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PRINCIPLES OF CALCULATION OF PIEZOELECTRIC ELEMENTS
WITH SURFACES PARTIAL COVERING BY ELECTRODES

A mathematical formulation of boundary problems of mathematical physics, sequential solution
of which allows to describe stress-strain state and transfer characteristics of piezoelectric elements
with surfaces partial covering by electrodes is made. The set of formulated boundary problems makes
mathematical content of energy-power method of the analysis of physical condition of piezoelectric
elements in the regime of forced oscillations under the influence of an external source of electrical
energy. The proposed sequence of computational procedures can be used in the study of forced oscil-

lations of microelectromechanical structures.

Keywords: surfaces partial covering of piezoelectric element by electrodes, microelectro-
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Introduction. In 1986 [1] for the first time
at the pages of scientific journals the abbreviation
MEMS, which replaced the long spoken phrase
microelectromechanical structures, appeared.
Currently leading companies — manufacturers of
electronic components serially produced a rather
extensive list of elements, in which wvarious
MEMS are included. These, above all, are vari-
ous accelerometers, which are produced by mil-
lions of copies, resonators and implemented on
the basis of their electrical signals filters, trans-
formers and other microminiature electrome-
chanical systems.

MEMS manufacturing technology is cur-
rently called as microsystem technology. MEMS
or, what is the same, piezoelectric elements pro-
duced by means of microsystem technology have
much in common with conventional piezoelectric
elements, i.e. not of microscopic size, which are
made of piezoelectric ceramics. For the realiza-
tion of various features in MEMS polycrystal
ferroelectrics are used, which are polarized by
constant electric field in predetermined direction.
Conventional piezoelectric elements are made of
piezoelectric ceramics, which initially is a poly-
crystalline ferroelectric, which on the last process
step of piezoceramic product manufacturing is
polarized by constant electric field of given ori-
entation. A distinctive feature between the
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MEMS and conventional piezoelectric elements
is a method of working surfaces covering by
electrodes. Conventional piezoelectric elements
are usually of continuous electrodes surface. In
some special cases, the electrodes are divided
(cut) into areas which have no galvanic connec-
tion between them. In MEMS partial working
surfaces covering by electrodes is usually used,
when only a part of polarized ferroelectric sur-
face is covered with a metal film. This method of
covering by electrodes makes it possible to excite
in the volume of MEMS several types of elastic
vibrations. Manipulating by geometric parame-
ters of surfaces covering by electrodes, you can
manage energy oscillatory processes in MEMS,
i.e. create conditions where one type of oscilla-
tory motions will dominate over the rest in ampli-
tude of elastic displacement vector of material
particles.

Partial surfaces covering by electrodes has
the effect that electric field in the volume of the
ferroelectric becomes dependent on the values of
the coordinates of observation point for the pa-
rameters of electric field. This phenomenon is
absent in conventional piezoelectric elements. On
the condition of constancy of alternating electric
field intensity in the volume of piezoelectric ele-
ment, created by external generator of electrical
signals the methods of calculation of stress-strain
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state of piezoelectric plates [2] and shells [3] are
based. In the case of partial surfaces covering by
electrodes of piezoelectric element these methods
do not work.

The latter encourages the search for new
approaches to the procedure of calculating of the
parameters of stress-strain state and transfer
characteristics of piezoelectric elements with
partial surfaces covering by electrodes. Below we
will present the general scheme of computational
procedures execution, which, in principle, allows
you to estimate the parameters of stress-strain
state and transfer characteristics of piezoelectric
elements with partial surfaces covering by elec-
trodes. This scheme can be used as a theoretical
basis for mathematical modeling of MEMS.

The sequence of computational proce-
dures in the calculation of piezoelectric ele-
ments with partial surfaces covering by elec-
trodes

Let’s consider a piezoelectric element for
certainty in the form of a plate bounded by arbi-
trarily curved contour K (Fig. 1).

TN

Fig. 1. Piezoelectric element with partial surfaces
covering by electrodes x; = +a

The plate is located in Cartesian coordinate
system ( X4,X,,X5) so that the origin of the sys-
tem is on the middle surface of the plate. To sim-
plify subsequent discussion, we assume that the
plate is made polarized in thickness, i.e. in the
axis directionOx5, piezoelectric ceramics. We

also assume that the polarization is made by con-
stant electric field, the axial component of the
intensity vector which had a constant value at any
point in the volume of the plate. This allows to
assert that material constants of piezoelectric
plate (dielectric constant tensor components,
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piezoelectric modules and elasticity modules) do
not depend on the coordinates of the point inside
the volume of the plate and are given by matrices
of the following form:

a) matrix of dielectric constants yj, that
are experimentally determined in the mode of

constancy (equality to zero) of elastic deforma-
tions (upper symbol ¢):

xi 0 0
il=| % 0, (1)
X33

where i1 =% # %335
b) matrix of piezoelectric modules ey,
(k=1,2,3; p=1,2,3,4,5,6 — Voigt index):
0 0 0 0 es5 O
e|=|0 0 0 ey 0 0,
€3 €xp €3 0 0 0
where €31 = @3, # 333 €45 = €2 = (€55 — €31)/2;
¢) matrix of elasticity modules CE;\ , that

are experimentally determined in the mode of
constancy (equality to zero) of electric field in-
tensity (upper symbol E), (B, A)=1, ..., 6 —
Voigt index):

E LE E
Cy Cp C3 0 0
c5, c5&5 0 0 0
E
E |_ 033 0 0 0 3
Cp| = £ , (3)
cyy 0 O
css O
E
Ceo
E _.E E . E _.E __E.
where Cq1=C22 #C335 Ci2 =Cq3 =C23;

Cis =Css Cop = (C1E1 - C1Ez)/2-

Let’s suppose that on the upper (x3 =)
and lower (x5 =-a) surfaces of piezoelectric
plate are arbitrarily located areas S; and S,

accordingly (Fig. 1), which are coated with a thin
layer of metal, i.e. covered by electrodes. Thus,
in general S, # S, # Sy, where Sy — the surface

of the plate bounded by the contour K. The elec-
trical potential Uye™ is supplied to the surface
S, from electrical signals generator (U, — ampli-
tude of electrical potential on the surface S, cov-
ered by electrodes; naturally, U, # U, , where U,
— amplitude value of electric potential at the out-
put of the generator; i= J-1; o — angular fre-
quency; t — time). Symbol Z_ in Fig. 1 denotes
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electric output impedance of electrical signals
generator.

Denote the amplitude value of intensity
vector of alternating electric field by symbol

E*(x(). We'll determine electric polarization,

which is created by alternating electric field in
the volume of piezoelectric plate, by time-
varying electric induction vector according to the
iot

law €', amplitude value of which is denoted by

D*(x, ). At the same time there is linear confor-
mity between the components of electric induc-

tion vector and electric field intensity vector of
the following form:
Dy (Xk)= XﬁjET(Xk)- 4)

In (4) and in all subsequent recordings of
this type the summation over twice repeated in-
dex is assumed. In the formula (4) such index is
symbol j which sequentially assumes values 1,
2,3.

Characteristics of alternating electric field
in the volume of piezoelectric element are deter-
mined by Maxwell's equations, which for the
amplitude values of electric and magnetic com-
ponents of electromagnetic field can be written in
the following form:

rotH* (x, ) = J*(x, ) + ioD* (x ), (5)
rotE” (x, ) = —ioB* (x, ), (6)
where B*(x, )= poH (X ); 1o =4n-107 T/m —
magnetic permeability of vacuum; é*(xk) and

H*(x,) — amplitudes of harmonically time-
varying vectors of induction and magnetic field
intensity; J*(x,) — amplitude of conduction cur-
rent surface density vector. Since piezoelectric
ceramics is a pretty good dielectric we can write
J*(xk)=0. This means that the properties of

ideal dielectric are attributed to real piezoelectric
ceramics.

Calculating the divergence of the left and
right parts of Maxwell equations (5), we obtain, in
the case of ideal dielectric, the following result:

divf)*(xk)zo. (7)

In [3] it is proved that in frequency range
from zero to tens of megahertz the equation (6)
for ideal dielectrics can be written in the follow-
ing form:

rotE*(x,)= 0. (8)

The condition (8) indicates a potential

character of alternating electric field in piezoelec-
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tric element volume. For this reason the descrip-
tion of this field with the help of scalar potential

(Ib*(xk)ei‘*’t is possible. At the same time ampli-

tude value E*(x, ) of intensity vector of alternat-
ing electric field created by an external source,
i.e. the generator of electrical signals, is deter-
mined in the standard way [4]:
E*(x ) = —grad®* (x, ). )
Substituting the definition (9) into (4), and
obtained result into the condition (7) of the ab-
sence of electricity free carriers, we obtain La-
place differential equation the solution of which
determines the amplitudes of electric potential
D" (x,):
‘32(1)*()(k)Jr ‘32(1)*()(k)Jr 2 0°®"(x)
ox? ox3 ox3

where £2 =35, /x5, — squared coefficient of the

=0,(10)

anisotropy of piezoelectric ceramics dielectric
constant.

General solution of differential equation
(10) must satisfy the following conditions at the
boundaries of the region of existence:

(ID*(XJX3:a=UoV(X1!X2)ES1; (1D

0D" (x, ) =0 V(x;,X,)eSk — Sy, (12)
6X3 X3 = a

2004 _ g vy, ) ek, (13)

0D" (%) =0 V(x;,X,)eSy — S, (14)
0X3 %5 = —a

(D*(in)%:_a=0V(X1,X2)eSZ, (15)
where symbol 6/6n denotes the derivative in the

direction of outward unit normal to lateral surface
of the plate, which relies on the contour K.
Conditions (11) and (15) are self-evident.
Conditions (12)—(14) are approximate [3] and are
performed more accurately when piezoelectric
dielectric constant differs more from dielectric
constant of vacuum 7y, =8,85-107'2 ®/m. For
piezoelectric ceramics PZT-type dielectric con-

stant is yj > 10%y, and thus boundary conditions
(12)~(14) can be considered practically exact. If

dielectric constant of polarized ferroelectric in
MEMS is less than 10y, that, incidentally, has

not yet happened, then the conditions (12)—(14)
must be reformulated, taking into account the
existence of stray fields.
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The solution of boundary problem (10)-
(15) is the first computational procedure when
performing calculations of parameters of stress-
strain state of piezoelectric eclements that are
compatible with microsystem technologies. At
this stage energy levels of electric field are actu-
ally determined at any arbitrarily predetermined
point in the volume of piezoelectric element. It
must be emphasized that the potential ®*(x,) is

calculated assuming that it is completely deter-
mined by geometric parameters of piezoelectric
element, and does not depend on the parameters
of elastic and electric fields, that are generated in
the volume of vibrating piezoelectric element.

After determining the potential (D*(Xk) the

equation of physical condition of oscillating pie-
zoelectric element, calculation scheme of which
is shown in fig. 1, can be written in the following

form:
RN
, (16
+aka (16)

e Ou, o0
Oj =Cijk[aT — €ij .
k k

ou; op 0"
D =e_.—" Bl —— 17
m mljaxj +ij(axj + an J: ( )

where o;; — amplitude value of tensor component

of resulting mechanical stresses; u, — the ampli-

tude of time-varying ¢-th component of dis-
placement vector of piezoelectric material parti-

cles according to harmonic law e'; ® = d(x,) -

scalar potential of internal electric field [5],
which arises as a result of the displacement of
piezoelectric ions from equilibrium positions of

crystal lattice sites; ®* = ®*(x, ) - known scalar

potential of alternating electric field created by an
external source (generator). By its physical con-
tent the equation of physical condition (16) is a
generalized Hooke's law for an elastic medium
with piezoelectric effects, and equation (17) is
the law of electric polarization of the dielectric
with piezoelectric properties.

Newton's second law in differential form
or, what is the same, — the motion equation of a
material particle of elastically deformable solid in
general case can be written as following:

ooj(x.t)  0%u(x, 1)
ox Po ; (18)

ot
where p, - the density of deformable solid. Sub-

stituting the equation (16) into the definition (18),
and taking into account that all of physical fields
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in the volume of deformable piezoelectric ele-
ment change in time according to harmonic law

e! we obtain the following equation:

o%u %D

E 4 2 K

Cijke orox. — € oo, + po@?u; = (x, ),(19)
2 . %

where f(x, )= ey o amplitude value of
k™%

the i-th component of volume density of Cou-
lomb forces that are generated by an external
source (generator) of electric field. Naturally, the
second term on the left-hand side of the equation
(19) also makes sense as the i-th component of
volume density vector amplitude value of Cou-
lomb forces, which arise in the volume of de-
formable piezoelectric by internal electric field
and prevent its deformation by electric fields of
external sources. For small values of piezoelec-

tric modules, i.e. when e; <1 Kn/m? , the second

summand in the equation, in principle, can be
ignored. But for piezoelectric ceramics of PZT

type, that have ey <20 Kn/m? the Coulomb

forces of internal electric field cannot be ignored.
These forces, i.e. the second summand in the
equation (19), act in accordance with the forces
of elasticity (the first summand) and increase the
effective rigidity of the piezoelectric. In some
directions the rigidity of piezoelectric ceramics
can be increased more than 50%.

The condition (7) of electricity free carriers
absence in piezodielectric is true, obviously, for
any representation of electric induction vector.

Since divD(x,)=0, then after substitution of the

equation (17) into this condition we obtain the
following result:
2 2 2 2
0D, TP 200 1o U o 20
OX5 0X; 0X; X 0X,0X,
Equations (19) and (20) are, in general, a

system of four differential equations of second
order partial derivatives. Uniqueness of the solu-
tion of this equations system is provided by
boundary conditions. If piezoelectric element
fluctuates in a vacuum, i.e. has no mechanical
contact with other material objects, then on its
lateral surfaces due to the execution of the third
law of Newton the normal and tangential stresses
acting on elementary areas of these surfaces
should turn to zero. With regard to the calculation
scheme, which is shown in fig. 1, the foregoing
can be written as following:
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Mox,  UNox, ox,

21

X3 =fa >

=0V(x,,X,)eS,

nlc ou, e
i | Vijke ki
0%,

where n; — vector components of outward unit

6<D+ad>*
0X, 0%,

ﬂ:Oka K ,(22)

normal to lateral cylindrical surface of piezoelec-
tric element, whose base is curved contour K
(fig. 1).

Scalar potential ®(x,) of internal electric
field must satisfy the following boundary condi-
tions:

olxc ), _, =0V(x1.x)e Sy, (23)
00 ) _oy(x, x,)e S - S, (24
0X3 % = o

0@ (x oD (x
aif)[_az a£:>[_a=ov(&,&)es“@5)
0, O0) gy ok (26)

OX;

GI’(Xklxs - -a :OV(Xsz)E Sz, (27)
0D(x, ) = 0V(x,,X, )e Sk — S, (28)
0X3 % - —a

a0(x,)|  a0(x)
_ -0V .(29
ox, | 0% |, 7780

Formulated by (19)—(29), boundary prob-
lem is the most complete and general mathemati-
cal formulation of electroelasticity boundary
problem of steady harmonic vibrations of finite
size piezoelectric elements.

Without going into a lengthy discourse, it
can be argued that exact solution of boundary
problem cannot be implemented. However, it is
possible to create an algorithm for approximate
solution of the problem (19)—(29). Computational
procedure, which will be discussed, can be called
the method of sequential approximations. In this
case, the unknown components of displacement
vector u [(Xk) and scalar potential (D(xk) are rep-

resented by convergent series as following:

u[(xk) = U(zo)(xk ) + ZAU(zV)(Xk) 5

v=1
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0lx) = () + D 20(x),  (30)

v=1

where u,(x,) and ®(x,) - exact solutions of
(19), (20)

(D(O)(xk) - zero approximation to exact solutions;

equations system; ugo)(xk ) and

Augv)(xk) and A(D(O)(xk) - v -th order corrections
to zero approximations of exact u[(xk) and
(D(xk).

Zero approximation ugo)(xk) to exact value

of the ¢-th component amplitude of displacement
vector of piezoelectric element material particles
is found by solving the following stationary
boundary problem:

azu(o)

Cijk[ WG[XJ + po(ozu([o) = fiK R (31)
au(o)
{c;kfﬁ - oé,} = 0V(x4,X,)eSk »(32)
X3 = *a

au(o)
ni|:C5k[aT[—6:j(:|=0VXkeK, (33)

k

where o; = eij(adb*/axk), off = ekij(adb*/axk) -

Coulomb forces surface densities of external
source electric field or, which is the same, Cou-
lomb tensions.

Thus, zero approximation to exact values
of displacement vector components of piezoelec-
tric material particles is formed by the solution of
boundary problem (31)—(33). According to phys-
ical content, this boundary problem of elasticity
dynamic theory is the problem of the excitation
of piezoelectric element harmonic oscillations by
the system of volumetric (<) and surface (c'i?)
loads. It should be emphasized that at full piezo-
electric elements surfaces covering by electrodes
and even in the case of separated electrodes Cou-
lomb forces volume density is zero, and the exci-
tation of elastic waves in such piezoelectric ele-

ments is operated by surface loads c'i? .
After solving boundary problem (31)—(33)
zero approximation to exact value of scalar poten-

tial of internal electric field is determined. The
equation (20) can be written in the following form:
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2200 52¢0) ) 2200 - P(n%) (34)
ox3 ox3 ox3 x
azu(o)

i
™ Xm0
to exact value of volume density of polarization
electric charge in the volume of deformable pie-
zoelectric. General solution of Poisson equation
(34) means that the function (D(O)(xk) must sat-
isfy boundary conditions (23)—(29).

After the determination of zero approxima-

(0)

where pyj/=¢€ - zero approximation

tion (D(O)(xk) the correction Au'" is calculated.
For this purpose, into the equation (19) values
U(x, )~ a(())()(k) + AU(O)(XK) and ®(x, )~ (D(O)(Xk)
are inserted. The equation (19) takes the form
o2aull

241 — £00)
E AU o o2aul) = £0)
ke 0%, OX; Po fo

(35)
where AuY and Au{" - first-order corrections to

(0 0)

zero approximations u{® and u® of compo-

nents exact values u,(x,) and u(x,) of dis-
placement vector of piezoelectric material parti-
32(1)(0)

0X0X;

the i-th component exact value of volume density
vector of Coulomb forces, which are formed by
internal electric field in the volume of deformable
piezoelectric.

Uniqueness of the system (35) solution is
ensured by boundary conditions that can be writ-
ten as following:

anu)
5 2o
k

aAul)
n{CEM ax,f —ogo)}onkeK, (37)

cles; fi(o) = €y

- zero approximation to

=0V(x,,X,)eS,, (36)

X3 =ta

where o) = eij(a(D(o)/a X,

Gi(jo) =ekij(6d>(°)/axk) - zero approximations to
exact value of surface densities of Coulomb forc-
es, which are formed by internal electric field in
the volume of vibrating piezoelectric element.

It should be emphasized that boundary
problem (35)—(37) can be solved by the same
manner in which boundary problem (31)—(33)
has been solved. This means that after the con-
struction of analytical expression for U(O)(Xk ), ie.

for zero approximation to exact value of dis-
placement vector of piezoelectric element mate-
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rial particles, it isn’t needed to re-construct gen-
eral solutions for first-order correction AU(1)(XK)
orders corrections

and for all subsequent

AU(V)(Xk). To obtain numerical values of correc-

tions AU(V)(Xk) it is necessary only to substitute
into general solutions of boundary problem (31)—
(33) the corresponding values of Coulomb forces
volume and surface densities, which are formed
by internal electric field in the volume of piezo-
electric vibrating element.

After receiving the first approximation
0(1)(xk)= U(O)(xk)+ AU(1)(Xk) to exact value of
displacement vector of material particles, you can
implement the assessment of correction
A(D(1)(Xk) to exact value ®(x, ) of scalar potential
of internal electric field.  Substituting
0(1)(xk)= U(O)(xk)+ AU(1)(Xk) into the equation
(34) and setting at the same time that
D(x, )~ @O (x, )+ AdW(x,) we get Poisson

equation to determine the correction A(D(1)(xk ):

o2a0)  52A00) L2 o?a0  Apll) (38)
oxA3 ox3 ox3 x
a%aul!

where Ap(;;:e - first-order correc-

™ XX
tion to exact value zero approximation of polari-
zation charge volume density in the volume of
deformable piezoelectric. Uniqueness of the
equation (38) solution is ensured by boundary
conditions (23)—(29).

Again, as in the determination of the cor-
rection AU(1)(XK), obvious conclusion can be

made. To receive the correction A(D(1)(Xk) as,

obviously, all subsequent corrections A(D(V)(xk),
there is no need for a new solution of (38) and
subsequent satisfaction of boundary conditions
(23)~(29). To determine the correction A(D(1)(xk)
it is necessary and sufficient to substitute the

value A p(n2 into general solution of the equation

(34) instead of volume density p(n%). It is obvious
that the correction is of v -th order, i.e. the value
A(D(V)(xk) is determined by general solution of
the equation (34), in the right-hand part of which
is written the correction Ap(nva) (xy ).

Approximate calculation of the compo-
nents of displacement vector and scalar potential

of internal electric field forms the content of the
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second computational procedure for the processes
of mathematical modeling, which are developed in
the volume of piezoelectric element with partial
surfaces covering by electrodes.

The results that are obtained after the first
and second computing procedures, i.e. formulas
for calculating of electric field potential ®*(x, )
created in the volume of piezoelectric element by
electrical signals generator, for scalar potential
®(x, ) of internal electric field and displacement
vector U(Xk) of material particles, linearly de-
pend on electric potential U, that exists on the
surface S; covered by electrodes. From the

above it follows that these relations can be calcu-
lated in the following form:

@’ (Xk )=Upd" (Xk 1),
D(x, ) = Up®D(x,,0,11),

Uz(xk) =U, %G[(Xk ,UJ,H):
C33

(39)

(40)

where ®*(x,I1), ®(x,,o,01) and T,(x,,o,11) -
dimensionless functions of the observation point
coordinates and the set of physical, mechanical
and geometrical (symbol I1 in argument list)
parameters of piezoelectric element; the construc-
tion of the right part of (40) is due to dimension
values included in it.

Since the potential U, = U, , i.e. the potential

U, , is actually the uncertain quantity, so the third

and final computational procedures aim to deter-
mine potential amplitude value on piezoelectric
element surface covered by electrodes.

Obviously, the influence of piezoelectric
element on the amplitude of electric current in
the conductor, which connects it to electric sig-
nals generator, can be described using electrical
impedance Z,,(o) of piezoelectric element. Elec-

trical impedance Z,,(») must satisfy the basic

terms and definitions of theoretical electrical
engineering and, therefore, Ohm's law for the
section of electrical circuit, i.e.

Zaplo)= <2 . (41)
where | — the amplitude of electric current in the
conductors which are connected to piezoelectric
element surface sections covered by electrodes
(fig. 1). Current or amplitude value of | is di-
rectly proportional to the velocity variation in
time of electric charge Q on piezoelectric ele-

ment surface covered by electrodes. For har-
monic changing in time according to e the
amplitude | is determined as follows:

— |(DQ1 = - |(DQ2 5 (42)

where Q; and Q, - amplitude values of electric
charges on the surfaces S; and S, (fig. 1).
Amplitude value of electric charge Q, is

determined as follows:

oL od”
Q1 J:[D:; X1,X2 o dS1 J‘J‘[eg,u ox Xa(ax + aXJ J] dS1 =
X3 = o
o, (X, 0,11 0D (x,,0,IT) 8d*(x,,I1
=U H . eé3k—w) ; (o) 00" (x.11) dS, =U,C (0,11), (43
Cs, OX; OX; OX; i
where C°(w,I1) - dynamic electric capacitance of ~ signals generator (fig. 1) it follows that
piezoceramic element. Up = Urzen( ) _ U , (45)
Thus, | = - ioUyC*(w,I1) and electrical im- Z: +Zyp(0) 1-i0Z,C*(o,1)
pedance of piezoelectric element is where Cs(oa,l'l) is determined by a double inte-
1 gral in (43).
Zop(0)= - ——- (44) . . U
ioC (UJ!H) The calculation of electric potential ~0 is

From the connection diagram of electrical
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the content of the third computational procedure in
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mathematical modeling of piezoelectric elements
with partial surfaces covering by electrodes.

After completing the third and last com-
putational procedure we can write an expression
for calculating the displacement of material
particles of piezoelectric element in the next,
final, form

__ . exU 0
eS|t - i0Z,C*(o,1)]

Uz(xk)

(X, o,I1). (46)

The equation (46) is a mathematical model
of dynamic stress-strain state of piezoelectric
element with partial surfaces covering by elec-
trodes and is a key relation for quantitative esti-
mates of transfer characteristics of piezoelectric
element in all variants of its functional use. Fre-

quency dependent function Cs(oa,l'l) is the theo-

retical basis for the equivalent circuits’ construc-
tion in the sense in which they were proposed in
1925-1928 by Walter G. Cady to radio engineers,
who were involved in the calculation and design
of high-frequency electrical signal generators
with quartz resonator in the generation frequency
stabilization circuit [6].

Conclusions:

1. For the first time the sequence of com-
putational procedures is offered, which allows
when calculating transfer characteristics to use
the full range of physical, mechanical and geo-
metrical parameters of piezoelectric element and
the final value of output electric impedance of
electrical signals generator.

2. For the first time the method is offered,
which allows to perform the real situation ade-
quate assessment of connectivity effect of elastic
and electric fields in the case of their arbitrary
distribution in the volume of vibrating piezoelec-
tric element.

3. Formulated complete set of boundary
problems of technical electrodynamics and elas-
ticity dynamic theory are the mathematical con-
tent of energy-power method [7—10] of physical
state analysis of piezoelectric elements in the
regime of forced oscillations under the influence
of external source of electrical energy.
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4. Proposed sequence of computational
procedures can be recommended as a theoretical
basis for characteristics calculating of piezoelec-
tric elements with partial surfaces covering by
electrodes and microelectromechanical structures
(MEMS).
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HNPUHIUIIBI PACYHETA IIBE3O2JIEKTPUYECKUX 3JIEMEHTOB
C YACTHUYHO 2JIEKTPOANPOBAHHBIMHA ITIOBEPXHOCTAMMU

Boinoanena mamemamuyeckas nOCMAHOBKA SPAHUYHBIX 3A0AY MAMEMAMUYecKol Gu3uku, no-
cnedosamenvhoe peulerue KOMopulx N0360J8em ONUCAMb HANPANCEHHO-0epOPMUPOSAHHOE COCMOSL-
HUe U nepedamouHvle Xapakmepucmuky nbe3031eKmpudeckux 1eMeHmo8 ¢ YacCmuidHblM 31eKmpoou-
posanuem nosepxnocmeil. COBOKYNHOCMb CHOPMYTUPOBAHHBIX SPAHULHBIX 3A0ay COCMAGIsem Mame-
Mamudeckoe COOepiHCanue IHEPLOCUIOB020 MEMOOd AHATU3A (DUIUYECKO20 COCMOSHUSL Nbe30INeK-
MPUYECKUX INEMEHMOB 8 PedCUMe BLIHYIHCOCHHBIX KONeDaHUll N0O Oelicmeuem GHeuHe20 UCHOYHUKA
anexmpudeckoll snepeuu. [lpednoscennas nocied08amenrbHOCHb BbIYUCTUNENLHBIX HPOYEOYD MONCem
ObIMb  UCHONBL3OBAHA NPU UCCTEO0BAHUU BGLIHYICOCHHBIX KONEOAHUL MUKDOINEKMPOMEXAHUYECKUX
CMPYKmMyp.

Knrouesvie cnosa: uacmuunoe 31eKmpoouposanue NOGepXHOCHeEl Hbe303eMenma, MUKpo-
2NEeKMPOMEXaHUecKUue CMpyKmypbi.
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