92 BICHUK CXIOHOYKPATHCbKOIO HALIOHANBHOIO YHIBEPCUTETY imeHi Bonoaumupa Janst Ne4(193) 4.2, 2013

YK 004.056

SECURE INFORMATION FLOW ANALYSIS FOR HARDWARE
DESIGN VERILOG AND VHDL LANGUAGE

Lahno V.A.

AHAJIN3 UH®OPMAIIMOHHOM BE3OINACHOCTH ATIIIAPATHOI'O
OBECIHHEYEHMUS HA BA3E UCITIOJIb30BAHUS SA3BIKOB VERILOG U VHDL

Jlaxno B.A.

The paper analyzes possibility of hardware description
languages VHDL and Verilog to create various components of
information security. This can be used to ensure private keys
are never leaked (for secrecy), and that untrusted information
will not be used in the making of critical decisions (for safety
and fault tolerance).

Keywords:  Information security, Information security,
Information Flow Analysis, Hardware Security, Language-
Based Automated Verification, firewall.

Introduction. The influence of information
automation systems pervades many aspects of everyday
life in most parts of the world. In the shape of factory
and process control systems they enable high
productivity in industrial production, transport systems
they provide the backbone of technical civilization. One
of the foremost transport businesses security concerns is
the protection of critical information, both within their
internal financial infrastructures and from external
elements. Up to now, most of these systems are isolated,
but for the last couple of years, due to market pressures
and novel technology capabilities, a new trend has been
rising to interconnect automation systems to achieve
faster reaction times. Initially, such interconnections
were based on obscure, specialized, and proprietary
communication means and protocols. Now more and
more open and standardized Internet technologies are
used for that purpose. Studies show that most cyber-
attacks occur inside organizations, instigated by
personnel with valid access to the system. This work
describes the design, implementation, and testing of a
security system that enhances the capability of transport
businesses to protect information within the boundary of
their networks [1, 2].

Hardware designers need to precisely analyze
high-level descriptions for illegal information flows.

Language-based information flow analyses can be
applied to hardware description languages, but a
straight-forward application either conservatively rules
out many secure hardware designs, or constrains the
designers to work at impractically low levels of
abstraction. We demonstrate that choosing the right
level of abstraction for the analysis, by working on
Finite State Machines instead of the hardware code,
allows both precise information flow analysis and high-
level programmability.

VHDL has been at the heart of electronic design
productivity since initial ratification by the IEEE in
1987. For 16 years the electronic design automation
industry has expanded the use of VHDL from initial
concept of design documentation to design
implementation and functional verification. The use of
VHDL has evolved and its importance increased as
semiconductor devices dimensions have shrunk. Not
more than 10 years ago it was common to mix designs
described with schematics in favor of the hardware
description language only. The use of VHDL has
evolved and its importance increased as semiconductor
devices dimensions have shrunk. Not more than 10
years ago it was common to mix designs described with
schematics in favor of the hardware description
language only.

In 1986, VHDL was proposed as an IEEE
standard, It went through a number of revisions and
changes until it was adopted as the IEEE 1076 standard
in December 1987. The IEEE 1076-1987 standard
VHDL is the VHDL used in this book. All the examples
have been described in IEEE 1076 VHDL, and
compiled and simulated with the VHDL simulation
environment from Model Technology Inc. The synthesis
examples were synthesized with the Exemplar Logic
Inc. synthesis tools.



BICHUK CXIOHOYKPATHCbKOIO HALIOHANBHOIO YHIBEPCUTETY imeHi Bonoaumupa Oans Ne4(193) Y2. 2013 93

Verilog was started initially as a proprietary
hardware modeling language by Gateway Design
Automation Inc. around 1984. Verilog simulator was
first used beginning in 1985 and was extended
substantially through 1987. The standard, which
combined both the Verilog language syntax and the PLI
in a single volume, was passed in May 1995 and now
known as IEEE Std. 1364-1995. After many years, new
features have been added to Verilog, and the new
version is called Verilog 2001. This version seems to
have fixed a lot of problems that Verilog 1995 had. This
version is called 1364-2001.

The main part. Hardware Information
Security. We use the Network Site Controller as an
example hardware design and Verilog as an example
hardware description language. Network Site Controller
provides a centralized repository for all information
pertaining to network sites of Transport Company. It
manages all operational Service Agreements, such as
Leases, Licenses, Utilities and Transmission, to simplify
operational planning and management.

We explore a new direction where we base the
information flow analysis in hardware design, namely
Finite State Machines. State machines are widely
recognized as a natural way to describe hardware
controllers, and most commercial Computer-aided
design (CAD) tools can extract state machines from
Verilog or VHDL programs automatically.

A state machine can be expressed as a set of states
and transitions among those states triggered by signals
which are either inputs to the state machine or local
data. The most natural way to implement a state
machine using programming languages is to have a
variable cur_state to store the current state, and case-
style statements to decide state transitions based on
cur_state and some other conditions.

Figure 1 shows how conventional information

analysis is applied to such state machines
implementations.
Meet of all information
So flows into every state

Si
Car state J Security label
S, -~
Meet of all information
flows out from every
state
Sn

States are represented as values of a single variable cur_state,
associated with a single tag, and all information flows into and
out from every individual state are combined

Fig. 1. Existing program analysis on state machines

The value of cur_state can be one of Sy, S;,S,,. . .,
S,, indicating the current state. When information flows
are analyzed, cur state is associated with a single
security label. Such analysis does not take into
consideration the fact that information flows are
actually flowing through each individual state, hence
there is no way to track the security labels of individual
states when states are represented only as different
values of the variable cur state, making the analysis
conservative.

The key insight of our approach is that by
analyzing hardware descriptions explicitly as state
machines (i.e., as a reified set of individual states with
accompanying transitions) rather than as an implicit
state machine encoded using variables, the analysis can
precisely track security labels for individual states.

For example, execution leases are an architectural
mechanism that enables trusted code to grant access to a
limited amount of machine resources to untrusted code
for a fixed amount of time. One can imagine a lease to
be a sandbox of space and time which untrusted
components can never go beyond. A lease starts by
setting up a timer and transferring the control to
untrusted components. After the timer expires, the
control will be automatically transferred back to the
trusted system. We assume a two label security lattice
with security labels High and Low, where High
indicates secret or untrusted, and Low represents
unclassified or trusted. In such security lattice,
information is allowed to flow from any data with a
Low security label to data marked as High, while the
other direction is illegal. As can be seen from the figure,
the inputs to the lease controller include the timer low
which is a trusted value and data high which is an
untrusted value. The output is generated by state Sy. The
lease mechanism works as follows: Some trusted
component (master state Sy) initiates a lease to some
untrusted cloud (simplified as two states in this
example) by specifying a timer low boundary.

Timer
expires

Input: Timer (trusted)

Input: Data (trusted)

Timer

Output expires

Fig. 2. State machine diagram of the lease controller

The control transfers to slave state S; which is
inside the untrusted cloud, and either stays at S; or
jumps to S, based on some untrusted data high and
loops inside the cloud until the timer low expires.
When the timer low expires the control automatically



94 BICHUK CXIOHOYKPATHCbKOIO HALIOHANBHOIO YHIBEPCUTETY imeHi Bonoaumupa Janst Ne4(193) 4.2, 2013

transfers back to the master state no matter what the
current state is. The corresponding Verilog program is
shown in Figure 1.

Research results. The value of the state variable
cur_state can be either 0 (master state) or 1,2, 3 .. . (in
the untrusted cloud). In master state Sy, if the timer low
is activated, the state will transfer to S; by assigning
cur_state to 1. In slave state §;, if the timer expires, the
state will transfer back to Sy, otherwise data high is
processed and timer _low will be decremented.

The corresponding program Verilog is shown
below.

module SM (...);
input ...;

output ....;

wire ....;

// Indicating the state machine will execute
// repeatedly

always @ *

begin

case (cur_state)

//Master State (trusted)
0:

if(timer) begin

//Jump to slave state
next_state <= 1;

//Trusted Timer
next_timer <= timer;
end

else begin

next_state <= 0;
next_timer <= 0;

//Generate Output

output = ...

end

//Untrusted Cloud (untrusted):
1:

if (timer == () begin

//Jump back to master state
next_state <= 0;

end

else begin

//Do something with untrusted data
//Untrusted Data

if (data) begin

//Keep jumping inside untrusted cloud
next_state <=2;

end

next_timer <= timer - 1;

end

2: ...

3.

end

More complex state machine, such as a firewall,
could not immediately be described in the language of
Verilog or VHDL.

A firewall is a dedicated appliance, or software
running on a computer, which inspects network traffic

passing through it, and denies or permits passage based
on a set of rules. Its basic function is to regulate the
flow of traffic between computer networks of different
trust levels.

Conventional firewalls operate at the network layer
and their operation is based on stateful or non-stateful
type. The later type has packet-filtering capabilities
however; it is unable to make more complex decisions
as regards to the stage or level of communications
between the hosts. This leads to less security and
functioning more like a router from the packet filtering
point of view. Conventional firewalls working on the
principle of stateful analysis poses a typical tradeoff of
security Vs latency. More tightly the security
implementations lead to increased latency causing
jamming and congestion over the network. As
mentioned above, building custom silicon in FPGAs
leads to significant advantages such as rapid design
cycle, early time-to-market, easy transition to structured
ASICs and reduced non recurring cost of engineering
(NRE) costs. Although the designers are choosing
FPGA as a prototyping element, it is observed that the
target FPGA is just treated as a black box. This makes
the system designer to miss many opportunities to
optimize the design to fit within the FPGA [3-5].

There are three essential components of the
behavioral synthesis model first the inputs or stimulus to
the system, second a module library and third the spatial
and temporal constraints.

The behavioral specification is generally written in
a high level general purpose language like C++ or in a
Hardware Description Language like VHDL or Verilog.

The second component of the behavioral model i.e.
module library consists of storage units like registers,
memories or FIFOs, execution units like adders and
multipliers, and interconnect units like multiplexers and
buses. Overall, the behavioral model provides valuable
information like the constraints such as area, clock
speed, power and the data dependcy or the temporal
model of execution. The behavioral synthesis is a
process of constructing the register transfer model from
its behavioral counterpart by adopting a process called
as binding.

Conclusion. This paper presents the possibility of
using modern hardware description languages for the
design of the system hardware information security. It is
shown that the use of languages VHDL, Verilog can
significantly reduce the development time of the
individual components of information security systems
and improve the efficiency of project.

References

1. M. Tiwari. A hardware-supported mechanism for
enforcing strong non-interference. / M. Tiwari, X. Li, H.
Wassel, F. Chong, and T. Sherwood. // In Proceedings of
the International Symposium on Microarchitecture
(MICRO), 2009.

2. James Newsome. Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits
on commodity software. / James Newsome, Dawn Song.



BICHUK CXIOHOYKPATHCbKOIO HALIOHANBHOIO YHIBEPCUTETY imeHi Bonoaumupa Oans Ne4(193) Y2. 2013 95

// ' In 12th Annual Network and Distributed System
Security Symposium, 2005.

3. M. Dalton. A Flexible Information Flow Architecture for
Software Security. / M. Dalton, H. Kannan, C. Kozyrakis.
// In Proceedings of the 34th annual international
symposium on Computer architecture, June 2007.

4. D. E. Denning. Certification of programs for secure
information flow. /D. E. Denning, P. J. Denning. //
Communications of the ACM, 20 (7): 504 — 513, 1977.

5. G.E.Suh. Secure program execution via dynamic
information flow tracking. / G.E.Suh, J.W.Lee, D.Zhang,
and S.Devadas. // In Proceedings of the 11-th
international conference on Architectural support for
programming languages and operating systems, 2004.

Jlaxno B.A. Anaym3 HH(OPMALMOHHOI
0e30macCHOCTH  annmapaTtHoro ofecmedyeHusi Ha  0a3e
HCNoJIb30BaHus s3bIKkoB Verilog m VHDL.

B CTaThe aHANNU3UPYETCS BO3MOYKHOCTh
ucnonv3oeanus A3bIKOB omucaHus ammapatypel VHDL n
Verilog s NPOSKTUPOBAHMSA — Pa3iIMYHBIX  LU(POBBIX
KOMIIOHEHTOB CUCIEM 3aujunivl UHGOpMayuL.

Paccmompenvt  npumepol  peanusayuu  KOHEYHbIX

a8MoMamos NpUMEHAeMbIX 6 Annapamuoll Yacmu cpeocms
3awumul uHgopmayuu.

Knroueswvie cnosa: Hngopmayuonnas bezonacnocmo,
sawuma ungopmayuu, aHanu3 UHGOPMAYUOHHBIX NOMOKOS,
sazvika Verilog u VHDL.

Jlaxno B.A. Ananiz indgopmamiiinoi Oe3nexkn
amapaTtHoro 3a0esnedeHHsi Ha 0a3i BHKOPHCTAHHSI MOB
Verilog i VHDL.

Y emammi ananizyemoca modrcaugicmo sukopucmanis
mos onucy anapamypu VHDL i Verilog ons npoexmyeanms
PI3HUX YUDPOBUX KOMROHEHMIG cucmem 3axucmy iHgopmayii.

Pozenanymo npukiaou — peanizayii  KiHyegux
agmMoMamie 3acmoco8y8anux 6 anapammiil yacmuni 3aco0ie
3axucmy ingopmayii.

Knrouosi cnosa: Ingpopmayitina 6Oesnexa, 3axucm
inghopmayii, amaniz ingopmayivinux nomokie, mosu Verilog
ma VHDL.

Jlaxno Banepiii AnatomilioBu4 — K.T.H, JOLEHT Kadenpu
€KOHOMIYHOI KibepHeTHKH, ss21(@meta.ua.

Penensent: Jlesi JI.I., mokTop TexHIUHHMX Hayk, mpodecop
JIyrancpkoro HanioHaJILHOT'O arpapHOro YHIBEPCHUTETY.

Crarts nogana 30.03.2013



