ОЦЕНКА ПОГРЕШНОСТИ ИЗМЕРЕНИЙ В ПРИКЛАДНЫХ БИОМЕХАНИЧЕСКИХ ИССЛЕДОВАНИЯХ СПОРТИВНЫХ ДВИЖЕНИЙ

В статье рассматривается проблема точности измерений при проведении биомеханического исследования физического упражнения специалистами в области физической культуры и спорта, перспективы развития этого направления исследований, предлагается ряд методических рекомендаций позволяющих осуществлять измерения корректно.

Ключевые слова. Прикладное биомеханическое исследование, измерения, статистическая обработка данных, методика измерений.

Постановка проблемы. Тенденции развития биомеханики спортивных движений таковы, что прикладные аспекты науки выходят на передний план. *Обоснованием* этого является необходимость предоставления возможности специалистам по физической культуре и спорту эффективно решать профессиональные задачи, а *основанием* — лавинообразное развитие информационных технологий, позволяющее реализовать указанные выше тенденции.

"На протяжении всего периода своего существования, начиная с момента возникновения и до самого последнего времени, биомеханика оставалась теоретической дисциплиной, изучающей механику движения живых существ с учетом их анатомо-физиологических особенностей. Однако стремительные темпы развития информационного пространства, информатизация всех сторон общественной жизни, возможности, предоставляемые этим процессом исследователю, выдвигают на передний план следующую насущную задачу.

Из инструмента ученых-исследователей биомеханика должна стать инструментом практического специалиста физического воспитания. Биомеханика, соединив в одно целое собственно свои методы с методами математического моделирования и оптимизации целевой функции двигательного действия, должна предоставить специалисту-практику информационную технологию, позволяющую ответить на извечные вопросы практики физического воспитания: "Чему учить?" и "Как учить?". Короче говоря, биомеханика должна стать не только теоретической, но и прикладной дисциплиной" [1].

Коллективом кафедры биомеханики Белорусского государственного университета физической культуры на протяжении последних восьми лет разрабатывается методика биомеханического анализа и технологии ее реализации для практических специалистов физической культуры и спорта, тех, кто непосредственно работает с людьми на стадионах, в залах и бассейнах.

Здесь следует обозначить проблему, обусловившую появление данной статьи. В ряде случаев пользователи метода, разработанного нами, получали результаты, не позволяющие сделать корректные выводы об исследуемом физическом упражнении. Решение проблемы возможно в рамках теории ошибок. При этом могут быть рассмотрены ошибки измерений, ошибки метода и ошибки округлений. Ошибки округлений в данной статье мы рассматривать не будем. Это объясняется тем, что в материалах по статистике эта тема широко освещена. При дальнейшем анализе объектом нашего изучения будут выступать ошибки измерений и ошибки метода.

Приступим к анализу проблемы ошибок измерений. "Теория ошибок измерений изучает свойства ошибок и законы их распределения, методы обработки измерений с учетом их ошибок, а также способы вычисления числовых характеристик точности измерений. При многократных измерениях одной и той же величины результаты измерений получаются неодинаковыми. Этот очевидный факт говорит о том, что измерения сопровождаются разными по величине и по знаку ошибками. Задача теории ошибок — нахождение наиболее надежного значения измеренной величины, оценка точности результатов измерений и их функций и установление допусков, ограничивающих использование результатов обработки измерений.

По своей природе ошибки бывают грубые, систематические и случайные. Грубые ошибки являются результатом промахов и просчетов. Их можно избежать при внимательном и аккуратном отношении к работе и организации надежного полевого контроля измерений. В теории ошибок грубые ошибки не изучаются (в нашем случае примерами грубых ошибок являются измерения, выполненные студентами, желающими получить оценку, а не знания; от авторов).

Систематические ошибки имеют определенный источник, направление и величину. Если источник систематической ошибки обнаружен и изучен, то можно получить формулу влияния этой ошибки на результат измерения и затем ввести в него поправку; это исключит влияние систематической ошибки. Пока источник какой-либо систематической ошибки не найден, приходится считать ее случайной ошибкой, ухудшающей качество измерений. (Систематическая погрешность может нанести больший вред, чем случайная. Это связано с тем, что систематическая погрешность часто является односторонней. Сам этот факт очень сложно установить. Путём многократных измерений такая погрешность не устраняется, от авторов).

Случайные ошибки измерений обусловлены точностью способа измерений (строгостью теории), точностью измерительного прибора, квалификацией исполнителя и влиянием внешних условий. Закономерности случайных ошибок проявляются в массе, то есть, при большом количестве измерений; такие закономерности называют статистическими. Освободить результат единичного измерения от

случайных ошибок невозможно; невозможно также предсказать случайную ошибку единичного измерения. Теория ошибок занимается в основном изучением случайных ошибок" [2].

Наряду с термином "ошибка измерения" в математической статистике используются – "погрешность измерения" и "неопределённость измерения" [3]. Далее мы будем придерживаться термина "погрешность измерения", как наиболее часто встречающегося.

Несмотря на то, что единичное измерение не позволяет определить случайную погрешность измерения, специально организованное массовое исследование может предоставить данные, которые возможно в дальнейшем учитывать при проведении измерений.

Цель исследования. Определить погрешность измерения метода биомеханического анализа, предлагаемого в качестве прикладного для специалистов по физической культуре и спорту, и разработать методические рекомендации по проведению измерений.

Исследование. За последние годы накопился большой объем информации по использованию метода студентами вузов, магистратуры и аспирантами, позволяющий осуществить оценку метода и предложить методические рекомендации по его использованию.

Первый этап. Трем независимым исследователям была представлена возможность провести измерения угловых значений суставов тела спортсмена на одном и том же экспериментальном материале. Измеряемые углы обозначены на рисунке 1. Рисунок 2 представляет исходный материал для измерений.

Рис. 1. Углы, выступающие в качестве объекта измерений

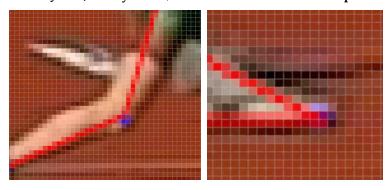


Рис. 2. Исходный материал для измерений тремя независимыми исследователями

Всего было выполнено по 100 измерений тупого и острого углов каждым исследователем (n=600). Результаты и статистические характеристики отображены в таблице 1. Определялись следующие статистические характеристики: среднее арифметическое значение (\overline{x}), медиана (Me), мода (Mo), дисперсия (σ^2), стандартное отклонение (σ)

Результаты измерений угловых значений тремя независимыми исследователями и статистические показатели (n=600)

	b		ε	ľ	Ţ		ь		t	9"	Ţ		ь		2	T"	Ţ		ь		6	9°	Ţ		ь		9	T '1	I		ь		7	s'ı	[
ские тики	σ^2		L	7'	Ţ		6 5		0	۲'۵	7		62		٤	ε"	Ţ		6 7		ţ	8"	7		o ₃		t	٤'۱	Į		6 7		Ţ	ε'7	S	
Статистические характеристики	Mo		9'	67	1		Mo		8	'0	ε		Mo		9	67	τ		Mo		8	°0	ε		Mo		8'	۲2	Ţ		Mo		L	'67	C	
Статі харан	Me		7'	67	Ţ		Me		L	'67	7		Me		7	67	Ţ		Me			'6	7		Me		ľ	67	Ţ		Me		L	'67	Z	
	- x		L'	87	τ		۱ x		0	'0	ε		۱×		8	87	τ		۱ ×		1	'0'	ε		۱×		9'	87	ī		۱×		0	'09	Ē	
		128,1	129,5	127,8	130,1	127,8		28,9	28,4	28,9	28,4	30,2		126,9	129,5	127,8	129,4	128,1		33,5	28,4	28,9	28,5	32,5		126,6	129,4	127,8	129,4	127,8		27,9	28,5	28,9	28,5	30,2
		129,5	129,6	126,9	129,6	129,1		28,4	28,6	28,4	29,5	30,1		127,8	129,6	126,9	129,6	129,5		32,5	28,6	28,4	29,5	31,5		127,9	126,9	126,9	129,6	126,9		28,9	29,5	28,4	29,5	30,1
		129,6	129,4	127,8	129,2	129,5		28,6	29,7	31,8	33,5	29,8		129,8	129,4	127,8	129,2	129,6		28,5	29,7	31,8	33,5	30,5		126,8	129,4	127,8	129,2	127,8		28,4	33,5	31,8	33,5	29,8
		130,1	126,9	126,5	128,1	129,4		30,8	28,5	31,1	32,5	29,7		130,5	126,9	126,5	128,1	130,1		29,5	28,5	31,1	32,5	31,8		126,7	129,6	126,5	128,1	129,1		28,6	30,8	31,1	32,5	7,67
		128,7	126,6	126,7	129,5	126,9		27,9	29,5	30,8	31,5	29,7		130,1	126,6	126,7	129,5	128,7		33,5	29,5	30,8	31,5	27,7		129,4	129,2	126,7	129,5	129,5		28,9	27,9	30,8	31,5	7,67
	В	127,8	129,9	129,3	129,6	129,4	E	6'87	33,5	31,1	30,5	28,5	æ	129,3	129,9	129,3	129,6	129,2	5	30,8	33,5	31,1	30,5	33,5	æ	129,6	128,1	129,8	129,6	129,4	5	30,6	28,9	28,5	30,5	30,5
	го угл	Н	_	129,2		129,6	ого утл	28,4	30,8	30,8	31,8	29,5	го угл	129,2	128,9	129,2	130,1	128,1	го угл	27,9	30,8	30,8	31,8	32,5	го угд	129,2	\vdash	\dashv	130,1	126,9	го угл	30,2	28,4	29,5	31,8	29,5
	я тупо	127,8		128,1		129,2	я остр	31,8	27,9	28,5	27,7	33,5	я тупо	128,1	126,6	128,1	128,7	129,5	остро	28,9	27,9	28,5	27,7	31,5	я тупо	128,1	H	-		129,4	у остр	30,1	28,6	31,8	27,7	33,5
ний	иерени	Н		129,5		128,1	ерени	31,1	28,9	29,5	32,3	32,5	ерени	129,5		129,5	126,5	129,6	ерени	28,4	28,9	29,5	32,3	30,5	герени	129,5	Н	-		129,6	ерени	8,67	28,9	31,1	32,3	30,8
змере	ты из	Н		129,6		127,8	TEI H3N	30,8	28,4	33,5	29,7	30,2	TEI H3N	129,6		129,6	126,7	130,1	rbi H3M	28,6	28,4	33,5	29,7	31,8	ты изл	129,6	\vdash	\dashv		129,2	ISI H3M	7,67	9,08	30,8	29,7	27,9
Результаты измерений	результаты измерения тупого угла	Н		-	129,8	126,9	результаты измерения острого угла	31,1	28,4	30,8	28,5	30,1	результаты измерения тупого угла	130,1	7	130,1	129,8	128,7	результаты измерения острого угла	30,8	28,6	30,8	28,5	27,7	результаты измерения тупого угла	130,1	Н	-	129,8	129,6	результаты измерения острого угла	7,67	30,6	28,5	28,5	28,9
Резуль	_	Ш	129,6					30,8	28,6	27,9	29,5	29,8		128,7	,	128,7		129,5		27,9	28,9	27,9	29,5	28,4		128,7	ш	129,5		Ш		28,5	30,2	29,5	29,5	28,4
]	1-ый исследователь,	Н	130,1	-		129,1	1-ый исследователь,	28,5	30,8	31,1	33,5	29,7	2-ой исследователь,					129,6	2-ой исследователь,	28,9	30,08	31,1	33,5	28,6	3-ий исследователь,	\vdash	\vdash	129,6		Н	3-ий исследователь,	29,5	30,1	33,5	33,5	28,6
	й иссле	Ш					і иссле	29,5	27,9	30,8	30,8	29,7	і иссле	126,9				130,1	иссле	28,4	30,2	30,8	30,8	28,9	і иссле		\vdash	_		ш	иссле	33,5	8,62	30,8	30,8	28,9
	1-bi	\vdash		-	129,2		1-ый	33,5	28,9	28,5	27,9	30,5	2-0Ř	127,8			129,2	128,7	2-ой	31,8		28,5		30,0	3-ий	127,8	ш	-	129,2	ш	3-ий	32,5	29,7	27,9	27,9	30,6
		Н			128,1			30,8	28,4	29,5	28,9	29,5		126,5	\vdash			127,8		31,1	29,8	29,5	28,9	30,0		-	\vdash	-	128,1	Н		31,5	Ш	6,82		
				129,4				27,9			28,4					129,4 I		Ш		30,8	29,7	33,5	28,4				126,9			ш			Ш	28,4		
		Н	130,1	-		ш		31,1	33,5					129,8		129,6	129,6	129,5 1		28,5			28,6			\vdash	126,6	\rightarrow		-			Ш			
		Ш		129,2					Ш		30,8			130,5 1		129,2		129,4 1		29,5			30,8			\vdash	129,9	\dashv		Н		7,72	Ш	31,1		
		129,4		Н					Ш	28,9		28,9			~	i		126,9 I.		31,8			27,9			\vdash	\vdash	\rightarrow		126,9			Ш			
		1	1	1	1	1								I.	I	I	I	I			. ,		•			=	Ξ	=	=	7					``	•

Известно, что если в распределении среднее арифметическое, медиана и мода отличаются друг от друга не более чем на величину доверительного интервала на выбранном уровне значимости, то распределение практически можно считать нормальным [4]. Расчёты показали следующее:

Доверительный интервал

128,6±0,3

Первый исследователь тупой угол	128,7±0,3
Первый исследователь острый угол	30,0±0,4
Второй исследователь тупой угол	128,8±0,3
Второй исследователь острый угол	30,1±0,4

Третий исследователь острый угол 30,0±0,4

Третий исследователь

тупой угол

Рассчитав доверительные интервалы проведенных измерений (смотрите выше), мы убедились в том, что предположение о нормальности распределения не подтверждается. Объём измерений был значительным, и поэтому величина доверительного интервала оказалась настолько малой, что мода и медиана оказались за его пределами. Сам этот факт обуславливает возможность поиска причин отклонения от нормальности распределения, однако любопытство по этому вопросу мы отложим для будущего.

Полученные результаты расчетов позволяют сделать вывод, что ошибка измерения тупого угла меньше, чем острого. Появляется возможность сформулировать методическое указание для пользователей прикладной методики.

В случае необходимости оперирования с острым углом для повышения точности измерения следует измерить тупой угол, дополняющий измеряемый угол до 180^{0} (рисунок 3), и при работе с функциями этого угла учитывать, что значения функций острого угла положительны. Такой технический прием позволяет уменьшить ошибку измерений.

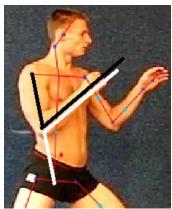


Рис. 3. Пример замены острого угла в локтевом суставе (черные линии) углом, характеризующим отклонение предплечья от прямого положения (белые линии)

Исследуя характеристики острого угла в локтевом суставе, мы измеряли отклонение предплечья от выпрямленного положения, что позволило уменьшить ошибку измерения.

Не менее важной следует считать рекомендацию, которая явно проявляется в первых двух рисунках, получить меньшую погрешность измерений возможно за счет увеличения изображения, например, как это сделано на втором рисунке (современный уровень развития информационных технологий широко предоставляет нам такую возможность).

Стоит обратить внимание на то, что несмотря на различие результатов измерений, проведенных разными исследователями, статистические характеристики этих результатов отличаются незначительно, что позволяет предполагать, что полученная погрешность измерений обусловлена объективными причинами и характеризует высокую степень точности измерений и информативности метода.

Второй этап. Нас интересовала степень точности результатов, которые получаются в первичной информации об исследуемом движении. Для этого было проведено 10 измерений координат положения

ОЦТ тела спортсменки при выполнении последнего шага и отталкивания в прыжке в длину в единицах измерения программы RasChT. Затем, используя масштабный коэффициент, мы перевели результаты в метрическую систему с целью получения среднеквадратического отклонения показателей. Результаты приведены в таблицах 2 и 3. Точность измерения оказалась достаточно высокой – отклонение от среднего значения не более 2,5 мм. Это весьма положительно характеризует не только старание исследователя, но и сам метод получения результатов измерения.

Таблица 2

Результаты измерения и статистические характеристики координаты X общего центра тяжести при выполнении прыжка в длину

X,1 X,2 X,3 X,4 X,4 <th></th> <th></th> <th></th> <th></th> <th>Ćħ.</th> <th>127</th> <th>1</th> <th>Project</th> <th>CO.</th> <th>(Septem</th> <th>6/3</th> <th>en l</th> <th>CO.</th> <th>m</th> <th>57</th> <th>Pages</th> <th>107</th> <th>(A)</th> <th>_</th> <th>1</th> <th>LO.</th> <th>97</th> <th>57</th> <th>No.</th> <th>6/3</th> <th>6/3</th> <th>en l</th> <th>ST.</th> <th>CO.</th>					Ćħ.	127	1	Project	CO.	(Septem	6/3	en l	CO.	m	57	Pages	107	(A)	_	1	LO.	97	57	No.	6/3	6/3	en l	ST.	CO.
N. N.<	Ср. кв	OTKA.	(eg 113m.	W	-0,000	-0,0014	-0,0011	-0,0017	-0,0013	-0,0017	-0,0018	-0,0019	-0,0013	-0,0013	-0,0014	-0,0017	-0,0014	-0,0015	-0,0011	-0,0011	-0,0025	-0,0014	-0,0014	-0,0015	-0,0018	-0,0018	-0,0009	-0,0014	-0,0023
X ₁ X ₂ <th< th=""><th></th><th>year.</th><th></th><th></th><th>-0,0027</th><th>-0,0027</th><th>-0,0027</th><th>-0,0027</th><th>-0,0027</th><th>-0,0027</th><th>-0,0027</th><th>-0,0027</th><th>-0,0027</th><th>-0,0027</th><th>-0,0027</th><th>-0,0027</th><th>-0,0027</th><th>-0,0027</th><th>-0,0027</th><th>-0,0027</th><th>-0,0027</th><th>-0,0027</th><th>-0,0027</th><th>-0,0027</th><th>-0,0027</th><th>-0,0027</th><th>-0,0027</th><th>-0,0027</th><th>-0,0027</th></th<>		year.			-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027
V ₅ X ₅ X ₆ X ₇ <th< th=""><th>Cp. KB</th><th></th><th>_</th><th>Ras.)</th><th>0,32</th><th>0,52</th><th>0,42</th><th>0,63</th><th>0,47</th><th>0,63</th><th>0,67</th><th>0,70</th><th>0,48</th><th>0,48</th><th>0,52</th><th>0,63</th><th>0,52</th><th>0,57</th><th>0,42</th><th>0,42</th><th>0,92</th><th>0,52</th><th>0,53</th><th>0,57</th><th>0,67</th><th>0,67</th><th>0,32</th><th>0,53</th><th>0,85</th></th<>	Cp. KB		_	Ras.)	0,32	0,52	0,42	0,63	0,47	0,63	0,67	0,70	0,48	0,48	0,52	0,63	0,52	0,57	0,42	0,42	0,92	0,52	0,53	0,57	0,67	0,67	0,32	0,53	0,85
1105 1107 1107 1107 1071 <th< th=""><th></th><th>ė</th><th></th><th></th><th>0,18</th><th>0,48</th><th>0,32</th><th>0,36</th><th>0,2</th><th>0,36</th><th>0,56</th><th>9'0</th><th>0,42</th><th>0,42</th><th>0,48</th><th>0,48</th><th>0,48</th><th>0,36</th><th>0,32</th><th>0,32</th><th>0,68</th><th>0,48</th><th>0,5</th><th>0,36</th><th>95'0</th><th>0,4</th><th>0,18</th><th>0,5</th><th>2'0</th></th<>		ė			0,18	0,48	0,32	0,36	0,2	0,36	0,56	9'0	0,42	0,42	0,48	0,48	0,48	0,36	0,32	0,32	0,68	0,48	0,5	0,36	95'0	0,4	0,18	0,5	2'0
100 110 <th></th> <th>Диспер-</th> <th>СИЯ</th> <th></th> <th>01,10</th> <th>0,27</th> <th>0,18</th> <th>0,40</th> <th>0,22</th> <th>0,40</th> <th>0,46</th> <th>0,49</th> <th>0,23</th> <th>0,23</th> <th>7,27</th> <th>0,40</th> <th>0,27</th> <th>0,32</th> <th>0,18</th> <th>0,18</th> <th>0,84</th> <th>72,0</th> <th>0,28</th> <th>0,32</th> <th>0,46</th> <th>0,44</th> <th>0,10</th> <th>0,28</th> <th>0,72</th>		Диспер-	СИЯ		01,10	0,27	0,18	0,40	0,22	0,40	0,46	0,49	0,23	0,23	7,27	0,40	0,27	0,32	0,18	0,18	0,84	72,0	0,28	0,32	0,46	0,44	0,10	0,28	0,72
N5 X5 X6 X5 X6 X5 X6 X1 X1<					1105	1071	1033	999	963	927	891	854,5	820	783	745	711	674	635	503	571	538	203	473,5	443	414	382	320	512,5	414
X ₅ X ₅ X ₆ X ₇ <th< th=""><th></th><th></th><th></th><th></th><th>1105</th><th>1071</th><th>1033</th><th>999</th><th>963</th><th>927</th><th>891</th><th>854</th><th>820</th><th>783</th><th>745</th><th>711</th><th>674</th><th>636</th><th>602</th><th>571</th><th>538</th><th>507</th><th>473</th><th>443</th><th>414</th><th>382</th><th>320</th><th>512</th><th>414</th></th<>					1105	1071	1033	999	963	927	891	854	820	783	745	711	674	636	602	571	538	507	473	443	414	382	320	512	414
N2 N3 N6 N6 N6 N6 N7 N6 N7 N7<		Средн.	3H2V.		1104,9	1071,4	1032,8	8'866	963	2,752	891,3	854,6	819,7	783,3	745,4	710,8	673,6	636,1	602,2	571,2	537,8	506,6	473,5	443,1	413,7	382	349,9	512,5	413,5
N2 N3 N4 N5 N4 N5 N4 N5 N5<		,	ď		1105	1072	1033	999	963	927	891	855	820	784	746	711	674	637	602	571	538	507	474	443	413	385	320	513	414
K2 K3 K6 K5 K6 K7 K8 K9 K9<		×	Ţ		1104	1071	1032	999	963	927	892	854	820	783	745	710	673	636	602	571	538	203	474	443	413	382	350	212	412
X2 X3 X6 X5 X6 X7 X7<		×	2'		1105	1071	1033	999	963	927	891	855	819	783	745	710	674	636	602	571	536	506	473	442	413	382	320	513	412
X2 X3 X6 X5 X6 105 1105		,	è,		1105	1071	1033	266	963	927	891	855	819	783	745	712	674	636	602	571	537	203	473	444	413	382	350	513	414
X2 X3 X6 X6 X6 105 1105 1105 1105 11 1072 1107 1107 1107 1 033 1072 1071 1 1 033 1032 1033 1 1 034 1032 1033 1 1 035 963 969 999 999 999 962 963 963 964 999 <th></th> <th>*</th> <th>ť</th> <th></th> <th>1105</th> <th>1071</th> <th>1033</th> <th>999</th> <th>963</th> <th>927</th> <th>892</th> <th>854</th> <th>820</th> <th>784</th> <th>745</th> <th>711</th> <th>673</th> <th>635</th> <th>603</th> <th>571</th> <th>538</th> <th>203</th> <th>474</th> <th>443</th> <th>414</th> <th>383</th> <th>350</th> <th>512</th> <th>414</th>		*	ť		1105	1071	1033	999	963	927	892	854	820	784	745	711	673	635	603	571	538	203	474	443	414	383	350	512	414
X2 X3 X6 1105 1105 1105 11 1072 11072 11072 11 033 1033 1032 11 033 1033 1032 1 033 1033 1032 1 034 959 959 959 962 963 963 963 962 963 963 820 884 884 884 884 819 880 880 880 819 884 884 884 819 884 884 884 819 885 885 885 810 887 636 607 613 603 604 674 674 613 604 636 636 636 614 414 414 414 414 414 414 414 414 414 <td< th=""><th></th><th>×</th><th>£</th><th></th><th>1105</th><th>1071</th><th>1033</th><th>666</th><th>963</th><th>929</th><th>892</th><th>826</th><th>820</th><th>783</th><th>745</th><th>711</th><th>673</th><th>636</th><th>602</th><th>571</th><th>539</th><th>507</th><th>473</th><th>444</th><th>414</th><th>385</th><th>320</th><th>513</th><th>414</th></td<>		×	£		1105	1071	1033	666	963	929	892	826	820	783	745	711	673	636	602	571	539	507	473	444	414	385	320	513	414
X2 X3 1105 1105 1 1072 1105 1 0072 11072 1 0033 10033 1 0039 999 999 992 999 999 993 999 999 890 890 884 819 890 884 819 890 999 819 890 999 819 890 999 819 884 884 819 884 884 819 880 602 603 603 602 603 604 602 504 474 414 414 414 414 414 414 414 414 414 414		*	ż		1105	1071	1033	666	964	927	891	822	820	784	746	711	674	636	602	572	537	506	474	443	415	381	320	512	414
x, x, 1105 1105 1105 1105 1105 1105 1105 110		×	£		1105	1072	1032	999	963	927	892	854	820	783	746	711	674	636	602	571	538	206	473	443	414	383	349	512	413
X1 X1 X1 1105 11072 11033 1033 999 999 997 977 927 927 927 927 928 962 963 663 663 663 506 507 572 572 572 574 443 414 414 414		×	?		1105	1072	1033	666	963	927	890	854	820	783	746	711	674	637	602	571	538	207	474	443	414	385	320	513	414
		×	7		1105	1072	1033	999	362	927	891	854	819	783	745	710	673	635	603	572	539	506	473	443	414	381	350	212	414

Результаты измерения и статистические характеристики координаты Y общего центра тяжести при выполнении прыжка в длину

Ç. KB	OTKA.	(est. H3M).	Ê	-0,0018	-0,0022	-0,0017	-0,0023	-0,0020	-0,0020	-0,0022	-0,0020	-0,0017	-0,0015	-0,0014	-0,0018	-0,0023	-0,0020	-0,0018	-0,0018	-0,0019	-0,0020	-0,0018	-0,0017	-0,000	-0,0019	-0,0026	-0,0022	-0,0017
	Масштаб			-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027	-0,0027
9	OTKA.	(egt H3M.	Ras.)	0,67	0,82	0,63	0,84	0,74	0,74	0,79	0,74	0,63	0,57	0,53	0,67	0,84	0,74	0,67	0,67	0,71	0,74	0,67	0,63	0,32	0,70	0,95	0,82	0,63
	Ġ	отклон.		0,56	0,7	0,48	0,68	0,54	0,54	0,64	0,54	0,48	0,36	0,5	0,4	0,68	0,54	0,48	0,56	0'0	0,54	0,56	0,48	0,18	0,56	0,84	0,62	0,48
	Диспер-	5		0,46	0,68	0,40	0,71	0,54	0,54	0,62	0,54	0,40	0,32	0,28	0,44	0,71	0,54	0,46	0,46	0,50	0,54	0,46	0,40	0,10	0,49	06'0	0,68	0,40
	Медиана	:		366	368,5	367	369	367	367	367	366	365	366	368,5	370	373	373	374	367	362	355	342	327	315	305	292	600	600
	Mona	ŧ		366	368	367	369	367	367	367	366	365	366	369	370	373	373	374	367	362	355	342	327	315	302	292	600	600
	Средн.	SHBY.		365,7	368,7	367,2	368,6	367,1	366,9	366,8	365,9	365,2	365,9	368,5	370	373,4	373,1	373,7	367,3	362,5	355,1	341,7	326,8	314,9	301,6	291,3	599,7	600,2
	<u>,</u>	. !		366	369	367	370	367	368	366	365	365	365	369	369	373	373	374	367	362	355	342	327	315	301	290	599	600
	×2	r		366	370	368	369	367	368	368	367	366	366	369	370	375	374	374	368	363	356	342	328	315	302	292	599	600
	, <u>*</u>	!		365	370	367	369	367	367	367	366	365	366	368	370	374	373	374	367	362	355	341	327	315	302	292	600	601
	ν.	;		367	369	368	369	367	366	367	366	365	366	368	370	373	372	374	368	362	355	342	327	314	305	292	9009	9009
	>	Y		365	368	367	369	368	367	366	365	366	366	368	370	373	374	373	366	362	354	341	326	315	300	290	9009	600
	ν.	î		366	368	367	369	366	367	368	367	366	367	369	370	374	374	374	368	364	355	342	327	315	305	292	598	599
	ž	!		366	368	367	368	368	366	366	366	365	366	369	369	372	373	372	367	363	356	343	327	315	301	292	600	601
	×	r.		365	368	366	368	366	367	367	366	365	366	368	370	373	372	374	367	363	356	341	327	315	305	291	600	600
	×	, ,		366	369	368	368	368	367	366	366	365	365	368	371	374	373	374	367	362	355	342	326	315	302	290	9009	9009
	×	•		365	368	367	367	367	366	367	365	364	366	369	371	373	373	374	368	362	354	341	326	315	302	292	601	601

Внимательному читателю несложно заметить, что количество строк, содержащих цифровой материал в таблицах 2 и 3, равно 25, а число точек, обозначающих траекторию ОЦТ на рисунке 4, на две меньше, т. е. 23. Это не есть следствие небрежности авторов или попытки "навести тень на плетень" с целью запутать читателя. Две последние строки таблиц содержат информацию о координатах масштабного объекта. Так же несложно убедиться в истинности представленной в таблицах информации, для этого надо лишь предельно возможно увеличить рисунок 4, поместить поверх изображения программу RasChT. Полный алгоритм мы приводим в выдержке из методического пособия [5], которое вы можете найти на сайте biom.by:

"1. Построение таблицы "Координаты ОЦТ" тела спортсмена в физическом упражнении

- 1.1. Активировать программу Photoshop.
- 1.2. Загрузить файл "Траектория ОЦТ тела спортсмена" (диск D/Биомеханика/Студент/Группа/Ф.И.О.), подготовленный в лабораторной работе 1.2.
- 1.3. Оставив флажок в виде глаза только на первом кадре видеограммы с изображением траектории, сделать его видимым.
- 1.4. Щелчком мыши справа от изображения первого кадра видеограммы в окне "СЛОИ" активировать его.
 - 1.5. Запустить программу "RasChT.exe" (D/Биомеханика).
- 1.6. Переместить окно программы "RasChT.exe" так, чтобы оно полностью накрыло изображенную на первом кадре траекторию.
 - 1.7. С помощью движка в окне программы "RasChT.exe" сделать его полупрозрачным.
 - 1.8. С помощью мыши активировать пункт меню "Захват координат".
- 1.9. Установить курсор на изображение ОЦТ, соответствующее первому кадру видеограммы и одновременным удерживая клавишу Ctrl клавишей Пробел зафиксировать координаты ОЦТ, которые должны появиться в окне программы.
 - 1.10. Проделать аналогичную операцию для остальных точек траектории ОЦТ.
- 1.11. Активируя мышью пункт меню "Перенос в Excel" перенести полученные данные в электронную таблицу Microsoft Excel, откроется файл Лист 1.
- 1.12. С помощью мыши выделить полученную таблицу, правой клавишей мыши открыть контекстное меню, выполнить команду "Копировать".
- 1.13. Запустить программу, подготовленную в электронной таблице, "Определение скоростей и ускорений" (D/Биомеханика/Образцы оформления таблиц в Excel/Исследование программы места).
- 1.14. В столбцы А и В таблицы "Определение скоростей и ускорений" с помощью мыши вставить данные таблицы "Координаты ОЦТ".
- 1.15. Используя меню MicrosoftExcel (Файл сохранить как...) сохранить программу "Исследование программы места" в своей папке (диск D/Биомеханика/Студент/Группа/Ф.И.О.)."

Третий этап. Здесь мы преследовали цель оценить корректность и точность получаемых в результате исследования характеристик движения тела спортсмена. Одним исследователем было проведено 10 измерений координат, характеризующих движение общего центра тяжести тела спортсмена на одном и том же исходном материале (рис. 4).

Рис. 4. Траектория движения общего центра тяжести тела спортсменки (частота съемки 100 к/с)

Были получены показатели координат общего центра тяжести, оценка которых была проведена в рамках второго этапа (n=10), горизонтальная и вертикальная составляющие скорости и суммарное ускорение. Далее осуществлялась оценка статистических характеристик полученных результатов, которые представлены в таблицах 4, 5 и 6.

Для анализа результатов определялись следующие статистические характеристики: среднее арифметическое значение (\bar{x}), медиана (Me), мода (Mo), дисперсия (σ^2), стандартное отклонение (σ), стандартная ошибка среднего арифметического (S) и коэффициент вариации (V). Целесообразность выбора этих характеристик обусловлена следующим: первые три позволяют оценить центральную тенденцию. Медиана и мода определялись нами с целью оценки характера распределения полученных результатов. Отбрасывая максимальные и минимальные значения, которые можно считать грубыми ошибками измерения, в большинстве случаев можем утверждать о нормальном распределении полученных результатов.

Последующие характеристики использованы нами для оценки степени разброса полученных результатов. Этот разброс обусловлен погрешностями измерений. Оценка разброса позволит выработать методические рекомендации для пользователей метода, предлагаемого в качестве прикладного в биомеханическом анализе.

Горизонтальная составляющая скорости (таблица 4) в исследуемом физическом упражнении (прыжок в длину) предоставляет существенную возможность судить об эффективности выполнения упражнения, поскольку от величины кинетической энергии, приобретаемой в разбеге, и действенности использования в отталкивании существенно зависит результат.

Характеристики результатов измерений горизонтальной составляющей скорости показывают, что они являются информативными, поскольку стандартное отклонение не превышает 7 см/с (около 1 % от среднего значения). При этом, по сравнению с результатами определения координат общего центра тяжести ошибка естественным образом возросла.

Что касается вертикальной составляющей скорости, то абсолютные показатели отклонения колеблются в том же диапазоне значений. Однако, ввиду того, что показатели скорости по вертикали в прыжках в длину существенно ниже горизонтальных показателей скорости, коэффициент вариации принимает более высокие значения.

Таблица 4 Измерения и статистические характеристики скорости движения общего центра тяжести по горизонтали (n=10)

		Per	ультаты из	вмерений с	корости по			C	татисти	ческие ха	рактери	стики				
Первое	Второе	Третье	Четвертое	Пятое	Шестое	Седьмое	Восьмое	Девятое	Десятое	- x	Me	Mo	σ ²	σ	S	
измерение	измерение	измерение	измерение	измерение	измерение	измерение	измерение	измерение	измерение	(m/c)	(m/c)	(M/c)	(m/c) ²	(M/c)	(M/c)	V
(M/c)	(M/c)	(M/c)	(M/c)	(M/c)	(M/c)	(M/c)	(M/c)	(M/c)	(M/c)	` '	` '	` ′	` ′	` '	` '	
-6,97	-7,03	-6,97	-6,90	-6,97	-7,03	-6,97	-6,90	-6,90	-6,90	-6,95	-6,90	-6,97	0,003	0,054	0,004	0,77%
-7,03	-6,90	-6,90	-6,90	-6,90	-6,90	-6,97	-6,97	-6,90	-6,97	-6,93	-6,90	-6,90	0,002	0,048	0,003	0,70%
-7,24	-7,24	-7,24	-7,31	-7,24	-7,24	-7,24	-7,24	-7,31	-7,31	-7,26	-7,24	-7,24	0,001	0,033	0,002	0,45%
-6,62	-6,69	-6,69	-6,69	-6,69	-6,62	-6,76	-6,69	-6,76	-6,69	-6,69	-6,69	-6,69	0,002	0,046	0,003	0,68%
-7,44	-7,38	-7,38	-7,44	-7,44	-7,44	-7,31	-7,44	-7,38	-7,44	-7,41	-7,44	-7,44	0,002	0,048	0,003	0,65%
-7,10	-7,17	-7,24	-7,17	-7,17	-7,24	-7,24	-7,24	-7,10	-7,10	-7,18	-7,10	-7,17	0,004	0,060	0,004	0,83%
-7,31	-7,38	-7,31	-7,38	-7,31	-7,24	-7,31	-7,24	-7,38	-7,31	-7,31	-7,31	-7,31	0,003	0,050	0,004	0,69%
-7,17	-7,17	-7,17	-7,03	-7,17	-7,17	-7,10	-7,10	-7,10	-7,17	-7,14	-7,17	-7,17	0,002	0,048	0,003	0,68%
-7,31	-7,24	-7,24	-7,31	-7,24	-7,24	-7,24	-7,31	-7,31	-7,31	-7,27	-7,31	-7,27	0,001	0,036	0,003	0,49%
-6,76	-6,76	-6,69	-6,76	-6,69	-6,83	-6,83	-6,76	-6,83	-6,69	-6,76	-6,76	-6,76	0,003	0,056	0,004	0,82%
-6,97	-6,90	-7,03	-6,97	-6,97	-7,03	-6,97	-6,97	-6,90	-7,03	-6,97	-6,97	-6,97	0,003	0,050	0,004	0,72%
-6,42	-6,62	-6,62	-6,49	-6,62	-6,49	-6,49	-6,49	-6,56	-6,56	-6,54	-6,49	-6,52	0,005	0,072	0,005	1,11%
-6,56	-6,49	-6,42	-6,56	-6,42	-6,49	-6,49	-6,62	-6,49	-6,56	-6,51	-6,49	-6,49	0,004	0,065	0,005	1,00%
-6,69	-6,69	-6,62	-6,62	-6,76	-6,62	-6,69	-6,62	-6,69	-6,62	-6,67	-6,62	-6,66	0,002	0,048	0,003	0,72%

Измерения и статистические характеристики скорости движения общего центра тяжести по вертикали (n = 10)

		Pe	зультаты в	змерений	скорости п			(татисти	ческие :	характер	истики				
Первое измерение	Второе измерение	Третье измерение	Четвертое измерение	Пятое измерение	Шестое измерение	Седьмое измерение	Восьмое измерение	Девятое измерение	Десятое измерение	- x (v/a)	Ме (м/с)	Mo (m/c)	6 ² (м/с) ²	б (м/с)	S (M/c)	v
(M/c) -1,09	-0.96	(м/с) -0,89	(м/c) -1,02	(м/c) -1,02	(м/с) -0,89	(M/c) -0,96	(M/c) -1,02	(M/c) -1,09	(M/c) -1,09	(M/c) -1.00	-1.02	-1.02	0.006	0.079	0.006	7.89%
-0,48	-0,61	-0,68	-0,48	-0,55	-0,55	-0,55	-0,61	-0,41	-0,55	-0,55	-0,55	-0,55	0,006	0,079	0,006	14,43%
0,00	-0,14	0,07	-0,07	-0,07	-0,14	-0,07	0,00	-0,14	-0,07	-0,06	-0,07	-0,07	0,005	0,068	0,005	110,49%
0,48	0,68	0,48	0,61	0,61	0,61	0,61	0,61	0,68	0,61	0,60	0,61	0,61	0,005	0,071	0,005	11,74%
0,96	0,89	1,02	0,89	0,96	0,89	0,96	0,96	0,82	0,82	0,92	0,96	0,92	0,004	0,066	0,005	7,21%
0,27	0,55	0,27	0,34	0,34	0,27	0,27	0,20	0,41	0,34	0,33	0,27	0,31	0,009	0,096	0,007	29,13%
0,00	-0,27	0,00	0,00	0,00	0,07	0,00	0,07	-0,07	0,14	-0,01	0,00	0,00	0,012	0,109	0,008	1595,13%
-0,27	-0,20	-0,27	-0,34	-0,34	-0,27	-0,34	-0,27	-0,34	-0,34	-0,30	-0,27	-0,31	0,002	0,048	0,003	15,89%
-0,61	-0,68	-0,75	-0,68	-0,75	-0,68	-0,61	-0,75	-0,55	-0,68	-0,68	-0,68	-0,68	0,005	0,068	0,005	10,04%
-0,68	-0,68	-0,75	-0,75	-0,61	-0,75	-0,75	-0,61	-0,75	-0,75	-0,71	-0,75	-0,75	0,003	0,058	0,004	8,11%
-0,41	-0,41	-0,20	-0,27	-0,34	-0,27	-0,20	-0,27	-0,34	-0,20	-0,29	-0,20	-0,27	0,006	0,079	0,006	26,97%
-0,48	-0,55	-0,48	-0,55	-0,55	-0,48	-0,55	-0,61	-0,55	-0,55	-0,53	-0,55	-0,55	0,002	0,043	0,003	8,11%
1,02	1,02	0,89	0,89	0,96	0,89	0,96	1,09	1,09	0,89	0,97	0,89	0,96	0,007	0,084	0,006	8,66%
0,82	0,96	0,89	0,96	0,96	0,89	0,89	0,82	0,89	0,96	0,90	0,96	0,89	0,003	0,054	0,004	5,98%

Таблица 6 Измерения и статистические характеристики суммарного ускорения общего центра тяжести (n=10)

		Pe	езультаты 1	т змерений	суммарного	ускорени:	Я				Cta	атистиче	еские ха	рактери	ІСТИКИ	
Первое измерение (м/с ⁻)	Второе измерение (м/с²)	Третье измерение (м/с ⁻)	Четвертое измерение (м/с ²)	Пятое измерение (м/с²)	Шестое измерение (м/с-)	Седьмое измерение (м/с ⁻)	Восьмое измерение (м/с-)	Девятое измерение (м/с²)	Десятое измерение (м/с²)	- x (M/c ²)	Ме (м/c²)	Мо (м/с²)	б ² (м/с ²) ²	σ (м/e²)	S (м c²)	v
18,55	11,03	6,48	16,39	14,49	11,03	12,29	12,46	20,49	16,52	13.97		13.47	17.17	4.14	0.32	29.66%
15,60	17,62	24,76	17,38	17,62	16,00	16,52	20,18	14,77	17,62	17,81	17,62	17,50	8.13	2,85	0,22	16.01°o
23,36	29,55	20,49	27,56	26,24	29,12	25,01	24,67	29,55	27,56	26.31		26,90	8.78	2,96	0,23	11.26%
28,46	21,39	26,24	23,98	24,76	25,92	19,33	24,76	18,89	23,36	23,71	24, 6	24.37	9,34	3,06	0,24	12.89%
22,91	11,95	22,91	18,32	20,18	19,44	20,59	23,36	14,77	17,62	19,20		19.81	13,69	3,70	0.28	19.26%
10,24	25,34	8,45	11,95	11,03	6,15	8,45	4,10	16,52	8,69	11,09	8,45	9,47	36,34	6,03	0.46	54.35%
9,16	6,48	9,16	14,49	11,03	10,45	11,95	11,03	11,59	14,92	11.03	9,16	11.03	6,25	2,50	0.19	22.600
11,03	14,49	14,49	13,12	12,46	12,46	9,16	15,60	8,69	11,03	12,25	14,49	12,46	5,25	2,29	0.18	18,70%
16,52	14,34	16,39	16,52	16,89	12,46	12,96	16,89	15,60	18,55	15,71	16,52	16,45	3,63	1,91	0,15	12.12%
10,24	9,16	19,33	15,60	11,59	15,60	16,89	11,95	12,46	19,33	14,22		14.03	13,30	3,65	0.28	25.66%
16,52	9,16	14,77	16,52	11,95	17,50	17,62	17,62	11,95	17,62	15,12		16.52	9,35	3,06	0.24	20.22%
45,26	47,30	41,43	43,07	45,49	40,98	45,07	51,38	49,21	43,02	45,22		45,17	11.13	3,34	0.26	7,38%
7,39	6,48	6,15	2,90	10,24	4,10	6,48	8,20	8,69	2,90	6,35		6,48	6,01	2,45	0,19	38.61%
18,55	11,03	6,48	16,39	14,49	11,03	12,29	12,46	20,49	16,52	13,97		13,47	17,17	4,14	0.32	29.66%

Суммарное ускорение при многократном измерении имеет существенно больший разброс $(V=23\pm12~\%)$, что определяет необходимость дополнительных приемов для получения информации, позволяющей корректно ее трактовать. Коэффициент вариации, превышающий 20 %, свидетельствует о большом разбросе данных (т.е. о наличии серьезных ошибок), поэтому возникающую ошибку можно уменьшить приведенным ниже способом. Высокая частота видеосъемки, применительно к определению показателя ускорения, чрезвычайно полезна в плане точного выявления моментов времени начала и

окончания исследуемых процессов и может навредить при попытке определения динамики этого показателя в выбранном временном промежутке. Поэтому целесообразно, точно определяя начало и конец процесса, усреднять показатели в рамках выбранного временного отрезка.

Заключение. Подводя итоги нашей попытки оценить метод и точность измерений, отметим следующее:

- авторы не претендуют на достаточный охват проблемы, обозначенной в названии работы, для этого необходимо проведение целого ряда дополнительных статистических измерений и анализа из результатов;
- результаты измерения угловых значений и расчета их характеристик позволяют сделать вывод, что ошибка измерения тупого угла меньше, чем острого, вследствие чего для повышения точности измерения следует измерять тупой угол, дополняющий измеряемый угол до 180°, а также увеличивать изображение;
- при различных результатах измерений, проведенных разными исследователями, их статистические характеристики отличаются незначительно, что позволяет предполагать, что полученная погрешность измерений обусловлена объективными причинами и характеризует высокую степень точности измерений и информативности метода;
- сам по себе метод прикладного биомеханического анализа дает возможность получать информацию с высокой степенью точности, подтверждением этому являются результаты второго этапа, когда ошибка определении положения общего центра тяжести не превышает 2,5 мм;
- исследуемый метод позволяет достаточно точно определить горизонтальную и вертикальную составляющие скорости (не более, чем \pm 7 см/с), однако специфика выполняемого двигательного действия, при котором вертикальная составляющая скорости существенно ниже, приводит к более высокой относительной ошибке при определении этой составляющей;
- суммарное ускорение общего центра тяжести имеет существенно больший разброс показателей ввиду того, что ускорения вторая производная от перемещения по времени, при этом измерения проводились с высокой частотой кадров (100 к/с); для уменьшения этой ошибки следует, точно определяя начало и конец процесса, усреднять показатели в рамках выбранного временного отрезка.

Использованные источники

- 1. Екимов, В.Ю. Инновационный подход к преподаванию биомеханики физических упражнений в физкультурных вузах / В.Ю. Екимов, В.К. Пономаренко, Н.Б. Сотский // Ученые записки: сб. рец. науч. тр. Вып. 15 (посвящается 75-летию университета) / М-во спорта и туризма РБ; [и др.]; редкол.: Т.Д. Полякова [и др.]. Минск: БГУФК, 2012. С. 30–37. Библиогр.: С. 36–37.
- 2. http://www.pppa.ru/additional/01geodesy/01/geod17.php. Доступ 08.08.2013; 16:36. Теория ошибок измерений.
- 3. http://ru.wikipedia.org/wiki/%CF%EE%E3%F0%E5%F8%ED%EE%F1%F2%FC_%E8%E7%EC%E5%F0%E5%ED%E8%FF. Доступ 08.08.2013; 16:49. Погрешность измерения. Материал из Википедии свободной энциклопедии.
- 4. Львовский, Е.Н. Статистические методы построения эмпирических формул: Учеб. пособие для втузов / Е.Н. Львовский. 2-е изд; перераб. и доп. М.: Высш. шк., 1988. 239 с.
- 5. Сотский, Н.Б. Практикум по биомеханике / Н.Б. Сотский, В.Ю. Екимов, В.К. Пономаренко. Минск: БГУФК, 2013. 106 с.

Ekimov V.Y., Volkov Y.O., Ponomarenko V.K.

ESTIMATING UNCERTAINTY OF MEASUREMENT IN APPLIED BIOMECHANICAL STUDY SPORTS MOVEMENTS

The problem of accuracy in conducting biomechanical study of physical exercise specialists in the field of physical culture and sports, the prospects for the development of this area of research, proposes a number of guidelines enables the measurement correctly.

Key words. Applied biomechanical study, measurements, statistical processing of data, methods of measurement.

Стаття надійшла до редакції 12.09.2013 р.