TexuiuHi HayKu ISSN 2307-5732

UDC 519.687.1::004
V. V. ROMANUKE

Khmelnitskiy National University

MATLAB GPUARRAY METHOD OPTIMAL USE FOR SQUARE MATRIX PRODUCT

A research of efficient computation of square matrix product on GPU is represented. For this, MATLAB gpuArray
method is used on three types of NVIDIA® GPU. The method optimal use, if any, requires the matrix order be greater than 120.
For a long sequence of products, when order increases, generating matrices directly on GPU is fully inefficient. The efficiency
holds if matrices are generated directly on GPU just for a few times.

Keywords: matrix product, parallelization, MATLAB, gpuArray method, running time efficiency.

B. B. POMAHIOK

XMeJbHUIBKUI HALlIOHAIBHUI YHIBEpCUTET
OIITUMAJIBHE BUKOPUCTAHHSI MATLAB-METOY GPUARRAY IJISA JOBYTKY KBAJIPATHUX MATPUIlb

Ilpedcmasasiemovcsi docaidxceHHs egeKmusHo2o o6uucaeHHs do6ymky keadpamHuux wmampuyb Ha GPU. Jas yvozo
sukopucmogyemucsi MATLAB-memod gpuArray Ha mpvox munax NVIDIA® GPU. [is onmumaabHo20 8uKOpucmaHHs ybo2o mMemody,
AKWo make icHysamume, Heob6XidHO, wo6 nopsdok mampuyi 6ys 6invwuli 3a 120. Jas doszoi nocaidogHocmi do6ymkie eeHepy8aHHs
Mampuysb 6e3nocepedHbo Ha GPU € nosnicmio HeepekmusHum. Edekmuenicmb mae micye modi, koau mampuyi zeHepylombues
6e3nocepedHbo Ha GPU suwe dekinvbka pasis.

Kawuosi caosa: do6ymok mampuyb, napaaenizayis, MATLAB, memod gpuArray, npodykmugHicms 4acy paxyHky.

Problems and tasks of parallelizing computations

Computation is a fundamental routine in observing, modeling, forecasting, controlling, etc. Naturally, any
computational routine is desired to be accomplished as rapid as possible. If the routine has identical or similar
sections which are independent, they can be accomplished or processed concurrently. Thus, computation is
parallelized and sped up.

Key problems addressed by paralel computing are: 1) running parale loops; 2) executing batch jobs in
paradld; 3) partitioning large data sets. Tasks of paralelizing computations lie mostly in speedup and large array
data digtribution [1, 2]. However, there isno criterion of whether parallelization is expedient. Not every entry can be
paradldized efficiently, after all. Paralelization expedience and its rate are undisclosed even for a rudiment of
parale computing, i. e. for matrix product being the most parallelized event [1, 3, 4].

Analysis of preceding originson par alldization of matrix computations

Matrix computations relate to the most studied mathematical objects. Matrix product is parallelized on
multicore processors, GPUs, and computer clusters. Using GPU is preferable to clustering. And in fact, GPU itself
contains multicore processors.

Many different agorithms have been designed for multiplying matrices. The most studied algorithms are
iterative algorithm, divide-and-conquer agorithm, sub-cubic algorithms, parallel and distributed algorithms. They
have different computationa complexity and running time efficiency.

Iterative algorithm directly applies the mathematical definition of matrix multiplication [1, 2]. Divide-and-
conquer algorithm is an alternative to the iterative algorithm [5]. It relies on the block partitioning which works for
all sguare matrices whose dimensions are powers of two. At the top of the partitioning, the matrix product consists
of eight multiplications of pairs of submatrices, followed by an addition sep. The divide-and-conquer agorithm
computes the smaller multiplications recursively, using the scalar multiplication asits base case.

Iterative and divide-and-conquer algorithms are straightforward. Sub-cubic algorithms provide better
running times than those straightforward ones. The Strassen’s algorithm is complex enough, but it is faster for large
sized matrices [6, 7]. The Le Gall’ s algorithm, and the algorithm of Coppersmith — Winograd on which it is based,

are similar to Strassen’s algorithm: a way is devised for multiplying two N° N -matrices with fewer than N3
multiplications, and this technique is applied recursively [7, 8]. However, these algorithms are only worthwhile for
matrices that aretoo large to handle on present-day computers[2, 7, 9, 10].

Parallel and digributed algorithms spread computations over multiple processors or over a network. Here,
exploiting shared-memory parallelism, the divide-and-conquer algorithm is parallelized for shared-memory
multiprocessors. This parallelization algorithm is not practical due to the communication cost inherent in moving
datato and from the temporary matrix. A speedup is achieved without using atemporary, though. To some contrary,
communication-avoiding and distributed algorithms handle the so-called communication bandwidth. On a single
machine this is the amount of data transferred between RAM and cache, while on a distributed memory multi-node
machine it is the amount transferred between nodes. In this case, the Cannon’'s algorithm (known as the 2D

algorithm), partitions each input matrix into a block matrix whose elements are (JM/3)’ (JM/3) -submatrices,

where M is the size of fast memory [11]. The naive agorithm is then used over the block matrices, computing
products of submatrices entirely in fast memory. This reduces communication bandwidth to asymptotically optimal

size. In adistributed setting with P processors arranged in («/E) (\/E) 2D mesh, one submatrix of the result can
be assigned to each processor, and the product can be computed with each processor. This can be improved by the

BicHuk Xme/nbHUYbK020 HayioHa/1bHo20 yHigepcumemy, Ne3, 2015 (225) 243

Technical sciences ISSN 2307-5732

3D algorithm, which arranges the processors in a 3D cube mesh, assigning every product of two input submatrices
to a single processor. The result submatrices are then generated by performing a reduction over each row. This
algorithm can be combined with the Strassen’ s algorithm to further reduce runtime [12].

A large number of other agorithms use these ones as base. Their efficiency may be improved just on the
paraldization paradigm. Thus, modern computational environments are enhanced with GPU device controllers.

Par allelization of matrix computationswith MATLAB Parallel Computing Toolbox

MATLAB® is one of the most powerful computational environments supporting GPU devices. The
MATLAB environment has gpuArray method in MATLAB Paralledd Computing Toolbox. This method copies the
input numeric data to the GPU. Theresulting object is of a class concerning GPU arrays. This object can be operated
on by using one of the methods defined for objects of the class.

After matrices-multiplicands are copied to GPU, a matrix product is computed straightforwardly on GPU.
It isreputed that matrix computations on GPU are quicker than on CPU owing to paralleization. Thisis experienced
for large sized matrices. But it is uncertain if GPU or, specifically, MATLAB gpuArray method is suitable for any
matrix computations. The reason is that the likely quicker GPU computations are preceded by copying matrices
from CPU to GPU, accomplished factually by gpuArray. The copying takes significant time as the CPU-GPU bus
bandwidth is not so large. Consequently, optimal paradlelization of matrix computations with MATLAB Parallel
Computing Toolbox using its gpuArray method is to be ascertained. But now we are to solve a simpler problem —
to find a threshold which delimits the domain where gpuArray method brings gain (speedup), and where it does not.
This should be started and executed on the Smplest case of matrix product.

Goal and itemsfor itsachievement

For MATLAB gpuArray method purposed to gain running time efficiency in matrix computations, we have
to determine where it is really effective. The pattern for the determination is square matrix product. For achieving
thisgoal, the following items are to be fulfilled:

1. Formalize the problem, i. e. state the goal using mathematical notation.

2. Define the range of square matrices order.

3. Select afew types of GPU available within MATLAB.

4. According to the formalized problem, compose a MATLAB code with cycled square matrix products
over the defined range of square matrices order.

5. Appoint minimal number of cycles for initialization and computation which should ensure stable
statistical estimation of the running time.

6. Run the MATLAB code for square matrices whose order increases with minimal increment step.

7. Both for CPU and GPU, estimate time for initialization of the matrix elements depending on the order.

8. Both for CPU and GPU, estimate time for square matrix product depending on the order.

9. For each type of the applied GPU, find a subrange of square matrices order, where the GPU running time
is shorter than the CPU running time.

Formalization of the running time efficiency problem and the range of square matrices or der
Let two N° N-matrices A =(a1.j)N,N and B =(b,j)N,N have real-valued entries. For quite certain
assignment of these entries, let them be values of standard normal variates:
AT N(0,1,N) and BT N (0,1, N) 1)
by the infinite set N (O, 1 N) of N” N -matrices in which every entry is a value drawn from the sandard normal

distribution. Before computing product of matrices A and B on GPU, they are copied to a GPU device. The copier
isamapping C taking amatrix Z on CPU and returning the matrix Z.,, on GPU, where Z_,, =Z . Hence, the

GPU running time tgp, (N) is sum of three components: period of assignment (1), period of transferring
Agy =C(A) and By, =C(B), @)
and period of the product A, B, computation, denoted by pgg, (N). The CPU running time t(N) is sum of

period of assignment (1) and period of the product A >B computation, denoted by p(N).

The matrix initialization on GPU is assignment (1) and transferring (2), whose total time we denote by
ey (N) . The matrix initiaization on CPU is just assignment (1), whose timeis q(N) . Then running times are

tepu (N) = Aopy (N) + Popu (N) (3)
t(N)=a(N)+p(N). (@)

The third way exists for the product A g, XBgp, cOmputation when matrices are generated directly on GPU:
AgyT N (0,4, N) and BT N (0,1 N). (5

Here, GPU matrix initialization is just assignment (5), whose time is dx, (N), without any transferring. Period of
the product A gp, XBgr, computationis pgq, (N). And the GPU running time tg,, (N) for thisway is
temu (N) = tgpu (N) + ey (N) - 6)

244 Herald of Khmelnytskyi national university, Issue 3, 2015 (225)

TexuiuHi HayKu ISSN 2307-5732

The goal istofind those NT {2, N,.} , a which, individually, the following threeinequalities aretrue:
teru (N) <t(N), Pepu (N)<P(N), Pery (N)<P(N), temy (N)<t(N).)
Along with (7), the relationship between g, (N) and pga, (N) ought to be ascertained also. Therange{Z, Nmax}

of square matrices order starts from 2, indisputably. And let the largest order N, be 800, what is expected to be
enough for seeing domains where gpuArray method brings speedup gain.

Selection of GPU available within MATLAB for clocking the running time
We select three types of NVIDIA® GPU for clocking their running time of square matrix product

computation 1) GeForce GTS 450 (Figure 1); 2) TedaK40c (Figure 2); 3) GeForce GT 610 (Figure 3).

CAT=11aT . Jor. (TIRGCwerd =

mandle

Tukoge: pazallol.gpa

FremerTien;

2y gpulzriecill

(et

aTAllel o qrm TR e Randla

Laviaaga: pdeullal, gy

Dovpazel Lo

2y gpulzwiecisl

(et

aTAllel o qrm TR e Randla

Laviaaga: pdeullal, gy

Dovpazel Lo

Blass: "Oobcarss 012 4Ll EER RN E L Memm: Masdeene ISTORTIDY
vlea: Trdmx: 1 Trdmz: F
rrommarsnabd Tine: =5 Cumgruoclapabe Lalz: ¥, CumgucUapabe Lalz: .1
Yupgarzl slmubil TorrarnEteaale: 1 TorrarnEteaale: 1
Prrwervarmaam: &L Lrawosvoroim: &, sidl Lrawosvoroim: &, sidl
FaxThraad=sPerfiszk: 1034 MaxThoasdmbmrll lnme: 10004 MaxThoasdmbmrll lnme: 10004

HaxZoscal ol osk

KandhraxEerDlacii &

KanohrayPexllacyi

£3lis

FamThraadn =res 741 HuaThsuudEloce Sy HuaThovudEloceSize: (102D 1021 &)
Eax3cidsizs: e | WaxATH T ra: an1 FaxATidGiFe: [RII0G SI5057
Slgadli: w5 Sl adlh: ¥ Sl adlh: ¥

TarslFamarg: 1070740 TarsFamare: 1.0 TaraTVamaee: 1.070Te=0%
Seuocbumosg: SOEEELOCD TrazBeoyorr: 1. TrazHeoyner: ELEISELIC

Al - pzcseaasadioanl Hul _apsuocossalonns: 1k Hul _apsuocossailauns: 1

ClasFRa=aslls lA=FRaA=REIT=: TEI0A0 FlA=FRA= REIT=: TRITANN

Roagre cHodz: [REE TIFRNREE HITEFRNY LN Py [REE TIFRNREE HITEFRNY LN Py

R T SRR] EFIT e AraTrane *ere EFIT e AraTrane *ere

Aernal RxermnsiomTiresme:

CantlapHoolmozs: 1=t A M Fe e [FEHTE PR HTTE I8 TR

Tipwd ma e e

1 1
BronzlEscou fonTincou.: D BronzlEscou fonTincou.: 1
1 1
1 1

I'rars ra i b Tipwd ma e e

[P PRI P | UovawsSolesiow: 1 Lovawafaleslow: 1

Buotiode, Evaiod, Supessslecon HE=tode, Tees—s, Supess]ssses HE=tode, Tees—s, Supess]ssses

e L i
Fig. 1. MATL AB object representing Fig. 2. MATL AB object representing
GPU device GeForce GT S 450 GPU device TeslaK 40c

“'Fig. 3. MATL AB object representing
GPU device GeForce GT 610

Estimation of the running time of squar e matrix product

The composed MATLAB code is split into two sections. Each section containsinitialization of two matrices
and their product. The product is cycled for 1000 times what ensures gable statitical estimation of the running time.
Within thefirgt section, initialization is cycled aswell. Within the second section, initialization is not cycled.

Unexpectedly for the cycled initialization, when matrices are generated directly on GPU dueto (5), it takes
badly increasing initialization period both for GeForce GTS 450 and Tesla K40c (Figures 4 and 5). Though thereis
a problem of memory (cache) of MATLAB and GPU device while matrix order monotonously increases, the
computation period increases normally. Henceforth only single time initialization matters.

35 T T

30— —

25—

20—

15—

p*GPU (N)

ol E a \ \ I \ I I \ \ N

5 10 15 20 25 30 35 40 45 50
Fig. 4. Badly increasing period of matrix 1000-cycled-initialization for GeForce GT S 450

BicHuk Xme/nbHUYbK020 HayioHa/1bHo20 yHigepcumemy, Ne3, 2015 (225) 245

Technical sciences ISSN 2307-5732

I I

SIS T B R N R B N B A B B RS - R B B

=L ey i AN N SN SO S SN Y SO SO SN S SO S B |
160 o 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115

gJ\\JJ\JJJ\\J\\J

S I [| [| [[| [| [| | [[| | | [| | [| | [| [| [
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620635

Fig. 5. Badly increasing period of matrix 1000-cycled-initialization for Tesla K40c

When 1000-cycled-initialization is on, each GPU device is conjectured to have its own gpuArray method
optimal use. Pure product computation time on GeForce GTS 450 isless than on CPU by N >160 (Figure 6). The
same appears for single time initialization (Figure 7). But assignment (1) and transferring (2) to GeForce GTS 450
has no effect. Total GPU GeForce GTS 450 running time exceeds CPU running time or comparable till N =300.
Period of preassigning singly two matrices is shorter on CPU rather than on GeForce GTS 450 (Figures 6 and 8).
Preassigning directly on this GPU is efficient by N > 410 (Figure 8).

7] | e

v = i it | - N e Y Y A I Ay Y B
c0 20 40 60 80 100 120140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800

Fig. 6. Estimations of the running time for GeForce GTS 450, when matrices ar e preassigned during 1000 cycles

On Tesla K40c, pure product computation time is less than on CPU by N >130 (Figures 9 and 10). And
tepu (N) <t(N) by N>210 (Figure 9). Preassigning directly on Tesla K40c is efficient by N >120 (Figure 11).
Pure assignment (1) and transferring (2) isinefficient because gpuArray method itself takes some period [13].

The worgt testing results are for GeForce GT 610. Figures 12 and 13 expose totally noneffective use of
gpuArray method. Period of preassigning singly two matrices on GeForce GT 610 is weakly and unstably

competitive (Figure 14) by NT (180; 260) . These unexpectedly poor results may be caused by that both GeForce

GT 610 and Teda K40c were taking their shares on the same CPU and MATLAB session. Nevertheless, this
confirmsinefficiency GeForce GT 610, because Tesla K40c is efficient anyhow by N > 210.

246 Herald of Khmelnytskyi national university, Issue 3, 2015 (225)

TexHiuHi HAYKU ISSN 2307-5732

321 o Lo cneosmtunct e sy Y |
30f 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280
281 12 T T T T T T T T ™

2611, 4

241

550 555 560 565 570

_ N S I Y O I | I A AN I A A |
20 40 60 80 100 120 140 160 180200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800 N

Fig. 7. Estimations of the pure product computation time for GeForce GT S 450, when matrices ar e preassigned singly

[I L L I

0%32 001 T I I
'0.07 0.016] I |
0.065/004 _
0.06/0012 -
0.055; 001 —
0.050.008
0.045 0006
0.04 0.004
0.035/0
0.03} 215 240 265 00 315 340
0.025
0.02|~
0.015
0.0 :
0.005] . ey
[| | [[| | [[| | [[| | [[

0 25 50 75 100125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725 750 775 800
Fig. 8. Period of preassigning singly two matrices on GeForce GTS 450

50123
481227

461 214
441977

42117112
40(19
381 4/04

L L I I I B B B B B B

e Pe)
130 140 150 160 170 180 190 200 210 220

18 1’0 20 40 50 60 7‘0 80 90 1£D l:r|.0 1r20
16
14
12
10

e —— O e e e o o ot it Y Y Y Y I

20 40 60 80 100 120140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800
Fig. 9. Estimations of the running time for Tesla K40c, when matrices ar e preassigned during 1000 cycles

BicHuk Xme/nbHUYbK020 HayioHa/1bHo20 yHigepcumemy, Ne3, 2015 (225) 247

Technical sciences ISSN 2307-5732

0.95
28 0.970.

0.8

0.7]

0.6]

21 ' | / h @U -
50,08 1 Wm i .
ig 04 /\/M i ﬁ ﬁ\@%ﬁ]

. L L L L L L L L L
0'0f00 105 110 115 120 125 130 135 140 145 150 “‘ \A}
17} 03 /\[

15f 02 f 3 i _

13} 0.1 i SR [_
V

OFRr N WHUON®OO
I
i

N (S — el
i e Y O N S N

e e W
20 40 60 80 100120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800

Fig. 10. Estimations of the pure product computation time for Tesla K40c, when matrices ar e preassigned singly

0.03
0.028|;¢
0.02614
0.024/1.2
0.022| 1

0.02(°8
0.018
0.016/g»
0.014
0.012F

0.01!
0.008
0.006
0.004
0.002

,_‘
o N
(D s S S s s s
o n s o o B
S
&)
&
=z
)
2,
9
&
z
=
N
1

qGPU(N)
I L L L L L
140 150 160 170 180 190 200

[[| [[

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725 750 775 800
Fig. 11. Period of preassigning singly two matriceson Tesla K40c

I e |
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800

Fig. 12. Estimations of the running time for GeForce GT 610, when matrices ar e preassigned during 1000 cycles

248 Herald of Khmelnytskyi national university, Issue 3, 2015 (225)

TexuiuHi HayKu ISSN 2307-5732

1.9/ 0.35F Per (N)
95|, 503251 —

90[L7|0.2751
1.6/ 0.25- \]
0.225- .]
5L Pem (N) |
80/ "|0175f 1
75
70| 1

65

601(0.7

=
[N
=)
< 2
S8 < c
a
N I S S S s N
|

5505

50[04 p(szL]
[/\‘,”\//,—v"
450.21 o

40 g T

35— =

30 —
p(N) |
25— 1t
o
20— J rW;a —
i MW%‘ N
10) vt -
50~ , -

m—E—— g R e e s et O e e Y A Y Y I |
20 40 60 80 100120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800

Fig. 13. Estimations of the pure product computation time for GeForce GT 610, when matrices ar e preassigned singly

I | I I I

3

x10°
5 T T T T T T T T

0.063
0.06

0.055
0.05
0.045
0.04
0.035
0.03
0.025
0.02
0.015
0.01
0.005

Fig. 14. Period of preassigning singly two matriceson GeForce GT 610

Obvioudy, the running time on GeForce GT 610 is much longer than the CPU running time. So, MATLAB
gpuArray method is not suitable for any square matrix computations on this GPU device. If N > 210 then gpuArray
method for Tesla K40c is recommended to use. If matrices are already on Tesla K40c and their order is greater than
130, then using this GPU device is efficient adso. For pure product computation, efficiency of GeForce GTS 450 is

roughly 10 times less than efficiency of Tesla K40c — compare polylines pgg, (N) and pgay (N) in Figures 6 and
7 to polylines pgy, (N) and pgy, (N) in Figures 9 and 10. At that, GeForce GTS 450 is optimally used with
gpuArray method when matrix order is greater than 160.

Conclusion
Subranges of square matrices order, where the GPU running time is shorter than the CPU running time, if
any, seem to start from a hundred or a few hundreds. No reason to think that the subranges have limits towards
infinity — the span between the couples of dependencies
}

{teu (N). t(N)}
{teeu (N), (N}
{Pesu (N). P(N)}

{ P (N). P(N)}
isonly increasing (Figures 6, 7, 9, 10).
Unlike GeForce GTS 450 and Tesla K40c, GeForce GT 610 is out of competitiveness (Figures 12 and 13).

t
t

and

BicHuk Xme/nbHUYbK020 HayioHa/1bHo20 yHigepcumemy, Ne3, 2015 (225) 249

Technical sciences ISSN 2307-5732

Even if thisis caused really by peculiarities of two GPU devices on the same CPU and MATLAB session, common
quality of GeForce GT 610 is questionable and problematic anyway.

MATLAB gpuArray method is optimally used with more powerful GPUs such as Tesla K40c. Comparison
of GeForce GTS 450 to Tedla K40c hints that on powerful GPUs gpuArray method brings speedup earlier — for the
lesser matrix order.

For the tested GeForce GTS 450 and Tesla K40c, MATLAB gpuArray method optimal use, if any, requires
the matrix order be greater than 120. And for along sequence of products, when order increases, generating matrices
directly on these GPUs is fully inefficient. The efficiency holds if matrices are generated directly on GeForce GTS
450 or Tedla K40c just for afew times. Therefore, the running timeis shortened when matrices are already on GPU.

In general, effectiveness of GPU computations strongly depends upon the input data representation. We
should combine arrays into larger ones, if it is possible. And for nonsguare matrix product, MATLAB gpuArray
method may have specific optimal use. Especially, when numbers of lines and columns are very different.

References

1. Petersen W. P. Introduction to Paralld Computing: A practical guide with examples in C / W. P.
Petersen, P. Arbenz. — Oxford University Press, 2004. — 278 p.

2. Trobec R. Parald Computing. Numerics, Applications, and Trends / R. Trobec, M. Vajtersic, P.
Zinterhof (Eds.). — Springer, 2009. — 530 p.

3. Kshemkalyani A. D. Distributed Computing Principles, Algorithms, and Systems/ A. D. Kshemkalyani,
M. Singha. — Cambridge University Press, 2008. — 754 p.

4. Zhang L. High accuracy digital image correlation powered by GPU-based paralel computing / L. Zhang,
T. Wang, Z. Jang, Q. Kemao, Y. Liu, Z. Liu, L. Tang, S. Dong // Optics and Lasers in Engineering. — 2015.
Volume69. — P. 7— 12.

5. Veroy B. S. Average complexity of divide-and-conquer agorithms / Boris S. Veroy // Information
Processing Letters. — 1988. — Volume 29, Issue 6. — P. 319 — 326.

6. Huang C.-H. A report on the performance of an implementation of Strassen’s algorithm / C.-H. Huang,
J. R. Johnson, R. W. Johnson // Applied Mathematics Letters, — 1991. — Volume 4, Issue 1. — P. 99 — 102.

7. Chou C.-C. Paralldizing Strassen’s method for matrix multiplication on distributed-memory MIMD
architectures/ C.-C. Chou, Y .-F. Deng, G. Li, Y. Wang // Computers & Mathematics with Applications. — 1995. —
Volume 30, Issue 2. — P. 49 — 69.

8. Coppersmith D. Matrix multiplication via arithmetic progressions / D. Coppersmith, S. Winograd //
Journal of Symbolic Computation. — 1990. Volume 9, Issue 3. — P. 251 — 280.

9. Takaoka T. Efficient Algorithms for the Maximum Subarray Problem by Distance Matrix Multiplication
/ T. Takaoka // Electronic Notesin Theoretical Computer Science. — 2002. — Volume 61. — P. 191 — 200.

10. Lingas A. Bit complexity of matrix products/ A. Lingas // Information Processing Letters. — 1991, —
Volume 38, Issue 5. — P. 237 — 242.

11. Bae S. E. A Faster Paralld Algorithm for Matrix Multiplication on a Mesh Array / S. E. Bae, T.-W.
Shinn, T. Takaoka // Procedia Computer Science. — 2014. — Volume 29. — P. 2230 — 2240.

12. Barth D. Parallel matrix product algorithm in the de Bruijn network using emulation of meshes of trees
/ D. Barth // Parallel Computing. — 1997. — Volume 22, Issue 12. — P. 1563 — 1578.

13. Silber-Chaussumier F. Generating data transfers for distributed GPU parallel programs / F. Silber-
Chaussumier, A. Muller, R. Habel // Journa of Parallel and Distributed Computing. — 2013. — Volume 73, Issue
12. — P. 1649 — 1660.

References

1. Petersen W. P., Arbenz P. Introduction to Parallel Computing: A practical guide with examples in C, Oxford University Press,
2004, 278 p.

2. Trobec R., Vajtersic M., Zinterhof P. (Eds.). Parallel Computing. Numerics, Applications, and Trends, Springer, 2009. — 530 p.

3. Kshemkalyani A. D., Singhal M. Distributed Computing Principles, Algorithms, and Systems, Cambridge University Press, 2008.
— 754p.

4.Zhang L., Wang T., Jiang Z., Kemao Q., Liu Y., Liu Z., Tang L., Dong S. High accuracy digital image correlation powered by
GPU-based paralle computing, Optics and Lasersin Engineering, 2015, Volume 69, pp. 7 — 12.

5. Veroy B. S. Average complexity of divide-and-conquer algorithms, Information Processing L etters, 1988, Volume 29, Issue 6, pp.
319 — 326.

6. Huang C.-H., Johnson J. R., Johnson R. W. A report on the performance of an implementation of Strassen’s algorithm, Applied
Mathematics L etters, 1991, Volume 4, Issue 1, pp. 99 — 102.

7. Chou C.-C., Deng Y .-F,, Li G., Wang Y. Paralelizing Strassen’s method for matrix multiplication on distributed-memory MIMD
architectures, Computers & Mathematics with Applications, 1995, Volume 30, Issue 2, pp. 49 — 69.

8. Coppersmith D., Winograd S. Matrix multiplication via arithmetic progressions, Journal of Symbolic Computation, 1990, Volume
9, Issue 3, pp. 251 — 280.

9. Takaoka T. Efficient Algorithms for the Maximum Subarray Problem by Distance Matrix Multiplication, Electronic Notes in
Theoretical Computer Science, 2002, Volume 61, pp. 191 — 200.

10. Lingas A. Bit complexity of matrix products, | nformation Processing Letters, 1991, Volume 38, Issue 5, pp. 237 — 242.

11.Bae S. E., Shinn T.-W., Takaoka T. A Faster Parallel Algorithm for Matrix Multiplication on a Mesh Array, Procedia Computer
Science, 2014, Volume 29, pp. 2230 — 2240.

12. Barth D. Paralldl matrix product a gorithm in the de Bruijn network using emulation of meshes of trees, Paralledl Computing, 1997,
Volume 22, Issue 12, pp. 1563 — 1578.

250 Herald of Khmelnytskyi national university, Issue 3, 2015 (225)

TexuiuHi HayKu ISSN 2307-5732

13. Silber-Chaussumier F., Muller A., Habel R. Generating data transfers for distributed GPU paralle programs, Journal of Parallel
and Distributed Computing, 2013, Volume 73, Issue 12, pp. 1649 — 1660.

Penensis/Peer review : 9.5.2015 p. Haapykosana/Printed :15.5.2015 p.
Penensenr: a.1.H., npod. Tpouumun 1.B.

3a 3MiCT OBIJOMJICHB PEAAKIIiS BiAMOBITAIBHOCTI HE HECE

MoBHi BUMOrn Ao opopMJIeHHA pyKoOnucy
http://vestnik.ho.com.ua/rules/

PexoMeH10BaHO 10 APYKY pillleHHAM BYE€HOI paau XMeJbHUIBKOr0 HAlliOHAJILHOI 0 YHiBEPCHUTETY,
nporokoa Ne 11 Big 27.05.2015 p.

[Miam. no npyky 24.06.2015 p. Ym.apyk.apk. 27,61 O6xn.-Bun.apk. 26,27
dopmat 30x42/4, manip odpcernuit. JIpyk pizorpagdieto.
Haxmax 100, 3am. Ne

TupaxyBaHHS 371HCHEHO 3 OPUTiHAI-MAKETY, BUTOTOBJICHOT'O
penaxiieto xxypHany “ BicHuk XMenbHHIBKOr0 HalliOHAJILHOTO YHiBepcUTETY”
eaKI[ifHO-BUIABHUYMM IIEHTPOM XMEJIbHUIIBKOTO HAIliOHAJIBHOTO YHIBEPCUTET
p
29016, M. XMenbHuUIbKUH, By1. [HcTHTYTChKA, 7/1. Ten (0382) 72-83-63

BicHuk Xme/nbHUYbK020 HayioHa/1bHo20 yHigepcumemy, Ne3, 2015 (225) 251

