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OPTIMAL PIXEL-TO-TURN-SCALE STANDARD DEVIATIONS RATIO FOR 
TRAINING 2-LAYER PERCEPTRON ON TURNED-SCALED OBJECTS WITH 

DISTRIBUTION-CONSISTENT FEATURE DISTORTION IN CLASSIFYING 
TURNED-SCALED OBJECTS 

 
There	is	studied	a	problem	of	turned‐scaled	objects	classification.	The	object	model	is	the	letter	of	English	alphabet,	

which	 is	monochrome	60‐by‐80‐image.	The	classifier	 is	2‐layer	perceptron	 trained	on	 turned‐scaled	 images	with	normally	
distributed	 pixel	 distortion.	The	 relationship	 among	 turning‐scaling	 distortion	 intensities	 and	 pixel	 distortion	 intensity	 is	
regulated	 by	 pixel‐to‐turn‐scale	 standard	 deviations	 ratio.	 For	 decreasing	 classification	 error	 percentage,	 the	 ratio	 is	
optimized.	The	optimal	ratio	is	evaluated	as	the	segment	as	well,	where	a	graph	of	classification	error	percentage	function	
has	a	cavity.	The	best‐trained‐under‐the‐optimal‐ratio	classifier	makes	errors	no	greater	than	1.004	%.	

Keywords:	 automatization,	 turned‐scaled	 objects,	 object	 classification,	 neocognitron,	 perceptron,	 monochrome	
images,	pixel	distortion,	 turning	distortion	 intensity,	 scaling	distortion	 intensity,	 training	 set,	pixel‐to‐turn‐scale	 standard	
deviations	ratio,	classification	error	percentage.	

 
В. В. РОМАНЮК 

Хмельницький національний університет 
 

ОПТИМАЛЬНЕ ВІДНОШЕННЯ СЕРЕДНЬОКВАДРАТИЧНИХ ВІДХИЛЕНЬ ПІКСЕЛЬНИХ СПОТВОРЕНЬ І 
СПОТВОРЕНЬ ПОВОРОТАМИ ТА МАСШТАБУВАННЯМ ДЛЯ НАВЧАННЯ 2-ШАРОВОГО ПЕРСЕПТРОНА 

НА ПОВЕРНУТИХ І МАСШТАБОВАНИХ ОБ’ЄКТАХ З УЗГОДЖЕНИМИ ЗА РОЗПОДІЛОМ 
СПОТВОРЕННЯМИ ОЗНАК У КЛАСИФІКАЦІЇ ПОВЕРНУТИХ І МАСШТАБОВАНИХ ОБ’ЄКТІВ 

 
Досліджується	 задача	 класифікації	 повернутих	 і	 масштабованих	 об’єктів.	 Моделлю	 об’єкта	 виступає	 літера	

англійського	 алфавіту,	 котра	 представляє	 собою	 монохромне	 зображення	 формату	 60	 на	 80.	 Класифікатором	 є	 2‐шаровий	
персептрон,	 що	 навчається	 на	 повернутих	 і	 масштабованих	 зображеннях	 з	 нормально	 розподіленими	 піксельними	
спотвореннями.	 Співвідношення	 між	 інтенсивностями	 спотворень	 поворотів	 і	 масштабування	та	 інтенсивністю	 піксельних	
спотворень	 регулюється	 відношенням	 середньоквадратичних	 відхилень	 піксельних	 спотворень	 і	 спотворень	 поворотами	 та	
масштабуванням.	 Для	 зменшення	 відсоткового	 рівня	 помилок	 це	 відношення	 оптимізується.	 Оптимальне	 відношення	
оцінюється	 також	 як	 і	 відрізок,	 де	 графік	 відсоткового	 рівня	 помилок	 має	 западину.	 Найкращий	 класифікатор,	 навчений	 за	
оптимального	відношення,	робить	помилки,	що	не	перевищують	1.004	%.	

Ключові	 слова:	 автоматизація,	 повернуті	 і	масштабовані	 об’єкти,	 класифікація	об’єктів,	 неокогнітрон,	 персептрон,	
монохромні	 зображення,	 піксельні	 спотворення,	 інтенсивність	 спотворень	 поворотами,	 інтенсивність	 спотворень	
масштабуванням,	 навчальна	 вибірка,	 відношення	 середньоквадратичних	 відхилень	 піксельних	 спотворень	 і	 спотворень	
поворотами	та	масштабуванням,	відсотковий	рівень	помилок.	

 

Problem of classification under distribution-inconsistency in object distortions 
Nowadays is tightly connected with swift information flow. A huge part in this flow is automatization 

systems functioning, built on computer vision technique. After being detected and tracked, the object has to be 
classified to one of  class \ 1N   classes [1]. The classification fundamental [1, 2] is in describing the object as an 

N -dimensional real-valued matrix  JbB
L

 of the format 
1

N

d

d

L


L  and subscript J , having dL  features in its 

d -th dimension. Certainly, for flat objects 2N  , for solids 3N  , and solids in motions always are presented in 

four or more dimensions. If total number of object features 
1

N

d

d

L

  and integer classN  aren’t great (not greater than 

10, roughly), mostly classifiers are based on using the principle of minimizing the distance between the tracked 
object and classN  pattern objects (PO), or on feature-by-feature comparisons between the tracked object and classN  

PO, or on decision trees [3, 4]. For objects with great number of features (tens, hundreds or even thousands) the 
neural network approximators are needed [5]. 

Multilayer perceptron performance is magnificent when the object at the perceptron classifier input, which 
naturally differs from those classN  PO, can be presented as one of the patterned objects, distorted in a part of its 

1

N

d

d

L

  features, and this feature distortion is statistically distribution-consistent. Unfortunately, these distribution-

consistent feature distortions (DCFD) occur rarely. In real-time flow tracking or monitoring, the N -dimensional 

object by  1, 2, 3N   may appear rotated (turned at a plane or space-solid angle), scaled (linearly and non-

linearly), shifted towards each of N  dimensions, mirrored to left or right along each of N  dimensions, and so on. 
Such distribution-inconsistent feature distortions (DICFD) are brilliantly handled with more complicated neural 
networks — of hierarchical and convolutional type (cognitrons and neocognitrons). However, these complicated 
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neural networks consume much of memory and processor resources. This undesirably delays the classification 
process, and in rapid flow tracking systems the tracker will only contour the objects, not keeping pace with 
classifying them and queuing up. 

Lightening and acceleration in classifying objects with DICFD 
Problem of classifying objects with DICFD that lies in consuming resources hugely and functioning 

lingeringly, would be solved if perceptrons as the swiftest neural networks could be effectively trained on objects 
with DICFD. Particularly, 2-layer perceptron (2LP) is nearly the best for classifying objects with DCFD, especially 
when the distortion intensity has the normal statistical distribution (all the more if there is zero expectation). Objects 
with DICFD, for instance, turned-scaled objects (TSO), constitute training sets, which cannot train 2LP satisfactorily 
[6, 7]. Weak convergence and lingering training process are symptoms of 2LP being trained on TSO [8]. 

Nonetheless 2LP theoretically approximates almost anything with unbounded accuracy [2, 5], if the 
training set is composed correctly. Being trained on TSO, 2LP clashes against multicollinearity in this distortion 
type. Multicollinearity generates also statistical distribution-inconsistency. And if multicollinearity in training is 
removed then 2LP becomes a fine classifier again. Removing the spoken multicollinearity (in general, quasi-
multicollinearity or pseudo-multicollinearity) is possible through intercalating objects with DCFD into TSO. 
Generally speaking, intercalating objects with DCFD into objects with DICFD gives possibility to train multilayer 
perceptrons for classification of objects with DICFD, what must lighten and accelerate the classification process. 
Will investigate it on a model of TSO. 

Purpose of the article and tasks for achieving it 
The general 2LP performance indicator is its classification error percentage (CEP), calculated in particular 

as 

    
class

100
q A

p A
b N

 


 (1) 

by the number  q A  of classification errors, scored at a collection of parameters-attributes A  after b  batches of 

classN  objects (by one representative of every class) have fed the input of 2LP. Whatever the object type is, the 

purpose of the classification process investigator to minimize CEP (1), solving the problem 

  * arg min
A

A p A



A

 (2) 

by the set A  of all tolerable collections of the parameters-attributes within A . In the case of TSO any collection A  
defines rules and relationships with which DCFD are intercalated into DICFD. According to articles [6, 7, 8], which 
proposed a method of 2LP performance improvement in classifying TSO via training through TSO with DCFD, a 
collection A  includes standard deviations (SD), defining the turning distortion intensity (TDI), defining the scaling 
distortion intensity (SDI), and defining a type of DCFD intensity eventually. There is a relationship among these 
SD, being an element in the collection A . With the optimized relationship by (2), 2LP performance might be 
improved further. In [6, 7, 8] the model of TSO was monochrome 60 80  image (M-60-80-I), noted as 60 80  
matrix of zeros and ones (ZO). There were 26 M-60-80-I, corresponded to 26 enlarged English alphabet capital 
letters (EEACL). The background is white, and letter casts are black with white crosshatching. EEACL have a lot of 
generalized attributes of the real world objects (horizontal and vertical lines, squares, circles, crossings, diagonals, 
curves, serpentine lines, etc.) and their medium format 60 80  suits excellently for extrapolating the procedure of 
solving the problem (2) on other formats and object types. 

So, to solve the problem (2) for turned-scaled M-60-80-I (TSM-60-80-I) with the purpose of minimizing 
CEP over TSM-60-80-I, there are the tasks for achieving this purpose: 

1. Make a definition of general totality (GT), containing 26 PO and TSM-60-80-I, where the c -th PO is 

supposed to be the c -th EEACL in the list of alphabetically ordered M-60-80-I of those 26 EEACL, 1, 26c  . 

2. Make a definition of another GT for training, including the previous one and containing TSM-60-80-I 
with DCFD. 

3. State the configuration description of 2LP. 
4. Select a method of 2LP training. 
5. State the model of TSM-60-80-I with DCFD. 
6. Train 2LP on TSM-60-80-I with DCFD. 
7. Test the trained 2LP for evaluating the function  p A  by AA . 

8. Solve the problem (2) and verify whether CEP  *p A  is minimal through re-testing the trained 2LP 

severer. 
Certainly, during development of the article statements these generalized eight items are to be specified 

more exactly. The parameters-attributes collection A  and the set A  of such collections will be discussed 
circumstantially. 

Definition of GT, containing 26 PO and TSM-60-80-I 
An M-60-80-I has total number of features 
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B  as 60 80  matrices of ZO. There are 

TSM-60-80-I among those 48002 26  M-60-80-I  
48002 26

1m m




B  within GT (3). But whether an element of the subset 

 
4800

4800

2 26

21m m
G




B  is TSM-60-80-I or not is predefined with that way, starting from the corresponding PO and 

continuing with its distortion event or process. Therefore, in some cases the fully black M-60-80-I may occur the 
super-over-enlarged (because if just over-enlarged then white crosshatching would be seen) EEACL “A” (“B”, “E”, 
“F”, and others with the centered black parts), and in other cases the black M-60-80-I isn’t related to EEACL. In 
some cases the fully white M-60-80-I may occur just the enlarged EEACL “O” (“C”, “D”, “L”, and others having 
white spaces in the center of the letter M-60-80-I), and in other cases the white M-60-80-I may just be the tracked 
background. As soon as a PO has been turned and scaled, it changes into a TSM-60-80-I, whose matrix of ZO 

belongs to the subset  
4800

4800

2 26

21m m
G




B . 

Definition of GT, including GT (3) and containing TSM-60-80-I with DCFD 
While being trained, the input of 2LP is fed with samples from GT, constituted on both TSM-60-80-I and 

TSM-60-80-I with DCFD. The best DCFD is normal with zero expectation, whose intensity is defined with SD  . 
Then another GT for training is 

 48002
E G G   (4) 

by the set G  of 60 80  matrices 

    G G N  (5) 
with 48002

GG  and 60 80  matrix N  of values of normal variate with zero expectation and unit variance 

(NVZEUV). GT (4) contains TSM-60-80-I with normally distributed pixel distortion (TSM-60-80-INDPD), which 
will be used in training. 

2LP configuration description 
Generally speaking, 2LP is a mapping, defined on some GT, and transferring each element of this GT into 

the set of classN  classes. This mapping has configuration 

 0 HLN class HLTF OLTF

1

, , ; ,
N

d

d

L N N f f


 
  
 
P  (6) 

by number of hidden layer neurons HLNN  with hidden layer transfer function HLTFf  and output layer transfer 

function OLTFf . 2LP (6) for classifying M-60-80-I of class 26N   classes is 

  0 HLN HLTF OLTF4800, , 26; ,N f fP  (7) 

by integer HLNN  of order of hundreds or higher, depending on the object model and its distortion type. In training 

2LP (6) on elements TSM-60-80-INDPD of GT (4) for classifying elements TSM-60-80-I of GT (3) there is 
acceptable HLN 300N  . 

2LP (7) can be configured within MATLAB environment, using accustomed MATLAB function 
“feedforwardnet” from Neural Network Toolbox. 2LP (7) 
  0 4800, 300, 26; ,P S S  (8) 

is initialized with the function “feedforwardnet” [8] by “logsig” transfer function (log-sigmoid transfer function or 
so-called “S-shaped” function) S , having totally 4800 300 300 26 300 26 1448126       weight and bias values 
(Figure 1). 

 

 
 

Figure 1. 2LP (8) configuration view 
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2LP (8) is adapted with weight and bias learning rules by Neural Network Toolbox adapt function 
“adaptwb”. Usefulness of 2LP (8) during training is measured with its performance function “mse” according to the 
sum of squared errors. Number of epochs is 15000, and let the minimum performance gradient before training is 

stopped be 610  as when the performance gradient becomes less than 610 , continued training is unlikely to produce 
significant improvements. 

Selection of a MATLAB function for training of 2LP (8) on TSM-60-80-INDPD 
As the transfer function S  has derivative, then 2LP (8) can be effectively trained with backpropagation. 

Backpropagation training with an adaptive learning rate is implemented with MATLAB function “traingda” [8]. The 
function “traingda” will update 1448126 weight and bias values of 2LP (8) according to gradient descent with the 
adaptive learning rate [1]. Statistically, “traingda” ensures valid and effective convergence. So, this function 
selection is grounded on that. 

Models of TSM-60-80-I and TSM-60-80-INDPD 
A one TSM-60-80-INDPD is formed by (5). Mathematically a one TSM-60-80-I is formed before in two 

stages, although real-time transformation comes with simultaneous turning and scaling. The c -th class PO cB  is 

scaled into the c -th class EEACL  c zS  of an intermediary format V H , where 1,z Z  and Z   is number of 

portions in forming TSM-60-80-I batch. Then  c zS  is turned at an angle, and the turned-scaled V H  image 

 c zT  is re-formatted into TSM-60-80-I  c zG  of the c -th class EEACL. 

For z -th portion of TSM-60-80-I batch, SD 

   maxz z
Z


     by  1,z Z  (9) 

of SDI at max 0   with the value  z  of NVZEUV  z  determines the scale coefficient 

        1z z z       (10) 

to the scaling map 

     ,c cz z     B S  (11) 

with the input PO cB . If occurs    0z    then NVZEUV  z  is re-raffled until    0z   . PO cB  is 

enlarged by   z   times via (11) if    1z   , and cB  is reduced by 
  
1

z 
 times via (11) if    1z   . 

Clearly the input image cB  remains PO if    1z   . In MATLAB the map (11) is supported with MATLAB 

function “imresize”. 
For z -th portion of TSM-60-80-I batch, SD 

   maxz z
Z


     by  1,z Z  (12) 

of TDI at max 0   with the value  z  of NVZEUV  z  determines the angle 

      180
z z z   


 (13) 

in degrees, at which the scaled M-60-80-I as  c zS  is turned around its center point. Matrix of ZO  c zS  is 

processed into the turned-scaled V H  image 

      1 1 ,c cz z z      T S  (14) 

by the map  , turning the input negative  1 c zS  at angle (13).  c zS  through (14) is turned in counterclockwise 

direction if   0z  , and for   0z   it is turned clockwise. Clearly for   0z   the scaled M-60-80-I as V H  

matrix  c zS  of ZO remains itself. 

 c zT  is re-formatted into TSM-60-80-I  c zG  via padding or cropping the matrix. If    1z    then 

the turned-scaled V H  image is cropped by discarding I  lines and J  columns in the matrix  c zT , where 

     1, , 61 ,V VI N N V  ,      1, , 81 ,H HJ N N H  , (15) 

 
1 sign

30 sign sign
2 2 2 2

V
V V

V V V
N

                          
, (16) 

 
1 sign

40 sign sign
2 2 2 2

H
H H

H H H
N

                          
, (17) 

and  x  is a function, returning the integer part of the number x , calculated by the values  ,V H   of two 
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independent NVZEUV. These NVZEUV are raffled every time, when the function  x  is applied. If    1z    

the turned-scaled V H  image  c zT  is contoured rectangularly with the background white color: the matrix 

 c zT  is padded from left and from right for 

 left

1 sign80
sign sign

2 2 2 2
H

H

H H H
N

                         
 (18) 

and 
 right left80N H N    (19) 

columns of ones (in MATLAB the white color is coded with ones) correspondingly, and it is padded from top and 
from bottom for 

 top

1 sign60
sign sign

2 2 2 2
V

V

V V V
N

                         
 (20) 

and 
 bottom top60N V N    (21) 

lines of ones correspondingly. In MATLAB the map   in (14) is supported with MATLAB function “imrotate”. 

Before forming TSM-60-80-INDPD batch, matrices   26

1c c
z


G  of ZO for all 26 classes TSM-60-80-I are 

reshaped into 4800 26  matrix  zG , whose c -th column is matrix  c zG , reshaped into 4800 1  matrix. And 

then z -th portion of TSM-60-80-INDPD batch is 4800 26  matrix 

       26z z z   G G N  (22) 

by SD 

   maxz z
Z


     by  1,z Z  (23) 

of pixel distortion intensity (PDI) at max 0   and 4800 26  matrix 26N  of values of NVZEUV. Matrix  zG  by 

(22) and SD of PDI (23) includes all 26 classes TSM-60-80-INDPD, where c -th column of  zG  corresponds to 

the c -th class. 
Training on TSM-60-80-INDPD 

For training on TSM-60-80-INDPD the training set 

     1 1
,

ZR

d z
z

 

 
 
 

B G  (24) 

feeds the input of 2LP (8) by R Z  targets as R Z  identity 26 26  matrices, where 26 PO  26

1c c
B  are reshaped 

into 4800 26  matrix B , whose c -th column is 4800 1 -reshaped matrix cB , and R . The training set (24) is 

passed through 2LP (8) for Q  cycles. Thus 2LP (8) is trained on TSM-60-80-INDPD under parameters 

  max max max, , , , ,R Z Q   . (25) 

Now SD of maximal SDI and TDI can be preset: 
 max 0.2  ,  max 0.2  . (26) 

The relationship among these SD can be regulated with SD of maximal PDI: 

 max
PTSSD max

max

5r


  


. (27) 

Instead of the ratio (27) there could have been taken another denominator to have max max  , but not minding 

equality between max  and max , and so (27) is an optional parameter, involving both TDI and SDI, where 

relationship between them max max   is known. Thus let (27) be called pixel-to-turn-scale standard deviations ratio 

(PTSSDR). 
After having been trained under parameters (25), 2LP (8) transforms into 2LP 

  max max PTSSD4800, 300, 26; , ; , , , , ,r R Z Q P S S . (28) 

May the rest of parameters  , ,R Z Q  in (25) be preset to 2R   and 8Z   by sufficiently great pass integer, say, 

100Q   to obtain fine classification capabilities of 2LP (8). Consequently, after having been trained, 2LP (28) is 

  PTSSD4800, 300, 26; , ; 0.2, 0.2, , 2, 8, 100rP S S . (29) 

And this means that here the collection  PTSSDA r  for CEP (1) and the problem (2). 

Testing the trained 2LP (29) for evaluating the function  PTSSDp r  

While 2LP (29) is tested, its input is fed with TSM-60-80-I, formed by some SD of SDI 
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   max0; 0; 0.2    and some SD of TDI    max0; 0; 0.2   . As those three SD in (9), (12), (23), these SD 

increase simultaneously also. 
Let the input of 2LP (29) be fed with 200b   batches from GT (3). Let by  0; 0.2  and  0; 0.2  

the number of classification errors be  PTSSD , ,q r   . Then 

    
0.2

PTSSD PTSSD PTSSD

00

1 1
, , , ,

0.2 1 5 5

M

j

j j
q r q r d q r

M M M


           (30) 

for  1M  -pointed subset  
0

0; 0.2
5

M

j

j

M 

   
 

 of segment  max0;   and of segment  max0;  . It is sufficient to 

preset 10M  . Consequently, with (30) CEP (1) is 

  
10

PTSSD PTSSD

0

1
, ,

572 50 50
j

j j
p r q r



    
  . (31) 

Let the segment of values of PTSSDR (27) be denoted as min max
PTSSD PTSSD;r r   A . Empirically for max 1   

batches of TSM-60-80-INDPD are overloaded with DCFD, and for max 0.001   they are felt to be underloaded. 

Therefore 2LP (29) is going to be trained by  min max
PTSSD PTSSD PTSSD; 0.005; 5r r r     for evaluating the function 

 PTSSDp r  and solving the problem (2) 

 
 

 
PTSSD

*
PTSSD PTSSD

0.005; 5
arg min

r
r p r


 . (32) 

Firstly let the segment of PTSSDR (27) be sampled rough, from the right side. For obtaining preliminary 
results faster, let take 2LP 
  PTSSD4800, 300, 26; , ; 0.2, 0.2, , 2, 8, 25rP S S . (33) 

instead of 2LP (29). Thus there is PTSSDR segment subset 

    18 min max
PTSSD PTSSD0

0.5 0.25 ; 0.005; 5
i

i r r


      (34) 

and for each of 19 points in (34) the value (31) for 2LP (33) is calculated (Figure 2). 
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 PTSSDp r
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Figure 2. An evaluation of the function  PTSSDp r  over 50 trained 2LP (33) by every  18

PTSSD 0
0.5 0.25

i
r i


   

 
Obviously, Figure 2 leaves vague notion about the minimum of the function  PTSSDp r  on the segment 
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 0.5; 5 . Nevertheless it’s clear that the problem (32) is equivalent to the problem 

 
 

 
PTSSD

*
PTSSD PTSSD

0.005; 0.75
arg min

r
r p r


 , (35) 

whatever Q  is. Then the function  PTSSDp r  for 2LP (33) is re-evaluated finer on PTSSDR subsegment 

 0.005; 0.75  subsets (Figure 3) 

        9 8

0 0
0.005 0.005 , 0.1 0.05 , 0.75 0.005; 0.75 0.005; 5

i i
i i

 
    ,   

         19 13

0 1
0.005 0.005 , 0.1 0.05 0.005; 0.75 0.005; 5

i i
i i

 
    . (36) 

Those re-evaluations may be considered as zooms in the function  PTSSDp r  on PTSSDR subsegment 

   0.005; 0.75 0.005; 5 . 
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Figure 3. Re-evaluations of the function  PTSSDp r  for trained 2LP (33) 

 
Unexpectedly, Figure 3 has shown that *

PTSSD 0.2r  , although this is just for 25Q  . And 0.005 -sampling 

is redundant. Nonetheless, re-evaluations of  PTSSDp r  for 2LP (33) narrow the problem (35) to the problem 

 
 

 
PTSSD

*
PTSSD PTSSD

0.005; 0.4
arg min

r
r p r


 . (37) 

For trained 2LP (29) subsequently, Figure 4 contains evaluation of the function  PTSSDp r  on PTSSDR subsegment 

 0.005; 0.4  subset 

           9 3

0 1
0.01 0.01 , 0.1 0.1 0.005; 0.4 0.005; 0.75 0.005; 5

i i
i i

 
      (38) 

along with the point PTSSD 0r  . Also the upper  PTSSDp r


 and lower  PTSSDp r


 envelopes of the function  PTSSDp r  

realizations are shown. For averaging, here 20 realizations of the function  PTSSDp r  on subset (38) are used. All 

they are shown in Figure 5. 

The evaluation of the function  PTSSDp r  in Figure 4 shows that *
PTSSD 0.01r  . The lower envelope of 20 

single realizations of the function  PTSSDp r  in Figure 5 prompts the same. Contrariwise, *
PTSSD 0.1r   by the upper 

envelope. Hence, due to unstable evaluations, the problem (37) solution is  *
PTSSD 0.01; 0.1r  . 
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Figure 4. Evaluations of the function  PTSSDp r  for trained 2LP (29) with the upper and lower envelopes on finite subset (38)  

along with the point PTSSD 0r   
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Figure 5. 20 single realizations of the function  PTSSDp r  for trained 2LP (29) on subset (38) along with the point PTSSD 0r   

 
Problem (32) solution and its verification 

Figure 4 and Figure 5 both reveal a cavity within PTSSDR subsegment    0.005; 0.4 0.005; 5  where 

 *
PTSSD 0.01; 0.1r   in accordance with 0.01-sampling in (38). Henceforward, the point  *

PTSSD 0.01; 0.1r   may be 

called 0.01-optimal PTSSDR, providing locally 0.01-minimal CEP 

    *
PTSSD 0.01 0.97p r p   (39) 

for 2LP 
  4800, 300, 26; , ; 0.2, 0.2, 0.01, 2, 8, 100P S S  (40) 

performance. PTSSDR axis accuracy 0.01 might have been increased more, say, up to 0.005  or 0.0025 , but then 
solving the problem (37) would have taken much more periods (realizations), what wouldn’t have been reasonable 
due to that the difference between (39) and 
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PTSSD

*
PTSSD

0.01; 0.1 \ 0.01
min

r
p r


 (41) 

is too small (Figure 5), and there are no any grounds to think that 0.005 -optimal PTSSDR or 0.0025 -optimal 
PTSSDR would have provided decrement of CEP, greater than that difference. However, evaluations in Figure 5 
have been obtained, feeding the input of 2LP (29) with 200b   batches from GT (3). They may probably change, 

being evaluated more accurate, when b  is preset greater. Let 2000b   to verify the point *
PTSSD 0.01r   (the 

segment  0.01; 0.1  of PTSSDR) optimality. Figure 6 zooms in PTSSDR subsegment  0; 0.2 , where the function 

 PTSSDp r  is refreshed on PTSSDR subsegment  0; 0.2  subset    0, 0.01, 0.1, 0.2 0; 0.2 . Indeed, 0.01-optimal 

PTSSDR remains  *
PTSSD 0.01; 0.1r   with CEP 

    *
PTSSD 0.01 1.004p r p  , (42) 

what is slightly greater than CEP (39). Figure 7 visualizes SDI and TDI by (26), which form TSM-60-80-I of 
EEACL, and all these TSM-60-80-I have been successfully classified with 2LP (40). 
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Figure 6. Re-evaluations of the function  PTSSDp r  cavity on 54 trained 2LP (29) by  PTSSD 0, 0.01, 0.1, 0.2r   

 

 
 

Figure 7. TSM-60-80-I of EEACL by SD of SDI and TDI (26), fed the input of 2LP (40), performing with 0.01 -minimal CEP (42) 

 
Eventually, CEP (31) for 2LP (29) has been minimized in accordance with the problem (32). Minimization 

has been verified with 10 times greater feed at the classifier input than the feed while the function  PTSSDp r  was 

being evaluated. Locally, PTSSDR *
PTSSD 0.01r   drives 2LP (29) into 2LP (40), that effectively classifies TSO, 

modeled as TSM-60-80-I of 26 EEACL. 
Comprehension and possibility of further 2LP performance improvement 

Naturally, if by class 26N   there were other object type of 60 80  binary format (not EEACL), noted with 
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matrix of ZO, then the result of (32) would be nearly the same, close to *
PTSSD 0.01r   or  *

PTSSD 0.01; 0.1r  . 

Moreover, inasmuch as N -dimensional objects, feeding the input of 2LP, with its N -dimensional matrix 

 JbB
L

 of ZO is always reshaped into 
1

1
N

d

d

L


 
  

 
  matrix, then nearly the same minimum point *

PTSSD 0.01r   

must be for any object, having 4800 binary features. That is there can be TSO of formats 80 60 , 6 8 100  , 

12 4 10 10   , 2 2 4 3 5 10 2      , etc. 2LP class

1

, 300, ; , ; 0.2, 0.2, 0.01, 2, 8, 100
N

d

d

L N


 
  
 
P S S  for other 

medium formats, where objects have a few thousands of features 
1

N

d

d

L

  and number classN  is about 20 — 35, must 

perform near-optimally as well. 
Further improvement of 2LP performance over TSO is perceived in optimizing the integer HLNN . The 

optimally adjusted HLNN  will allow to accelerate the training process, making the configuration of 2LP lighter. Of 

course, that noticeable minimization of CEP over TSO should be done for HLNN  and PTSSDr  simultaneously — 

power-computational evaluations of CEP surface  HLN PTSSD,p N r  are inescapable. 
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