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REVIEW OF USING OF COMPUTER VISION METHODS  

FOR FLOTATION FROTH QUALITY EVALUATIONS 
 

In the article a detailed review of previous researches concerning executed works with the use 
of computer vision systems for froth flotation, which is a physical-chemical separation process that is 
often used in mining and minerals industry to remove unwanted waste (gangue) material from the de-
sirable minerals is presented.  
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Introduction. The process begins with the 
grinding circuit, where the ore is first crushed, and 
then milled to obtain a particle size distribution 
that is typically sub 100 μm. The desired particle 
size distribution differs from mine to mine, and is 
typically a function of the ore mineralogy. The 
reason for the grinding is to liberate the grains of 
the desired mineral(s). Water is added to the mills 
to transport the ore through the mill and onwards 
to the classification section.  

The mix of ore and water is known as slur-
ry. Closed loop control of the milling is achieved 
by using a classification circuit. This is typically 
achieved using either hydro-cyclones or a set of 
screens. Hydro-cyclones are density separation 
devices that have an underflow of coarse particles 
and an overflow of fine particles. For a screen, 
the fine particles pass through the screen, while 
the coarse particles do not. In both cases, the 
coarse particles are fed back to the mill for re-
grinding. The fine particles are passed on to the 
flotation section. It is not uncommon to have 
multiple mills, screens and hydro-cyclones in the 
grinding circuit. Fig. 1 shows a typical schematic 
of a grinding circuit. 

 

 
 

Fig. 1. Typical grinding circuit diagram 

Before being pumped into the flotation 
cells, the slurry typically goes through a set of 
conditioning tanks. Various reagents are added to 
the slurry at the conditioning tanks, which allow 
for the time required for the reagents to react with 
the slurry before the flotation process begins. 

The slurry is pumped from the condition-
ing tanks into the first flotation cell. A Flotation 
cell is essentially a large tank that contains an 
impeller to agitate the slurry/air mix, and by so 
doing, promote contacting between air bubbles 
and particles in the slurry. In some flotation cells 
the rate at which air is added is fixed, while in 
other models it is possible to set the air flow rate 
to a desired amount. 

The agitation from the impeller creates 
turbulence within the flotation cell. The turbu-
lence in turn promotes particle-bubble collisions. 
Hydrophobic particles will attach to the air bub-
bles, and rise to the surface. The air bubbles form 
a froth layer on top of the pulp (slurry). The froth 
layer overflows the top of the cell into a launder, 
where the concentrated material is collected.  

The upward motion of the air bubbles re-
sults in the unselective transport of particles to 
the froth layer in the bubbles’ slipstream. Fig. 2 is 
a cross section through a flotation cell showing 
valuable particles in red and gangue particles in 
green. 

If the froth depth is shallow, it is likely that 
these entrained particles (most of which are gan-
gue) will report to the concentrate, lowering the 
grade. Deeper froth depths have more time for 
unattached particles to drain back through the 
pulp due to gravity. The result is fewer gangue 
particles reporting to the concentrate. A level 
sensor is used to determine the froth depth, which 
is controlled in closed loop by varying the flow 
rate of the pulp through the tailings outlet. 
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Fig. 2. A cross section through a flotation cell 

 
Flotation banks are generally arranged in 

banks to allow multistage treatment of the slurry, 
with recycle loops to ensure that no excess of 
valuables is lost in the final tailings. Figure 3 
shows a typical schematic of a bank of flotation 
cells. The chemical state of the pulp in the flota-
tion cell is of utmost importance to ensure that 
optimal performance is achieved.  

Computer vision for control of flotation 
– a review. The appearance of the froth on the 
surface of a flotation cell has great significance, 
in that it contains information, which may de-
scribe the grade and recovery of valuable miner-
als in the concentrate [1]. This is hardly surpris-
ing, given that visual inspection of the froth is 
used as the basis for plant control. In the past, 
little attention has been given to the relationship 
between flotation performance and froth appear-
ance, mainly because more value is attached to 
fundamental systematic investigations rather 
than observations that are difficult to define 
quantitatively. Indeed, different flotation plants 
can exhibit different visual characteristics, 
which may depend on factors such as the type of 
flotation cells used, ore mineralogy, reagents 
used, etc. [1]. 

[1972] In 1972 Glembotskii [2] offered a 
description of froths and froth “quality” based on 
visual parameters. 

[1975] Sweet [3] applies the algorithms 
developed by Wright to both batch and industrial 
cells. He shows that different reagent regimes 
results in different bubble size profiles for batch 
flotation tests. Plant test work also showed that 
the bubble size changes were detectable by the 
computer vision system when reagent step 
changes were made. 

[1979] Research into predicting tin con-
centrate grade and mass flow rate was also per-
formed at Nottingham [4]. Tin flotation images 
were analyzed and a “relative redness” (the dif-
ference between the mean gray and red levels of 
the image, normalized with respect to the gray 
level) measure was calculated.  

[1983] C. Sun and W. G. Wee [5] apply 
the algorithms developed by Wright to both batch 
and industrial cells. He shows that different re-
agent regimes results in different bubble size pro-
files for batch flotation tests. Plant test work also 
showed that the bubble size changes were detect-
able by the computer vision system when reagent 
step changes were made. 

[1986] Kaartinen and Hyötyniemi [6] show 
that a combination of stability, color, speed and 
bubble size descriptors can be used to predict the 
grade of zinc concentrate. They describe a multi-
camera system that uses multivariate statistical 
methods on a number of flotation froth surface 
descriptors (color, bubble size, velocity, and col-
lapse rate) to predict zinc concentrate grade on an 
industrial operation.  

[1987] Moolman et al. [7] show how both 
spatial grey level dependence matrices and 
neighboring grey level dependence matrices can 
be used in conjunction with a neural network to 
identify five different froth classes from an indus-
trial copper flotation cell. Hargrave, Brown and 
Hall [8] show that the process conditions can be 
used to predict the fractal measurements of the 
froth structure, and in so doing predict the bubble 
size distribution of the froth. This is done to be 
able to understand how changes in the process 
conditions affect the froth structure. Hatfield and 
Bradshaw [9] show that the watershed based ve-
locity measure is best suited for specific slow 
moving froths where its sub-pixel accuracy is 
desirable. They also show that it is possible to 
predict the concentrate mass flow rate using froth 
velocity measurements.   

[1988] As early as 1988, Kordek and 
Lenczowski presented work on analysis of froth 
images in an attempt to correlate the appearance 
of the froth with the metal content [10]. The au-
thors obtain Optical Fourier Transforms (using a 
diffract meter) from images of both laboratory 
and plant froths.  

[1989] In 1989 Woodburn et al. [11] de-
scribed work relating to the flotation of low-rank 
coals. It is reported that the froth water content is 
related to the performance of the flotation proc-
ess, with high frothier doses producing high re-
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coveries and lower frother doses producing high 
grades. The water content also correlated with 
froth stability, in that high water content was 
characterized by small bubbles with low rates of 
coalescence, and low water content producing the 
opposite effect. An optimal froth structure (corre-
sponding to maximum beneficiation) was de-
scribed as being the point at which the froth 
changed from close-packed spherical bubbles to a 
cellular form of polyhedral bubbles. It is asserted 
that the optimal structure can be identified visu-
ally and characterized by image analysis tech-
niques and used to form the basis of a coal flota-
tion control mechanism. 

[1990] A further paper [12] again pre-
sents research using optical and digital Fourier 
analysis of still froth images. Once again, use-
ful metal content was the main parameter ex-
tracted by the image analysis. The development 
of a method based on discriminant analysis to 
classify froth images according to inferred 
metal content is described, classification results 
were performed. Moolman et al. [13] show 
how Sammon maps can be used to reduce the 
dimensionality of multi-dimensional texture 
information. They also show the relationship 
between the Sammon map and concentrate 
grade so that the metallurgical performance of 
the cell can be monitored. 

[1991] Recently, a “new” product from 
Crusader Systems, Float-MACS, has been pre-
sented. Float- MACS is a visual froth flotation 
imaging and characterization system [14], which 
differs radically from previous work by this 
group in that it makes use of segmentation to ana-
lyze the froth images. This paradigm shift by a 
group that has up to now based much of its re-
search on texture- based analysis serves, in the 
author's opinion, to indicate the superiority of 
segmentation-based methods over abstract tex-
tural analysis. 

 [1993] in 1993 A plethora of publications 
exist on work performed by this group of re-
searchers, who began studying the application of 
machine vision to froth flotation. An early paper 
[15] presents results of analyzing froth images 
from a copper flotation plant. A relationship be-
tween the copper content of froth and the ratio of 
minor to major modal frequencies of the froth 
image gray scale histogram (the “copper peak”) 
was noted. Bubble shape and size information 
was extracted using a Fast Fourier Transform and 
used for froth classification. 

[1994] Numerous texture measures have 
been used to classify froth images into labeled 
froth classes. Moolman et al. [16] show that the 
Fourier ring texture measurement can be used to 
identify different froth classes from an industrial 
copper operation and that the Fourier coefficients 
were related to the bubble size and shape of the 
flotation froth.  

[1995] Moolman et al. [17] develop a me-
thod of adding froth velocity information to tex-
tural measures, by modifying the camera such 
that froths with high velocity appear blurred. This 
blurring is in effect a new froth class that can be 
identified by textural measures.  Symonds [18] 
used a morphological “rolling ball” method to 
segment froth image, while Liu [19] investigated 
using a hierarchical watershed segmentation al-
gorithm.  Nguyen and Thornton [20] introduce 
the use of the texture spectrum measurement to 
classify froths into distinct classes from industrial 
coal operations. The entire texture spectrum is 
used, rather than the reduced set of texture fea-
tures suggested by He and Wang [21] in 1991, 
because of findings which show no relationship 
between three texture features and the identified 
froth classes. Guarini et al. [22] describe their 
method of making bubble size measurements by 
searching radially at 30◦ intervals for minima. 
The minima are then joined by elliptical arcs to 
identify the individual bubbles. They suggest that 
the bubble size together with HSI color meas-
urements are good froth descriptors, but provide 
no links between the measurements and metal-
lurgical performance. 

[1996] Work was done by Hales et al. [23] 
to monitor copper flotation froth color, bubble 
size and the ”copper peak” histogram peak as 
defined by workers at the University of Stellen-
bosch. Factorial tests, were performed where the 
change in froth appearance as a function of vary-
ing the collector dosage rate, the frother dosage 
rate and the froth depth was measured. Heinrich 
[24] showed that a relationship exists between the 
color of copper froths and their concentrate 
grade. He also proposed a methodology for im-
plementing closed loop control based on his find-
ings. Hatfield and Bradshaw [9], show how com-
puter vision measurements can be used to control 
the concentrate mass flow rate by adjusting the 
airflow rate to the cell on the rougher bank of a 
platinum concentrator. Nguyen [25] describes the 
pixel tracing algorithm to measure the velocity of 
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flotation froths. The algorithm developed by 
Nguyen is based on the assumption that there is 
no distortion between consecutive frames of vid-
eo. This assumption may well have been valid for 
the froths on which Nguyen was working, but 
does not hold for all flotation froths, particularly 
those with dynamic bubble size distributions. The 
algorithm was designed to be a fast robust meas-
ure. However, due to the rapid improvement of 
computer technology these limitations are not- 
longer problematic, with the result that more ac-
curate froth velocity measurements can be made 
in real time. 

[1997] Wang et al. [26, 27] present a set of 
image processing algorithms to determine bubble 
size distributions and associated measurements. 
They initially classify an image based on a calcu-
lation on the white spots of the image, and then 
proceed to delineate individual bubbles using a 
valley edge detection algorithm. No relationships 
between the measurements and metallurgical per-
formance indicators are presented.. Aldrich et al. 
[28] showed that there were strong correlations 
between bubble size and stability measurements 
with grade and recovery data from a set of batch 
flotation tests with varying reagent conditions. 
The batch tests were performed on a Merensky 
platinum ore. Wright [29] shows that the com-
parison of computer vision segmented bubbles to 
hand segmented bubbles is a difficult task, which 
the chi-square test is not suited to: it is possible to 
have confidence that the segmented images are 
both statistically different and statistically the 
same depending on the bin width chosen for the 
bubble size distribution characterization. Later 
work [30] made extensive use of the fractal di-
mensions described above as a tool for describing 
froth structure. Neural network models linking 
concentrate grade, mass flow rate and water con-
tent with froth fractal dimensions were developed 
for P2O5 flotation.  

[1998] Francis and de Jager [31, 32] de-
scribe three methods for measuring the velocity 
of flotation froth: block matching, optical flow 
and a watershed segmentation based method. 
Moolman et al. [33] compiled a comprehensive 
review of literature concerning the relationship 
between flotation froth appearance and funda-
mental flotation principles. The paper serves 
mainly as a motivation for machine-based inspec-
tion of flotation froths. Cipriano et al. [34, 35] 
developed a computer vision system, ACEFLOT, 
which was used to provide an expert system with 

a number of measurements of the froth surface 
(velocity, bubble size, color, stability). The ex-
pert system identifies in what state the froth is, 
and then applies a set of (if – then) rules. How-
ever, no details are given for the set of rules that 
the expert system uses and no metallurgical per-
formance data is provided. Francis et al. [10] then 
compare these algorithms to the pixel tracing al-
gorithm used by Nguyen [36]. Both the optical 
flow and the block matching algorithms outper-
form the pixel tracing method. The watershed 
based velocity estimate is shown to have the 
poorest performance. 

[1999] Oestreich et al. [37] developed a 
video-based sensor for measuring mineral con-
centrations in flotation froths and slurries. The 
sensor made use of a ’’color vector” for estimat-
ing the mineral composition in dry mixtures, slur-
ries and flotation froths. Good correlations were 
observed between the color vector values and 
percentage composition of Chalcopyrite and Mo-
lybdenite. Botha [38] identifies the problem of 
segmenting flotation froth bubbles which have 
both large and tiny bubbles present. He suggested 
the use of a marker bubble area ratio threshold to 
identify areas of fine froth, and acknowledges 
that there is need for further research into this 
area. Niemi et al. [39] use the combination of 
Fourier rings with greyscale values to identify 
different froth classes. Their sampling of the 
froth was at a rate of one image every 20 sec-
onds. Woodburn et al. [40] also note the impor-
tance of bubble size and shape distributions in 
giving a sensitive measure of the appearance of 
an overflowing froth. This point is taken up by 
many of the authors whose work is described in 
the literature review. Using image processing 
techniques to determine these distributions thus 
seems highly attractive. 

[2000] Later work [1] focused on using 
spatial gray level dependence matrix and neigh-
boring gray level dependence matrix [41] meth-
ods for the analysis of froth structures from a tex-
tural point of view. Hyötyniemi and Ylinen [42] 
use the combination of Fourier rings with grey-
scale values to identify different froth classes. 
Their sampling of the froth was at a rate of one 
image every 20 seconds.  

[2001] Francis [43], discusses various pre-
processing techniques that can be used to im-
prove the results from the bubble segmentation 
algorithms. These typically take the form of vari-
ous non-linear filters. Francis and de Jager later 
introduce the Szeliski metric as a method for 
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comparing motion vector fields in a quantitative 
manner [44]. 

[2002] T. Van Schalkwyk [45] show how 
computer vision measurements can be used to 
control the concentrate mass flow rate by adjust-
ing the airflow rate to the cell on the rougher 
bank of a platinum concentrator.  

[2004] Ventura-Medina et al. [46] have 
shown that if air flow rate is increased in a single 
cell there will be a decrease in solids loading. 
Moreover, it was found that the attachment of 
particles decreased movement down the bank in a 
bank of four cells 

[2005] Bartolacci et al. [47] compare grey 
level co-occurrence matrix based and wavelet 
transform based texture measurements to deter-
mine which is best suited for concentrate grade 
prediction on an industrial zinc operation. The 
GLCM based methods provide much better re-
sults than the wavelet approach, although both 
are found to be suited to the task of froth class 
identification. Bartolacci et al. [47] show how 
various computer vision algorithms can be used 
to predict zinc concentrate grade on an industrial 
flotation plant. They also present results showing 
that performance is improved when controlling to 
a bubble size set point by changing reagent dos-
age. Gorain [48] shows that a linear relationship 
exists between froth velocity and the concentrate 
grade for a lead flotation circuit as well as a zinc 
flotation circuit. Morar et al. [49] show that the 
molybdenum, iron and copper grade affect the 
color of the flotation froth. They proceed to show 
that a linear combination of velocity, stability and 
color measurements can be used to predict copper 
concentrate grade.  

Botha et al. [1] describe a method of de-
termining froth velocity by tracking markers 
from the watershed between frames of consecu-
tive interlaced video footage. In this manner, a 
motion vector field can be created from each 
bubble in the image, and the average velocity of 
the flotation froth can be calculated. The author’s 
state that knowledge of the focal length of the 
transforming lens and the geometric dimensions 
of the detector allows the size of structures (in 
this case bubbles). In the analyzed images to be 
related to light intensity distribution in the dif-
fraction pattern, results obtained concluded that 
the froth optical density decreases (i.e. the froth 
becomes darker) with increased metal content, 
and the bubble size decreases with increasing 
metal content.  

In a later paper [50], Kordek and Kulig re-
port on further optical diffract-gram analysis of 
froth images. Froth images were also subjected to 
digital image analysis by means of a digital com-
puter-based Fourier Transforms. Once in the Fou-
rier domain, filters were applied to the image in 
order to determine the total area occupied by the 
froth and the average area of a single bubble. Re-
sults obtained seem to correlate well with the 
useful content of metal in the froths. A recent 
application of the Froth Cam is at Minera Escon-
dida in Chile, where it has been used to measure 
froth velocity [51]. It is worth noting that no use 
has been made of the texture spectrum froth cha-
racterization part of the system in this application 
- the system is simply used to control the speed 
of the froth in the flotation cells. 

[2007] Gomez and Finch [52], The volu-
metric air flow rate is then inferred and volumet-
ric air flow rate per unit cross sectional area of 
cell (Jg) calculated from the previous calibration. 
A range of orifice valves needed to suit all gas 
velocities bring out difficulties with the design as 
the froth builds up within the system.  

[2008] Haavisto et al. [53], A practically 
continuous online estimate of slurry content re-
ported to reach as these measurements can take 
with high frequency as opposed to sparse XRF 
analysis. It also stated that spectral information 
can be used to accurately predict element con-
tents in the slurry in between consecutive XRF 
analyses. This measurement would allow rapid 
identification for any process disruptions.  

Bruno et al [54] defined a concept of frac-
tal descriptors as being a set of values extracted 
from fractal geometry methods and used to char-
acterized artifact in an image, like textures, con-
tours, shapes and so. 

[2009] Garrido, [55], a multilayer percep-
tron is used to relate the bubble illumination in-
tensities to the size distributions of the bubbles. 
The disadvantage of multilayer perceptrons is 
that neural networks with multiple hidden layers 
can be challenging to train and may not yield 
consistent or robust results. 

[2010] Aldrich et al. [56], With dynamic 
features, the movement or dynamic behavior of 
the froth is captured by designed descriptors. 
This includes the froth stability (bubble burst 
rate, fraction of air overflowing or some notion of 
the rate of change of the appearance of the froth) 
as well as mobility (speed and direction of 
movement).  
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[2011] Shean and Cilliers [57], the method 
used in these magnetic flow meters is non-
obtrusive. However, as solids and air bubbles 
decrease the performance, slurry measurement is 
problematic. Furthermore, de-magnetization is 
required if magnetic solids are present.  

[2012] Morar et al. [58], Froth stability is 
the key driver of flotation selectivity and recov-
ery. Nonetheless, it is not well understood how 
the non-linearity of mechanisms occur within the 
froth or how the mechanistic effects change 
across different conditions. There is still a need to 
do research on the effect of the operating vari-
ables on the froth stability behavior and its rela-
tionship to flotation performance.  

[2014] The MathWorks, Inc. [59], Inter-
quartile range (IQR) is a robust estimate of the 
spread of data. Changes in the upper and lower 
25 % of the data do not have an effect on it so 
possible outliers are left out. Therefore it is more 
representative than the standard deviation as an 
estimate of the spread of the body of the data.  

Conclusion. The control of the flotation 
circuit is traditionally maintained by experience 
plant personnel. These operators visually inspect 
the state of the froth, and based on their observa-
tions, will make adjustments to one or more of 
the air flow rate to the cell, the froth depth or re-
agent dosage flow rates. Aspects of the froth 
which the operator will look at include the froth 
velocity, color, bubble size distribution, texture 
and stability. The disadvantages of using such a 
method for control are numerous. Industrial flota-
tion plants keep increasing in size, while keeping 
the number of personnel to a minimum. This 
means that an operator is not able to continually 
inspect each flotation cell resulting in a lag time 
between when a flotation cell starts to underper-
form and when the situation is corrected.  

There is no guarantee that two operators 
will make the same decision when the froth of a 
flotation cell is in the same state. It is also ex-
tremely difficult to determine whether the 
changes made by the operator do in fact improve 
the flotation performance as it is the operator’s 
visual inspection which is being used as a per-
formance measure. It is also important to realize 
that flotation froths from different ore bodies will 
look very different, so what may be a good froth 
on one flotation plant is not necessarily good for 
another plant. This means that operators who are 
new to a flotation plant will need to learn from 
others how the froth looks when the circuit is 
performing well. 
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ОГЛЯД ВИКОРИСТАННЯ МЕТОДІВ КОМП'ЮТЕРНОГО ЗОРУ  
ДЛЯ ОЦІНЮВАННЯ ЯКОСТІ ПІННОЇ ФЛОТАЦІЇ  

 
В роботі представлено детальний огляд попередніх досліджень щодо проведених робіт з 

використанням систем комп’ютерного зору для пінної флотації, яка є фізико-хімічним проце-
сом поділу, що часто використовується в рудній і гірничодобувній промисловості для видален-
ня небажаних відходів (порожньої породи) матеріалу з бажаного мінералу. 

Ключові слова: комп'ютерний зір, контроль флотації, обробка зображень, флотація. 
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