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PRINCIPLES OF CALCULATION OF PIEZOELECTRIC ELEMENTS 

WITH SURFACES PARTIAL COVERING BY ELECTRODES 
 

A mathematical formulation of boundary problems of mathematical physics, sequential solution 
of which allows to describe stress-strain state and transfer characteristics of piezoelectric elements 
with surfaces partial covering by electrodes is made. The set of formulated boundary problems makes 
mathematical content of energy-power method of the analysis of physical condition of piezoelectric 
elements in the regime of forced oscillations under the influence of an external source of electrical 
energy. The proposed sequence of computational procedures can be used in the study of forced oscil-
lations of microelectromechanical structures. 

Keywords: surfaces partial covering of piezoelectric element by electrodes, microelectro-
mechanical structures. 
 

Introduction. In 1986 [1] for the first time 
at the pages of scientific journals the abbreviation 
MEMS, which replaced the long spoken phrase 
microelectromechanical structures, appeared. 
Currently leading companies – manufacturers of 
electronic components serially produced a rather 
extensive list of elements, in which various 
MEMS are included. These, above all, are vari-
ous accelerometers, which are produced by mil-
lions of copies, resonators and implemented on 
the basis of their electrical signals filters, trans-
formers and other microminiature electrome-
chanical systems. 

MEMS manufacturing technology is cur-
rently called as microsystem technology. MEMS 
or, what is the same, piezoelectric elements pro-
duced by means of microsystem technology have 
much in common with conventional piezoelectric 
elements, i.e. not of microscopic size, which are 
made of piezoelectric ceramics. For the realiza-
tion of various features in MEMS polycrystal 
ferroelectrics are used, which are polarized by 
constant electric field in predetermined direction. 
Conventional piezoelectric elements are made of 
piezoelectric ceramics, which initially is a poly-
crystalline ferroelectric, which on the last process 
step of piezoceramic product manufacturing is 
polarized by constant electric field of given ori-
entation. A distinctive feature between the 

MEMS and conventional piezoelectric elements 
is a method of working surfaces covering by 
electrodes. Conventional piezoelectric elements 
are usually of continuous electrodes surface. In 
some special cases, the electrodes are divided 
(cut) into areas which have no galvanic connec-
tion between them. In MEMS partial working 
surfaces covering by electrodes is usually used, 
when only a part of polarized ferroelectric sur-
face is covered with a metal film. This method of 
covering by electrodes makes it possible to excite 
in the volume of MEMS several types of elastic 
vibrations. Manipulating by geometric parame-
ters of surfaces covering by electrodes, you can 
manage energy oscillatory processes in MEMS, 
i.e. create conditions where one type of oscilla-
tory motions will dominate over the rest in ampli-
tude of elastic displacement vector of material 
particles.  

Partial surfaces covering by electrodes has 
the effect that electric field in the volume of the 
ferroelectric becomes dependent on the values of 
the coordinates of observation point for the pa-
rameters of electric field. This phenomenon is 
absent in conventional piezoelectric elements. On 
the condition of constancy of alternating electric 
field intensity in the volume of piezoelectric ele-
ment, created by external generator of electrical 
signals the methods of calculation of stress-strain 
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state of piezoelectric plates [2] and shells [3] are 
based. In the case of partial surfaces covering by 
electrodes of piezoelectric element these methods 
do not work. 

The latter encourages the search for new 
approaches to the procedure of calculating of the 
parameters of stress-strain state and transfer 
characteristics of piezoelectric elements with 
partial surfaces covering by electrodes. Below we 
will present the general scheme of computational 
procedures execution, which, in principle, allows 
you to estimate the parameters of stress-strain 
state and transfer characteristics of piezoelectric 
elements with partial surfaces covering by elec-
trodes. This scheme can be used as a theoretical 
basis for mathematical modeling of MEMS. 

The sequence of computational proce-
dures in the calculation of piezoelectric ele-
ments with partial surfaces covering by elec-
trodes 

Let’s consider a piezoelectric element for 
certainty in the form of a plate bounded by arbi-
trarily curved contour K  (Fig. 1).  

 
Fig. 1. Piezoelectric element with partial surfaces 

covering by electrodes α±=3x  
 
The plate is located in Cartesian coordinate 

system ( 321 x,x,x ) so that the origin of the sys-
tem is on the middle surface of the plate. To sim-
plify subsequent discussion, we assume that the 
plate is made polarized in thickness, i.e. in the 
axis direction 3Ox , piezoelectric ceramics. We 
also assume that the polarization is made by con-
stant electric field, the axial component of the 
intensity vector which had a constant value at any 
point in the volume of the plate. This allows to 
assert that material constants of piezoelectric 
plate (dielectric constant tensor components, 

piezoelectric modules and elasticity modules) do 
not depend on the coordinates of the point inside 
the volume of the plate and are given by matrices 
of the following form: 

a) matrix of dielectric constants εχ ij , that 
are experimentally determined in the mode of 
constancy (equality to zero) of elastic deforma-
tions (upper symbol ε ):  

 
ε

ε
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ε

χ
χ

χ
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, (1) 

where εεε χ≠χ=χ 332211 ; 
b) matrix of piezoelectric modules βke  

( 3,2,1k = ; 6,5,4,3,2,1=β  – Voigt index): 
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where 333231 eee ≠= ; ( ) 2eeee 31332415 −== ; 
c) matrix of elasticity modules Ecβλ , that 

are experimentally determined in the mode of 
constancy (equality to zero) of electric field in-
tensity (upper symbol E ), (( β , λ ) = 1, … , 6 – 
Voigt index): 
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where E
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Let’s suppose that on the upper ( α=3x ) 
and lower ( α−=3x ) surfaces of piezoelectric 
plate are arbitrarily located areas 1S  and 2S  
accordingly (Fig. 1), which are coated with a thin 
layer of metal, i.e. covered by electrodes. Thus, 
in general K21 SSS ≠≠ , where KS  – the surface 
of the plate bounded by the contour K . The elec-
trical potential ti

0eU ω  is supplied to the surface 
1S  from electrical signals generator ( 0U  – ampli-

tude of electrical potential on the surface 1S  cov-
ered by electrodes; naturally, г0 UU ≠ , where гU  
– amplitude value of electric potential at the out-
put of the generator; 1i −= ; ω  – angular fre-
quency; t  – time). Symbol гZ  in Fig. 1 denotes 
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electric output impedance of electrical signals 
generator. 

Denote the amplitude value of intensity 
vector of alternating electric field by symbol 

( )kxE∗
r

. We’ll determine electric polarization, 
which is created by alternating electric field in 
the volume of piezoelectric plate, by time-
varying electric induction vector according to the 
law tie ω , amplitude value of which is denoted by 

( )kxD∗
r

. At the same time there is linear confor-
mity between the components of electric induc-
tion vector and electric field intensity vector of 
the following form: 

( ) ( )kjkjkk xExD ∗ε∗ χ= .              (4) 
In (4) and in all subsequent recordings of 

this type the summation over twice repeated in-
dex is assumed. In the formula (4) such index is 
symbol j  which sequentially assumes values 1, 
2, 3. 

Characteristics of alternating electric field 
in the volume of piezoelectric element are deter-
mined by Maxwell's equations, which for the 
amplitude values of electric and magnetic com-
ponents of electromagnetic field can be written in 
the following form: 
 ( ) ( ) ( )kkk xDixJxHrot ∗∗∗ ω+=

rrr
, (5) 

 ( ) ( )kk xBixErot ∗∗ ω−=
rr

, (6) 
where ( ) ( )k0k xHxB ∗∗ µ=

rr
; мГн104 7

0
−⋅π=µ  – 

magnetic permeability of vacuum; ( )kxB∗
r

 and 
( )kxH∗

r
 – amplitudes of harmonically time-

varying vectors of induction and magnetic field 
intensity; ( )kxJ∗

r
 – amplitude of conduction cur-

rent surface density vector. Since piezoelectric 
ceramics is a pretty good dielectric we can write 

( ) 0xJ k =∗
r

. This means that the properties of 
ideal dielectric are attributed to real piezoelectric 
ceramics. 

Calculating the divergence of the left and 
right parts of Maxwell equations (5), we obtain, in 
the case of ideal dielectric, the following result: 
 ( ) 0xDdiv k =∗

r
. (7) 

In [3] it is proved that in frequency range 
from zero to tens of megahertz the equation (6) 
for ideal dielectrics can be written in the follow-
ing form: 
 ( ) 0xErot k ≅∗

r
. (8) 

The condition (8) indicates a potential 
character of alternating electric field in piezoelec-

tric element volume. For this reason the descrip-
tion of this field with the help of scalar potential 

( ) ti
k ex ω∗Φ  is possible. At the same time ampli-

tude value ( )kxE∗
r

 of intensity vector of alternat-
ing electric field created by an external source, 
i.e. the generator of electrical signals, is deter-
mined in the standard way [4]:  
 ( ) ( )kk xgradxE ∗∗ Φ−=

r
. (9) 

Substituting the definition (9) into (4), and 
obtained result into the condition (7) of the ab-
sence of electricity free carriers, we obtain La-
place differential equation the solution of which 
determines the amplitudes of electric potential 

( )kx∗Φ : 

 ( ) ( ) ( ) 0
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∂
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∂
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,(10) 

where εε χχ=ξ 1133
2  – squared coefficient of the 

anisotropy of piezoelectric ceramics dielectric 
constant. 

General solution of differential equation 
(10) must satisfy the following conditions at the 
boundaries of the region of existence: 
 ( ) ( ) 1210xk Sx,xUx

3
∈∀=Φ α=

∗ ; (11) 

 ( ) ( ) 1K21
x3

k SSx,x0
x

x

3

−∈∀=
∂

Φ∂

α=

∗

, (12) 

 ( ) ( ) Kx0
n
x

k
k ∈∀=

∂
Φ∂ ∗

, (13) 

 ( ) ( ) 2K21
x3

k SSx,x0
x

x

3

−∈∀=
∂

Φ∂

α−=

∗

, (14) 

 ( ) ( ) 221xk Sx,x0x
3

∈∀=Φ α−=
∗ , (15) 

where symbol n∂∂  denotes the derivative in the 
direction of outward unit normal to lateral surface 
of the plate, which relies on the contour K . 

Conditions (11) and (15) are self-evident. 
Conditions (12)–(14) are approximate [3] and are 
performed more accurately when piezoelectric 
dielectric constant differs more from dielectric 
constant of vacuum мФ1085,8 12

0
−⋅=χ . For 

piezoelectric ceramics PZT-type dielectric con-
stant is 0

3
ij 10 χ≥χε  and thus boundary conditions 

(12)–(14) can be considered practically exact. If 
dielectric constant of polarized ferroelectric in 
MEMS is less than 010χ , that, incidentally, has 
not yet happened, then the conditions (12)–(14) 
must be reformulated, taking into account the 
existence of stray fields. 
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The solution of boundary problem (10)–
(15) is the first computational procedure when 
performing calculations of parameters of stress-
strain state of piezoelectric elements that are 
compatible with microsystem technologies. At 
this stage energy levels of electric field are actu-
ally determined at any arbitrarily predetermined 
point in the volume of piezoelectric element. It 
must be emphasized that the potential ( )kx∗Φ  is 
calculated assuming that it is completely deter-
mined by geometric parameters of piezoelectric 
element, and does not depend on the parameters 
of elastic and electric fields, that are generated in 
the volume of vibrating piezoelectric element. 

After determining the potential ( )kx∗Φ  the 
equation of physical condition of oscillating pie-
zoelectric element, calculation scheme of which 
is shown in fig. 1, can be written in the following 
form: 

 





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


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+
∂

Φ∂
−

∂
∂

=σ
∗

kk
kij

k

E
ijkij xx

e
x
uc l

l , (16) 
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∂
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∂
∂
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∗
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jj
mj

j

i
mijm xxx

ueD , (17) 

where ijσ  – amplitude value of tensor component 
of resulting mechanical stresses; lu  – the ampli-
tude of time-varying l -th component of dis-
placement vector of piezoelectric material parti-
cles according to harmonic law tie ω ; ( )kxΦ≡Φ  - 
scalar potential of internal electric field [5], 
which arises as a result of the displacement of 
piezoelectric ions from equilibrium positions of 
crystal lattice sites; ( )kx∗∗ Φ≡Φ  - known scalar 
potential of alternating electric field created by an 
external source (generator). By its physical con-
tent the equation of physical condition (16) is a 
generalized Hooke's law for an elastic medium 
with piezoelectric effects, and equation (17) is 
the law of electric polarization of the dielectric 
with piezoelectric properties. 

Newton's second law in differential form 
or, what is the same, – the motion equation of a 
material particle of elastically deformable solid in 
general case can be written as following: 

 
( ) ( )

2
ki

2

0
j

kji

t
t,xu

x
t,x

∂

∂
ρ=

∂

σ∂
, (18) 

where 0ρ  - the density of deformable solid. Sub-
stituting the equation (16) into the definition (18), 
and taking into account that all of physical fields 

in the volume of deformable piezoelectric ele-
ment change in time according to harmonic law 

tie ω  we obtain the following equation: 

 ( )k
K
ii

2
0

jk

2

kij
jk

2
E
ijk xfu

xx
e

xx
uc =ωρ+

∂∂
Φ∂

−
∂∂

∂ l
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where ( )
jk

2

kijk
K
i xx

exf
∂∂
Φ∂

=
∗

 – amplitude value of 

the i-th component of volume density of Cou-
lomb forces that are generated by an external 
source (generator) of electric field. Naturally, the 
second term on the left-hand side of the equation 
(19) also makes sense as the i-th component of 
volume density vector amplitude value of Cou-
lomb forces, which arise in the volume of de-
formable piezoelectric by internal electric field 
and prevent its deformation by electric fields of 
external sources. For small values of piezoelec-
tric modules, i.e. when 2

kij мКл1e ≤ , the second 
summand in the equation, in principle, can be 
ignored. But for piezoelectric ceramics of PZT 
type, that have 2

kij мКл20e ≤  the Coulomb 
forces of internal electric field cannot be ignored. 
These forces, i.e. the second summand in the 
equation (19), act in accordance with the forces 
of elasticity (the first summand) and increase the 
effective rigidity of the piezoelectric. In some 
directions the rigidity of piezoelectric ceramics 
can be increased more than 50%. 

The condition (7) of electricity free carriers 
absence in piezodielectric is true, obviously, for 
any representation of electric induction vector. 
Since ( ) 0xDdiv k =

r
, then after substitution of the 

equation (17) into this condition we obtain the 
following result: 

 
22 2 2

2 i
mij2 2 2

m j1 2 3 1

u1 e 0
x xx x x εξ

χ
∂∂ Φ ∂ Φ ∂ Φ

+ + + =
∂ ∂∂ ∂ ∂

.(20) 

Equations (19) and (20) are, in general, a 
system of four differential equations of second 
order partial derivatives. Uniqueness of the solu-
tion of this equations system is provided by 
boundary conditions. If piezoelectric element 
fluctuates in a vacuum, i.e. has no mechanical 
contact with other material objects, then on its 
lateral surfaces due to the execution of the third 
law of Newton the normal and tangential stresses 
acting on elementary areas of these surfaces 
should turn to zero. With regard to the calculation 
scheme, which is shown in fig. 1, the foregoing 
can be written as following: 
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∗
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 i ijk kij k
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l
l ,(22) 

where in  – vector components of outward unit 
normal to lateral cylindrical surface of piezoelec-
tric element, whose base is curved contour K  
(fig. 1). 

Scalar potential ( )kxΦ  of internal electric 
field must satisfy the following boundary condi-
tions: 
 ( ) ( ) 121xk Sx,x0x

3
∈∀=Φ

α=
, (23) 

 ( ) ( ) 1K21
x3
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x
x
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3 3
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x x
0 x ,x S

x x
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 ( ) Kx0
x
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i

k
i ∈∀=

∂
Φ∂ , (26) 

 ( ) ( ) 221xk Sx,x0x
3

∈∀=Φ
α−=

, (27) 

 ( ) ( ) 2K21
x3

k SSx,x0
x
x

3

−∈∀=
∂
Φ∂

α−=

, (28) 

 ( ) ( ) ( )
3 3

k k
1 2 1

1 2x x

x x
0 x ,x S

x x
α α= =

∂ Φ ∂ Φ
= = ∀ ∈

∂ ∂
.(29) 

Formulated by (19)–(29), boundary prob-
lem is the most complete and general mathemati-
cal formulation of electroelasticity boundary 
problem of steady harmonic vibrations of finite 
size piezoelectric elements. 

Without going into a lengthy discourse, it 
can be argued that exact solution of boundary 
problem cannot be implemented. However, it is 
possible to create an algorithm for approximate 
solution of the problem (19)–(29). Computational 
procedure, which will be discussed, can be called 
the method of sequential approximations. In this 
case, the unknown components of displacement 
vector ( )kxul  and scalar potential ( )kxΦ  are rep-
resented by convergent series as following: 

( ) ( )( ) ( )( )∑
∞

=ν

ν∆+=
1

kk
0

k xuxuxu lll , 

 ( ) ( )( ) ( )( )∑
∞

=ν

∆Φ+Φ=Φ
1

k
0

k
0

k xxx , (30) 

where ( )kxul  and ( )kxΦ  - exact solutions of 

equations (19), (20) system; ( )( )k
0 xul  and 

( )( )k
0 xΦ  - zero approximation to exact solutions; 
( )( )kxu ν∆ l  and ( )( )k

0 x∆Φ  - ν -th order corrections 
to zero approximations of exact ( )kxul  and 

( )kxΦ . 

Zero approximation ( )( )k
0 xul  to exact value 

of the l -th component amplitude of displacement 
vector of piezoelectric element material particles 
is found by solving the following stationary 
boundary problem: 

 
( )

( ) K
i

02
0

jk
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E
ijk fu

xx
u

c =ωρ+
∂∂

∂
l

l
l , (31) 
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0
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x
u
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∈∀=











σ−

∂
∂

α±=

l
l ,(32) 

 
( )

Kx0
x

u
cn k

K
ij

k

0
E
ijki ∈∀=












σ−

∂
∂ l

l , (33) 

where ( )kj3k
K

j3 xe ∂Φ∂=σ ∗ , ( )kkij
K
ij xe ∂Φ∂=σ ∗  – 

Coulomb forces surface densities of external 
source electric field or, which is the same, Cou-
lomb tensions. 

Thus, zero approximation to exact values 
of displacement vector components of piezoelec-
tric material particles is formed by the solution of 
boundary problem (31)–(33). According to phys-
ical content, this boundary problem of elasticity 
dynamic theory is the problem of the excitation 
of piezoelectric element harmonic oscillations by 
the system of volumetric ( K

if ) and surface ( K
ijσ ) 

loads. It should be emphasized that at full piezo-
electric elements surfaces covering by electrodes 
and even in the case of separated electrodes Cou-
lomb forces volume density is zero, and the exci-
tation of elastic waves in such piezoelectric ele-
ments is operated by surface loads K

ijσ . 

After solving boundary problem (31)–(33) 
zero approximation to exact value of scalar poten-
tial of internal electric field is determined. The 
equation (20) can be written in the following form: 
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where ( )
( )

jm

0
i

2

mij
0
пэ xx

u
e

∂∂
∂

=ρ  - zero approximation 

to exact value of volume density of polarization 
electric charge in the volume of deformable pie-
zoelectric. General solution of Poisson equation 
(34) means that the function ( )( )k

0 xΦ  must sat-
isfy boundary conditions (23)–(29). 

After the determination of zero approxima-
tion ( )( )k

0 xΦ  the correction )1(ul∆  is calculated. 
For this purpose, into the equation (19) values 

( ) ( )( ) ( )( )k
0

k
0

k xuxuxu
rrr

∆+≈  and ( ) ( )( )k
0

k xx Φ≈Φ  
are inserted. The equation (19) takes the form 

 
( )

( ) ( )0
i

12
0

jk

12
E
ijk fu

xx
u

c =∆ωρ+
∂∂

∆∂
l

l
l , (35) 

where )1(ul∆  and )1(
iu∆  - first-order corrections to 

zero approximations )0(ul  and )0(
iu  of compo-

nents exact values ( )kxul  and ( )ki xu  of dis-
placement vector of piezoelectric material parti-

cles; ( )
( )

jk

02

kij
0

i xx
ef

∂∂
Φ∂

=  - zero approximation to 

the i-th component exact value of volume density 
vector of Coulomb forces, which are formed by 
internal electric field in the volume of deformable 
piezoelectric. 

Uniqueness of the system (35) solution is 
ensured by boundary conditions that can be writ-
ten as following: 

 
( )

( ) ( )
3

1
0E

3 jk 3 j 1 2 K
k x

u
c 0 x ,x S

x
α

σ
= ±

 ∂ ∆
− = ∀ ∈ 
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1
E
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










σ−

∂
∆∂ l

l , (37) 

where ( ) ( )( )k
0

j3k
0
j3 xe ∂Φ∂=σ , 

( ) ( )( )k
0

kij
0

ij xe ∂Φ∂=σ  - zero approximations to 
exact value of surface densities of Coulomb forc-
es, which are formed by internal electric field in 
the volume of vibrating piezoelectric element. 

It should be emphasized that boundary 
problem (35)–(37) can be solved by the same 
manner in which boundary problem (31)–(33) 
has been solved. This means that after the con-
struction of analytical expression for ( )( )k

0 xu
r

, i.e. 
for zero approximation to exact value of dis-
placement vector of piezoelectric element mate-

rial particles, it isn’t needed to re-construct gen-
eral solutions for first-order correction ( )( )k

1 xu
r

∆  
and for all subsequent orders corrections 

( )( )kxu ν∆
r

. To obtain numerical values of correc-
tions ( )( )kxu ν∆

r
 it is necessary only to substitute 

into general solutions of boundary problem (31)–
(33) the corresponding values of Coulomb forces 
volume and surface densities, which are formed 
by internal electric field in the volume of piezo-
electric vibrating element. 

After receiving the first approximation 
( )( ) ( )( ) ( )( )k

1
k

0
k

1 xuxuxu
rrr

∆+=  to exact value of 
displacement vector of material particles, you can 
implement the assessment of correction 

( )( )k
1 x∆Φ  to exact value ( )kxΦ  of scalar potential 

of internal electric field. Substituting 
( )( ) ( )( ) ( )( )k

1
k

0
k

1 xuxuxu
rrr

∆+=  into the equation 
(34) and setting at the same time that 

( ) ( )( ) ( )( )k
1

k
0

k xxx ∆Φ+Φ≈Φ  we get Poisson 
equation to determine the correction ( )( )k

1 x∆Φ : 

 
( ) ( ) ( ) ( )

εχ

ρ∆
−=

∂
∆Φ∂

ξ+
∂
∆Φ∂

+
∂
∆Φ∂

1

1
пэ

2
3

12
2

2
2

12

2
1

12

xxx
, (38) 

where ( )
( )

jm

1
i

2

mij
1
пэ xx

u
e

∂∂
∆∂

=ρ∆  - first-order correc-

tion to exact value zero approximation of polari-
zation charge volume density in the volume of 
deformable piezoelectric. Uniqueness of the 
equation (38) solution is ensured by boundary 
conditions (23)–(29). 

Again, as in the determination of the cor-
rection ( )( )k

1 xu
r

∆ , obvious conclusion can be 
made. To receive the correction ( )( )k

1 x∆Φ  as, 
obviously, all subsequent corrections ( )( )kxν∆Φ , 
there is no need for a new solution of (38) and 
subsequent satisfaction of boundary conditions 
(23)–(29). To determine the correction ( )( )k

1 x∆Φ  
it is necessary and sufficient to substitute the 
value ( )1

пэρ∆  into general solution of the equation 
(34) instead of volume density ( )0

пэρ . It is obvious 
that the correction is of ν -th order, i.e. the value 

( )( )kxν∆Φ  is determined by general solution of 
the equation (34), in the right-hand part of which 
is written the correction ( )( )kпэ xνρ∆ . 

Approximate calculation of the compo-
nents of displacement vector and scalar potential 
of internal electric field forms the content of the 
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second computational procedure for the processes 
of mathematical modeling, which are developed in 
the volume of piezoelectric element with partial 
surfaces covering by electrodes. 

The results that are obtained after the first 
and second computing procedures, i.e. formulas 
for calculating of electric field potential ( )kx∗Φ  
created in the volume of piezoelectric element by 
electrical signals generator, for scalar potential 

( )kxΦ  of internal electric field and displacement 
vector ( )kxu

r
 of material particles, linearly de-

pend on electric potential 0U  that exists on the 
surface 1S  covered by electrodes. From the 
above it follows that these relations can be calcu-
lated in the following form: 

 

( ) ( )ΠΦ=Φ ∗∗ ,x~Ux k0k , 

 ( ) ( )ΠωΦ=Φ ,,x~Ux k0k , (39) 

 ( ) ( )Πω= ,,xu~
c
e

Uxu kE
33

33
0k ll , (40) 

where ( )ΠΦ∗ ,x~
k , ( )ΠωΦ ,,x~

k  and ( )Πω,,xu~ kl  - 
dimensionless functions of the observation point 
coordinates and the set of physical, mechanical 
and geometrical (symbol Π  in argument list) 
parameters of piezoelectric element; the construc-
tion of the right part of (40) is due to dimension 
values included in it. 

Since the potential г0 UU ≠ , i.e. the potential 

0U , is actually the uncertain quantity, so the third  

and final computational procedures aim to deter-
mine potential amplitude value on piezoelectric 
element surface covered by electrodes. 

Obviously, the influence of piezoelectric 
element on the amplitude of electric current in 
the conductor, which connects it to electric sig-
nals generator, can be described using electrical 
impedance ( )ωэлZ  of piezoelectric element. Elec-
trical impedance ( )ωэлZ  must satisfy the basic 
terms and definitions of theoretical electrical 
engineering and, therefore, Ohm's law for the 
section of electrical circuit, i.e. 

 

 ( )
I

UZ 0
эл =ω , (41) 

 

where I  – the amplitude of electric current in the 
conductors which are connected to piezoelectric 
element surface sections covered by electrodes 
(fig. 1). Current or amplitude value of I  is di-
rectly proportional to the velocity variation in 
time of electric charge Q  on piezoelectric ele-
ment surface covered by electrodes. For har-
monic changing in time according to tie ω  the 
amplitude I  is determined as follows: 
 

 21 QiQiI ω−=ω−= , (42) 
 

where 1Q  and 2Q  - amplitude values of electric 
charges on the surfaces 1S  and 2S  (fig. 1). 

Amplitude value of electric charge 1Q  is 
determined as follows: 

 
 
 
 
 
 
 
 
where ( )Πωε ,C  - dynamic electric capacitance of 
piezoceramic element. 

Thus, ( )Πωω−= ε ,CUiI 0  and electrical im-
pedance of piezoelectric element is 

 ( )
( )Πωω

−=ω
ε ,Ci
1Zэл . (44) 

From the connection diagram of electrical 

signals generator (fig. 1) it follows that 

 ( )
( ) ( )Πωω−

=
ω+

ω
=

ε ,CZi1
U

ZZ
ZU

U
г

г

элг

элг
0 , (45) 

where ( )Πωε ,C  is determined by a double inte-
gral in (43). 

The calculation of electric potential 0U  is 
the content of the third computational procedure in 

( ) =






















∂
Φ∂

+
∂

Φ∂
χ+

∂
∂

=α= ∫∫∫∫
α=

∗
ε

1 31 S

1

x
jj

j3
j

i
ij31

S

2131 dS
xxx

uedS,x,xDQ  

 ( ) ( ) ( ) ( )
1

3

i k k k33
0 3ij 3 j 1 0E

j j j33S
x

u x , , x , , x ,e
U e dS U C ,

x x xc
ε ε

α

ω ω
χ ω

∗

=

  ∂ Π ∂ Φ Π ∂ Φ Π
= + + = Π   ∂ ∂ ∂   

∫∫
% %%

, (43)
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mathematical modeling of piezoelectric elements 
with partial surfaces covering by electrodes. 

After completing the third and last com-
putational procedure we can write an expression 
for calculating the displacement of material 
particles of piezoelectric element in the next, 
final, form 

 

 ( )
( )[ ] ( )Πω

Πωω−
=

ε
,,xu~

,CZi1c
Ue

xu k
г

E
33

г33
k ll . (46) 

 
The equation (46) is a mathematical model 

of dynamic stress-strain state of piezoelectric 
element with partial surfaces covering by elec-
trodes and is a key relation for quantitative esti-
mates of transfer characteristics of piezoelectric 
element in all variants of its functional use. Fre-
quency dependent function ( )Πωε ,C  is the theo-
retical basis for the equivalent circuits’ construc-
tion in the sense in which they were proposed in 
1925–1928 by Walter G. Cady to radio engineers, 
who were involved in the calculation and design 
of high-frequency electrical signal generators 
with quartz resonator in the generation frequency 
stabilization circuit [6]. 

Conclusions:  
1. For the first time the sequence of com-

putational procedures is offered, which allows 
when calculating transfer characteristics to use 
the full range of physical, mechanical and geo-
metrical parameters of piezoelectric element and 
the final value of output electric impedance of 
electrical signals generator. 

2. For the first time the method is offered, 
which allows to perform the real situation ade-
quate assessment of connectivity effect of elastic 
and electric fields in the case of their arbitrary 
distribution in the volume of vibrating piezoelec-
tric element. 

3. Formulated complete set of boundary 
problems of technical electrodynamics and elas-
ticity dynamic theory are the mathematical con-
tent of energy-power method [7–10] of physical 
state analysis of piezoelectric elements in the 
regime of forced oscillations under the influence 
of external source of electrical energy. 

4. Proposed sequence of computational 
procedures can be recommended as a theoretical 
basis for characteristics calculating of piezoelec-
tric elements with partial surfaces covering by 
electrodes and microelectromechanical structures 
(MEMS). 
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ПРИНЦИПЫ РАСЧЕТА ПЬЕЗОЭЛЕКТРИЧЕСКИХ ЭЛЕМЕНТОВ  
С ЧАСТИЧНО ЭЛЕКТРОДИРОВАННЫМИ ПОВЕРХНОСТЯМИ 

 
Выполнена математическая постановка граничных задач математической физики, по-

следовательное решение которых позволяет описать напряженно-деформированное состоя-
ние и передаточные характеристики пьезоэлектрических элементов с частичным электроди-
рованием поверхностей. Совокупность сформулированных граничных задач составляет мате-
матическое содержание энергосилового метода анализа физического состояния пьезоэлек-
трических элементов в режиме вынужденных колебаний под действием внешнего источника 
электрической энергии. Предложенная последовательность вычислительных процедур может 
быть использована при исследовании вынужденных колебаний микроэлектромеханических 
структур. 

Ключевые слова: частичное электродирование поверхностей пьезоэлемента, микро-
электромеханические структуры. 
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