
78 ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля № 5 (253) 2019

UDC: 004.657

DATABASE QUERY OPTIMIZATION

Nesterov M.V., Bakitko D.E., Mikhaylova A.O.

ОПТИМІЗАЦІЯ ЗАПИТІВ БАЗИ ДАНИХ

Нестеров М.В., Бакитько Д.Е., Михайлова А.О.

This article reviewed the methods directed at optimizing the
database. The goal was to find the most suitable method for
the quick execution of queries.
Keywords: database, indexing, clusters, optimization, parti-
tioning, statistics, SQL.

Introduction. The processing time of the request
also determines the speed of the database, which charac-
terized by amount of time per request processing. The
execution time of a request may also depend on com-
plexity of the request. As a rule, the request could be
substantially simplified or you can do several simple re-
quests that will do the same job as a complicated one,
but much faster.

Formulation of the problem. If a web service
loads for a very long time, then this causes a delay in
the business processes of the application and service. By
optimizing database queries, you can increase the speed
of the application. The request processing time is a very
important criterion for evaluating database performance.
When designing a system, it is important to predict an
increase in database queries, as well as an increase in
data volumes. The increase in performance consists of
the execution time of queries, the speed of information
retrieval in non-indexed fields, the greatest number of
parallel access to data. MySQL database will be used as
an object of research in the article.

Methods of setting productivity. Methods such
as indexing, query code optimization, clustering, and
partitioning will be considered.

A. INDEXING. The index is an acceleration of the
search operation for records in the table and perfor-
mance of other operations that relate to the search: sort-
ing, retrieving, modifying. All information about index-
es stored in index files, which consist of data and index-
es of record numbers. The index field requires data from
the index file, and the pointer serves to link the index
file entries. To create an index, it is necessary to specify
the field of the table to which it is necessary to assign
indexing.

The created indexes could be used in such ways as:
1) Sequential data access in a given sequence of

values of the index field.
2) Direct access to individual records of the index

file in a given sequence of the index field.
Information storage with indexing involves the use

of two stored files.
Indexes are used to speed up data retrieval, which

retrieved faster by reducing the number of disk I/O op-
erations for which pointers are used.

Not necessarily every entry in the indexed file
must contain an index. This index called loose. Loose
indexes are small, due to which browse the contents of
the database.

1) The file of the table in which data stored, such
as, information about users of the resource.

2) File with indices of blogs that users have creat-
ed on the resource.

Fig. 1. Index data storage structure [1]

The file with indexes of blogs will be arranged al-
phabetically, and the file with data depending on the
content. If you need to organize by personal infor-
mation, you need a file that stores it.

Indexing is very effective if the number of records
sought does not exceed 10-15%. If the proportion of the
files you are looking for is too large, the index file will
be used too often, which will lead to a losing strategy
for using it. In these cases, it is necessary to execute a
direct search, without using indexing [2].

All found data follow each other, which means that
their position is very quickly determinate and read.
Identifiers of the fields found a point to the required
records [3].

DOI: https://doi.org/10.33216/1998-7927-2019-253-5-78-83

ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля № 5 (253) 2019 79

Each index must be unique. Unique indexes ex-
clude the same data. Creating uniquely makes sense on-
ly if the data itself could unique. In the case of duplica-
tion of data, there will be an error and it will not
be possible to save the entered information.

Unique indexes have such advantages as [4]:
 Integrity of the data in the columns of the ta-

bles.
 Provide more information.
There are such types of indices [5]:
 Bitmap indexes.
 With reversed key.
 With a compressed key.
 Based on features.
 Partitioned.
 Global.
 Local.
 Invisible.
To create indexes in Oracle, you must adhere to

the recommendations:
 Do not create indexes for small tables.
 It is necessary to create primary keys for all ta-

bles. In the case of the name of the primary key will be
automatically created an index on the primary key.

 It is necessary to index the columns of the ta-
bles that take part in table connections.

 Indexing will be very efficient for using the
column by the WHERE clause.

 Columns that updated should not be indexed.
For each table, the index must take into account

the operations that will be performed on the columns.
Creating an index in Oracle:

CREATE INDEX blog_id ON blog(blog_id)

TABLESPACE INDEX_BLOG;

When creating indexes, you should follow the rec-
ommendations:

 Do not create indexes for columns on which
INSERT, UPDATE, and DELETE operations are often
performed.

 Do not use indexing for small tables.
Create SQL index:
CREATE INDEX idx1 ON blogs (col1);
Indexing allows you to not view the entire table for

data retrieval, thereby increasing database performance.
B. PARTITIONING. Partitioning meant breaking a

large table into less to promote the execution of neces-
sary queries. Partitioning capabilities include partition
independence, which makes it possible to carry out
backup, restore, and index creation operations specifi-
cally on a partition, rather than on the entire large table,
which will significantly reduce database idle time [6].

Partitioning improves the performance of infor-
mation processing in large tables, but it does not protect
against poor-quality queries.

The advantages of partitioning [6]:
 Accessing data subsets while maintaining their

integrity.

 Fast execution of maintenance operations
achieved by working with one or several sections, and
not with the entire table.

Fig. 2. Partitioning structure [7]

In Oracle Databases, archiving old data that older
than the set date is common. With partitioning, this pro-
cedure is very simple and effective. This property is typ-
ical for large repositories.

There are six ways to partition tables in Oracle:
 Partitioning by key ranges.
 Interval partitioning.
 Hash partitioning.
 According to the list of key values.
 Reference partitioning.
 System partitioning.
Using interval partitioning, it is possible to create

sections based on ranges of values:
partition by range (sales_dt)
(
partition b0001 values less than (to_date('2019-04-

01','yyyy-mm-dd')),
partition p0002 values less than (to_date('2019-05-

01','yyyy-mm-dd'))

Sections are indicated for April and May 2019.
The table will be divided into sections by date

range.
If the data are unevenly distributed over time in-

tervals and it is necessary to know not only the data for
April and May but also the data that were before the
specified interval, then you should use hash partitioning.
To do this, you need to select the number of sections,
after which Oracle will define the hash value of the key
of each row and put it into the necessary section [8].

CREATE TABLE users_data
(ticket_no NUMBER,
user_id INT NOT NULL,
user_name INT NOT NULL,
user_bir INT NOT NULL)
PARTITION BY HASH (user_key)
PARTITIONS 4
* STORE IN (ts1,ts2,ts3,ts4);

It is also possible to partition by key, even if the

given key does not exist in the table itself. The data
method called virtual column partitioning. Early ver-
sions of Oracle memorized a non-existent column into a
trigger, due to which performance was reduced due to
calls to the trigger. The Oracle Database 11g specifica-

80 ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля № 5 (253) 2019

tion makes it possible to create a column without storing
it in a table. This column will be calculated during oper-
ation [9]. The complexity of the virtual column may de-
pend on the amount of computational data.

C. CLUSTERING. The term “clustering” means a
group of servers, which is interconnected and behaves
like a single database that is capable of processing in-
coming requests [10].

To check the status of the nodes, the local and
cluster network used. Checks such as LooksAlive and
IsAlive performed. The first command executed every 5
seconds, which tries to make sure that no network prob-
lems detected. The second command performs a deeper
check every 60 seconds. In case the second command
detects an error, the check will be performed 5 more
times. When an error detected again, the cluster will
transfer the group to another node and transfer all net-
work resources to another server. When transferring da-
ta, the group will be ready for servicing customer re-
quests [11].

The advantages of using clusters [12]:
 Eliminate long database downtime. Resources

could be delivered to another server without losing the
connection to the database.

 Small time and effort when replacing a cluster
with better performance. To do this, add a new node to
the cluster, install the necessary updates and exclude the
old cluster from the network.

Fig. 3. The structure of the cluster network [12]

There are the following types of building cluster
systems [12]:

 With shared disks.
 With shared memory.
Each node of such systems specifically serves its

own database fragment. Such systems lack shared
memory and storage devices.

When a database uses shared memory and I /O de-
vices, it called Shared everything.

Fig. 4. Shared everything [11]

Such systems characterized by high-speed between
nodes and have shared access to storage devices. The
strength of the system is fault tolerance, parallel pro-
cessing, and ability of the network to expand.

A major disadvantage of the system is competition
of nodes for input devices and memory. These short-
comings manifest themselves when the network is busy
and when executing INSERT, UPDATE, DELETE
commands, which need many processor resources to ex-
ecute.

The Shared Nothing model fixed all the flaws of
Shared Everything. Competition disappears due to the
lack of shared access of nodes to memory and devices.
Each node of the network performs its work separately.
Due to this, and increases system performance.

Fig. 5. Shared Nothing [11]

The disadvantage of such an organization is com-
plexity of the network since it is necessary to check the
state of each network node, which will entail overhead
costs. Backup issues may occur during host status is-
sues. To ensure integrity of the nodes, you must restart
the nodes that process execution of the request.

D. Optimization SQL queries. To optimize execu-
tion of data change statements, use the EXPLAIN
PLAN statement, which allows you to view the execu-
tion plan of an SQL statement.

EXPLAIN PLAN allows you to see an execution
plan that the analyzer can use to execute an expression
[13]. The constructed expression plan is written to the
table without saving the SQL expression.

The optimizer's query execution plan runs faster
with checking the column index stores than using index
row stores [3]. The selection of columns is based on a
lower cost value than on rows.

Fig. 6. Optimization using column index repositories [3]

This example demonstrates scanning two tables
and building on the basis of hash table scanning. After
that, several threads scan the indexes of the column
storage indexes and simultaneously check the hash ta-
bles. Result sets are collected in one output stream.
Such a model is capable of processing more than 144
million tuples of less than a third of a second [3].

Expression plans could be viewed in SQL * Plus
using the DBMS_XPLAIN package. This package con-
sists of five functions [14]:

ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля № 5 (253) 2019 81

1) DISPLAY - output formatted execution plan.
2) DISPLAY_AWR - output a formatted execution

plan from the AWR directory.
3) DISPLAY_CURSOR - output a formatted plan

from any loaded cursor.
4) DISPLAY_SQL_PLAN_BASELINE - format-

ted output of one or several SQL plan expressions by
headers.

5) DISPLAY_SQLSET - output execution plan,
which stored in the SQL Tuning set.

After generating the execution plan, the PLAN
TABLE table is automatically generated, which is a
global temporary table that could be used by all users.

Fig. 7. EXPLAIN PLAN command structure [14]

E. Collecting statistics. During the execution of
each SQL query, optimizer looks for the best solution
for its execution. Optimizer relies on statistical data,
which includes information about distributed data, char-
acteristics of tables and indexes. [15]

For Oracle, automatic database gathering of all op-
timizer statistics recommended.

Since the release of Oracle Database 10g, a statis-
tics collection tool has been introduced.

Conducting an experiment. A table was created
in the database, which consists of 101158 rows.

Fig. 8. Created table

Based on this table, the methods described will be
used. The table consists of columns:

 ID - identifier.
 Users - workers.
 Age - their age.
 City - city of residence.
 Work_with - the date from which the employee

got a job.
To create an index, the Work_with column was se-

lected, be able to select the ranges of the dates work of
employees:

CREATE INDEX Work_with ON

Base_1(Work_with);

To extract information on the date range, the fol-
lowing command executed:

SELECT * FROM `Base_1` WHERE Work_with
BETWEEN '1970-04-26' AND '2019-04-26'

The result of the query is an alphabetically sorted
list of employees by range.

The index file will look like this:
Table 1

Index file
ID Index

ID user Date work
… …

The file stores the user ID and the date of his em-

ployment. By identifier, data will be searched from the
main table. The main feature of indexing is: there is no
need to compare each row of the table with the query
condition, just refer to the index file.

Fig. 9. Index file accesses to the main table

To check the query to the indexed table, a SQL
script was created that will give the statistics of the que-
ry. SQL script consists of commands:

USE database;

FLUSH STATUS;
SELECT * FROM `Base_1` WHERE Work_with

BETWEEN '1920-04-26' AND '2019-04-26';
SHOW SESSION STATUS;

This statistic will show the cost of resource con-

sumption when executing a query (Last_query_cost)

Fig. 10. Indexing statistics

The Last_query_cost parameter is 21578.
To get conclusions from the query optimizer, you

must enter a query:

EXPLAIN SELECT * FROM `Base_1` WHERE

Work_with BETWEEN '1970-04-26' AND '2019-04-26'

Fig. 11. Displays query optimizer

Based on the query optimizer output, it could be
concluded that MySQL uses an index for execution of
this query, which finds the necessary information in the
index file in a certain range (Type: range). 8948 rows
were found for this query. There were no failures when
executing commands.

82 ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля № 5 (253) 2019

To check statistics of execution of a partition-
ing request, a SQL script launched.

Fig. 12. Partitioning statistics

The Last_query_cost parameter is 27672.3.
The first method consumes fewer system resources

for its execution. The fewer system resources con-
sumed, the faster the request executed.

To get conclusions from the query optimizer, you
must enter a query:

EXPLAIN PARTITIONS SELECT * FROM
`Base_3_p` WHERE Work_with BETWEEN '1970-04-

26' AND '2019-04-26'

Fig. 13. Query query optimizer output

To execute the query, a call made to partition of
the table, which stores the ranges of dates.

As a result, a query for sampling dates taken not
from the main table, but from its sections, which means
that execution of the query is faster than comparing all
the records of the main table with the condition in the
query.

Table 2
Query time

 Index No Index Partitioning
Query

time (sec)
0.0007 0.0055 0.0007

The query indexed and partitioned tables executed

in 0.0007 seconds, which is 7.85 times faster than to the
usual similar table.

As a result of the analysis of productivity tuning
methods, an index method chosen. This method allows
you to quickly process a query to the table due to less
load on system resources and the ability not to compare
each row of the table with the condition in the query,
but to directly access the index files. Index files allow
you to process a query faster and their implementation
in practice is easier than partitioning a table. Indexing
should be applied to those rows that are not con-
firmed by data changes. In the example, this table does
not change; it serves to collect company statistics on
employees. And also indexing reduces resource con-
sumption when executing a query.

Conclusions. According to the results of the anal-
ysis of database productivity methods, it could be con-
cluded that each method has its own advantages and
may affect the speed of the query to the database. How-

ever, each method implies that to successfully carry out
the method, it is necessary to carefully work out the
structure of the database in the required subject area.
Great emphasis should be placed on the ability to update
the columns and operate on their data.

In the analysis performed, the method that most
suitable for the database optimization problem was cho-
sen.

R e f e r e n c e s
1. Indexing in databases. https://all4study.ru/bd/
2. Sadhana J. Kamatkar, Ajit Kamble, Amelec Viloria, Lissette

Hernández-Fernandez and Ernesto García Cali: Database Per-
formance Tuningand Query Optimization, 2018, 4.

3. Per-Åke Larson, Cipri Clinciu, Eric N. Hanson, Artem
Oks, Susan L. Price, Srikumar Rangarajan, Aleksandras
Surna, Qingqing Zhou: SQL Server Column Store Index-
es, 2011, 2-8.

4. SQL Index Design Guide. https://docs.microsoft.com/ru-
ru/sql/2014-toc/sql-server-index-design-guide

5. Oracle indexes. https://oracle-
dba.ru/docs/architecture/indexes/

6. Sanjay Agrawal, Vivek Narasayya, Beverly Yang: Inte-
grating Vertical and Horizontal Partitioning into Automat-
ed Physical Database Design, 2004, 1-9.

7. Partitioned tables. https://oracle-
patches.com/oracle/prof/3006-секционированные-
таблицы

8. Eadon, G., Chong, E. I., Shankar, S., Raghavan, A., Srini-
vasan, J., & Das, S: Supporting table partitioning by refer-
ence in oracle, 2008, 2-5.

9. Chakkappen, S., Cruanes, T., Dageville, B., Jiang, L.,
Shaft, U., Su, H., & Zait, M.: Efficient and scalable statis-
tics gathering for large databases in Oracle 11g, 2008, 1-2.

10. Bertini, L., Leite, J. C. B., & Mosse, D.: Statistical QoS
Guarantee and Energy-Efficiency in Web Server Clusters,
2007, 2-3.

11. Cluster database management systems.
http://www.jetinfo.ru/stati/klasternye#gl_2_1

12. Database cluster. http://www.r-it.su/solutions/san/nas-db-
cluster/

13. Khaled Yagoub, Pete Belknap, Benoit Dageville, Karl Di-
as, Shantanu Joshi, and Hailing Yu: Oracle’s SQL Perfor-
mance Analyzer, 2008, 3

14. Oracle Database 11g: Performance Tuning - Execution
Plans. http://oracleonrussian.blogspot.com/p/oracle-
database-11g_10.html

15. Ziauddin, M., Das, D., Su, H., Zhu, Y., & Yagoub, K.:
Optimizer plan change management, 2008, 2-5

16. Benoid Dageville, Dinesh Das, Karl Dias, Khaled Yagoub,
Mohamed Zait, Mohamed Ziauddin: Automatic SQL Tun-
ing in Oracle 10g, 2004, 7-8.

17. Serge G. Marokhovsky Shuzi Chen, Sadasiva K Prathab,
Anthony Ward: System and method for gathering and ana-
lyzing database performance statistics, 2002.

Нестеров М.В., Бакитько Д.Е., Михайлова А.О.

Оптимізація запитів бази даних
У цій статті розглянуті методи, спрямовані на

оптимізацію бази даних. Мета полягала в тому, щоб
знайти найбільш підходящий метод для швидкого
виконання запитів.

Ключові слова: база даних, індексація, кластери,
оптимізація, розділення, статистика, SQL.

ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля № 5 (253) 2019 83

Нестеров М.В., Бакитько Д.Э., Михайлова А.А.
Оптимизация запросов базы данных

В этой статье рассмотрены методы,
направленные на оптимизацию базы данных. Цель
состояла в том, чтобы найти наиболее подходящий
метод для быстрого выполнения запросов.

Ключевые слова: база данных, индексация,
кластеры, оптимизация, разбиение, статистика, SQL.

Нестеров Максим Володимирович – старший викладач
кафедри комп’ютерних наук та інженерії Східноукраїнсь-
кого національного університету ім. В. Даля, e-mail:
maksym.nesterov@gmail.com
Бакитько Денис Едуардович – магістр кафедри
комп’ютерних наук та інженерії Східноукраїнського
національного університету ім. В. Даля, e-mail:
bakitko_denis@ukr.net
Михайлова Аліса Олександрівна – магістр кафедри
комп’ютерних наук та інженерії Східноукраїнського
національного університету ім. В. Даля, e-mail:
alicedemoran@gmail.com

Стаття подана 26.07.2019.

.

