown that the use of languages VHDL, Verilog can 
significantly reduce the development time of the 
individual components of information security systems 
and improve the efficiency of project.  

R e f e r e n c e s  
1. M. Tiwari. A hardware-supported mechanism for 

enforcing strong non-interference. / M. Tiwari, X. Li, H. 
Wassel, F. Chong, and T. Sherwood. // In Proceedings of 
the International Symposium on Microarchitecture 
(MICRO), 2009.  

2. James Newsome. Dynamic taint analysis for automatic 
detection, analysis, and signature generation of exploits 
on commodity software. / James Newsome, Dawn Song. 



ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля №4(193) Ч2. 2013                  95 
 

 

// In 12th Annual Network and Distributed System 
Security Symposium, 2005.   

3. M. Dalton.  A Flexible Information Flow Architecture for 
Software Security. / M. Dalton, H. Kannan, C. Kozyrakis. 
// In Proceedings of the 34th annual international 
symposium on Computer architecture, June 2007.  

4. D. E. Denning. Certification of programs for secure 
information flow. /D. E. Denning,  P. J. Denning. // 
Communications of the ACM, 20 (7): 504 – 513,  1977.  

5. G.E.Suh. Secure program execution via dynamic 
information flow tracking. / G.E.Suh, J.W.Lee, D.Zhang, 
and S.Devadas. // In Proceedings of the 11-th 
international conference on Architectural support for 
programming languages and operating systems, 2004. 

Лахно В.А. Анализ информационной  
безопасности аппаратного обеспечения на базе 
использования языков Verilog и VHDL. 

В статье анализируется возможность 
использования языков описания аппаратуры VHDL и 
Verilog для проектирования различных цифровых 
компонентов систем защиты информации.  

Рассмотрены примеры реализации конечных 
автоматов применяемых в аппаратной части средств 
защиты информации.  

Ключевые слова: Информационная безопасность, 
защита информации, анализ информационных потоков, 
языка Verilog и VHDL. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Лахно В.А. Аналіз інформаційної безпеки 
апаратного забезпечення на базі використання мов 
Verilog і VHDL. 

У статті аналізується можливість використання 
мов опису апаратури VHDL і Verilog для проектування 
різних цифрових компонентів систем захисту інформації. 

Розглянуто приклади реалізації кінцевих 
автоматів застосовуваних в апаратній частині засобів 
захисту інформації. 

Ключові слова: Інформаційна безпека, захист 
інформації, аналіз інформаційних потоків, мови Verilog 
та  VHDL. 

Лахно Валерій Анатолійович – к.т.н, доцент кафедри 
економічної кібернетики, ss21@meta.ua. 

Рецензент: Леві Л.І., доктор технічних наук, професор 
Луганського національного аграрного університету.  

Стаття подана 30.03.2013 
 
 


