
 Технічні науки ISSN 2307-5732

Вісник Хмельницького національного університету, №5, 2015 (229) 243

UDC 519.687.1::004
V. V. ROMANUKE

Khmelnitskiy National University

LIMITATION OF EFFECTIVENESS IN USING MATLAB GPUARRAY METHOD FOR
CALCULATING PRODUCTS OF TRANSPOSE-SYMMETRICALLY SIZED MATRICES

A research of effectiveness in using MATLAB gpuArray method for calculating products of transpose-symmetrically

sized matrices is represented. For this, MATLAB gpuArray method is used on three types of NVIDIA® GPU. It is revealed that,
independently of the size, generating matrices directly on GPU is fully inefficient. GeForce GT 610 is inefficient in itself.
GeForce GTS 450 is efficient when number of lines and columns of the first matrix is greater than 200 and 50, respectively.
The running time efficiency of matrix product calculation for Tesla K40c is stronger, as it comes when number of lines and
columns of the first matrix is greater than 70 and 10, respectively.

Keywords: matrix product, parallelization, effectiveness, MATLAB, gpuArray method, running time efficiency.

В. В. РОМАНЮК
Хмельницький національний університет

ОБМЕЖЕННЯ ЕФЕКТИВНОСТІ ВИКОРИСТАННЯ MATLAB-МЕТОДУ GPUARRAY ДЛЯ ОБЧИСЛЕННЯ

ДОБУТКУ МАТРИЦЬ ТРАНСПОНОВАНО-СИМЕТРИЧНОГО РОЗМІРУ

Представляється дослідження ефективності використання MATLAB-методу gpuArray для обчислення добутку

матриць транспоновано-симетричного розміру. Для цього використовується MATLAB-метод gpuArray на трьох типах NVIDIA®
GPU. Виявляється, що генерування матриць безпосередньо на GPU є повністю неефективним незалежно від розміру. GeForce GT
610 є неефективним по суті. GeForce GTS 450 є ефективним тоді, коли число рядків і стовпців першої матриці є більшим
відповідно за 200 та 50. Продуктивність часу рахунку матричного добутку для Tesla K40c більш явна, оскільки вона наступає за
числа рядків і стовпців першої матриці, більшого відповідно за 70 та 10.

Ключові слова: добуток матриць, паралелізація, ефективність, MATLAB, метод gpuArray, продуктивність часу
рахунку.

Motivation of exploring the running time efficiency of nonsquare matrix product calculation
In the article [1], a research of efficient computation of square matrix product on GPU was represented.

While researching, MATLAB gpuArray method was used on three types of NVIDIA® GPU (GeForce GTS 450,
Tesla K40c, GeForce GT 610). The research exposed that MATLAB gpuArray method optimal use, if any, requires
the matrix order be greater than 120. Generating matrices directly on GPU [2, 3] is fully inefficient for a long
sequence of products. The running time is shortened when matrices are already on GPU, and the efficiency holds if
matrices are generated directly on GPU just for a few times [1, p. 250].

Generally speaking, the article [1] proves the effectiveness of GPU computations becomes apparent for
large sized arrays, but MATLAB gpuArray method may have specific optimal use when numbers of lines and
columns are different. For instance, calculating on CPU, product of 10 1000× matrix and 1000 10× matrix is
calculated faster than product of two 100 100× matrices. And product of 1000 10× matrix and 10 1000× matrix is
calculated much slower. This specificity motivates to explore the running time efficiency (RTE) of nonsquare matrix
product calculation.

Goal and items to be fulfilled

For determining RTE of using MATLAB gpuArray method for calculating nonsquare matrix products, let
multiply M N× matrices by N M× matrices and measure the running time. Along with results of the article [1],
this will allow to ascertain optimal parallelization of matrix computations [4, 5] with MATLAB Parallel Computing
Toolbox using its gpuArray method. To get it realized, the following items are to be fulfilled:

1. Formalize the problem in mathematical notation.
2. Define the range of numbers of lines and columns in transpose-symmetrically sized matrices (TSSM).
3. Run the MATLAB code for multiplying TSSM increasing progressively numbers of their lines and

columns. Make it for an appropriate number of cycles to ensure stable statistical estimation of the running time.
4. Both for CPU and GPU, estimate time for initialization of the matrix elements depending on the size

(i. e. numbers M and N). Similarly, estimate time for TSSM product depending on the size.
5. For each type of the applied GPU (GeForce GTS 450, Tesla K40c, GeForce GT 610), find subranges of

numbers M and N (and, probably, their combination), where the GPU running time is shorter than the CPU
running time.

Formalization of RTE problem

The running time consists of the matrices’ initialization period (MIP) and their product calculation period
(PCP). Matrices can be initialized by a way among those three ones:

1. CPU matrix initialization, without transferring to GPU (CPUMI). This way presupposes product
calculation just on CPU. The CPU running time is
 () () (), , ,t M N M N p M N= θ + (1)

 Technical sciences ISSN 2307-5732

Herald of Khmelnytskyi national university, Issue 5, 2015 (229) 244

by MIP (),M Nθ and PCP (),p M N on CPU.
2. CPU matrix initialization, with subsequent transferring to GPU (CPUMI-GPU). This way presupposes

product calculation on GPU. The GPU running time is
 () () ()GPU GPU GPU, , ,t M N M N p M N= θ + (2)

by MIP ()GPU ,M Nθ for CPUMI-GPU and PCP ()GPU ,p M N on GPU.
3. Direct GPU matrix initialization (DGPUMI) [1, p. 244]. The matrix product is calculated on GPU, and

here the GPU running time is
 () () ()* * *

GPU GPU GPU, , ,t M N M N p M N= θ + (3)

by MIP ()*
GPU ,M Nθ for DGPUMI and PCP ()*

GPU ,p M N on GPU after DGPUMI.

Let matrices ()ij M N
a

×
=A and ()lk N M

b
×

=B to be multiplied have entries which are values of standard

normal variates:
 ()0, 1, M N∈ ×A N and ()0, 1, N M∈ ×B N by { }\ 1M ∈ and { }\ 1N ∈ (4)

for the infinite set ()0, 1, L Q×N of L Q× -matrices in which every entry is a value drawn from the standard
normal distribution. By CPUMI, the product of matrices (4) is the matrix

 ()
1

N

ik ij jkM M
j M M

c a b
×

= ×

 
 = = ⋅ =
 
 
∑C A B . (5)

The period of assignment (4) is MIP (),M Nθ in the CPU running time (1). By CPUMI-GPU, matrices (4) are
preliminarily copied to a GPU device. The copier is a mapping C taking a matrix Z on CPU and returning the
matrix GPUZ on GPU, where GPU =Z Z [1], so the CPUMI-GPU product of matrices (4) is the matrix

 ()GPU GPU GPU
1

N

ik ij jkM M
j M M

c a b
×

= ×

 
 = = ⋅ =
 
 
∑C A B . (6)

MIP ()GPU ,M Nθ in the GPU running time (2) consists of the period of assignment (4) and period of transferring

 ()GPU C=A A and ()GPU C=B B . (7)
By DGPUMI, the matrix (6) is calculated just after matrices are generated directly on GPU:
 ()GPU 0, 1, M N∈ ×A N and ()GPU 0, 1, N M∈ ×B N by { }\ 1M ∈ and { }\ 1N ∈ . (8)

Then MIP ()*
GPU ,M Nθ in the GPU running time (3) is just the period of assignment (8). Note that the product (6) is

not returned back (in MATLAB notation, not gathered) to CPU. And, theoretically, PCP ()GPU ,p M N and

()*
GPU ,p M N are expected to be the same. However, some differences occur [1, Figure 7 on p. 247, Figure 10 on p.

248, Figure 13 on p. 249].
For some maximum numbers maxM and maxN , the goal is to find those subranges

 { } { }max max2, 2,M NR R M N× ⊂ × (9)

at which the following inequalities are true:
() ()GPU , ,t M N t M N< , () ()*

GPU , ,t M N t M N< , () ()GPU , ,p M N p M N< , () ()*
GPU , ,p M N p M N<

 by { } { } { }max max, 2, 2,M NM N R R M N∈ × ⊂ × . (10)

The relationship between ()GPU ,t M N and ()*
GPU ,t M N along with ()*

GPU ,p M N and ()GPU ,p M N ought to be
ascertained. Thus we have three objects to be evaluated and compared pairwise [1].

Range of numbers of lines and columns in TSSM

To complete the range of numbers of lines and columns in TSSM, appoint the maximum numbers maxM
and maxN . Obviously, they must be identical. The abscissa and ordinate axes in Figures 6 — 14 of the article [1]
allow to put max max 500M N= = . Excepting MIP where singly two matrices on GeForce GTS 450 are preassigned
[1, Figure 8 on p. 247], the range may be shortened by to max max 400M N= = .

Clocking the running times and estimations

For clocking the running times, we use the mentioned three types of NVIDIA® GPU [1, Figures 1 — 3 on
p. 245]. The conclusion about MATLAB gpuArray method not suitable for any square matrix computations on
GeForce GT 610 [1, p. 249] does not restrict us to try this GPU for TSSM. Only DGPUMI will be executed single
time because it takes badly increasing MIP by the cycled DGPUMI both for GeForce GTS 450 and Tesla K40c [1,
Figure 4 on p. 245, Figure 5 on p. 246]. However, the inequality

 Технічні науки ISSN 2307-5732

Вісник Хмельницького національного університету, №5, 2015 (229) 245

 () ()GPU , ,M N M Nθ > θ (11)
observed in [1, Figure 6 on p. 246, Figure 8 on p. 247, Figure 9 on p. 247, Figure 11 on p. 248, Figure 12 on p. 248,
Figure 14 on p. 249] should be nonetheless checked for TSSM.

An appropriate number of cycles to ensure stable statistical estimation of the running times shouldn’t be
necessarily equal to 1000. For accelerating estimation procedures, we take 100 cycles. This is enough to make
qualitative conclusions.

After the MATLAB code for multiplying TSSM has been run and executed, we visualize 3D graphs of the
meshed surfaces in the inequalities (10) and (11) and ()*

GPU ,M Nθ . Note that CPU are different for GeForce GTS
450 and Tesla K40c (GeForce GT 610 is with the same CPU as Tesla K40c), so graphs of the CPU running time (1)
and its MIP (),M Nθ and PCP (),p M N will be re-visualized afresh.

When matrices are preassigned during 100 cycles (100-preassignment), GeForce GT 610 is fully inefficient
(compare Figures 1 — 3 to Figures 4 — 6). Deplorably, DGPUMI by 100-preassignment for this GPU is
impracticable, because it took more than two days to plot the meshes on just { } { }2, 23 2, 400× . Firstly, it took about

16 minutes to plot the line at 3M = after 2M = . Further, the time was increasing progressively (half an hour for
4M = , 44 minutes for 5M = , ...). Finally, the line at 23M = after 22M = was plotted taken 4 hours and 22

minutes.

Fig. 1. MIP in the CPU running time (1)

before GeForce GT 610 is enabled
by 100-preassignment

Fig. 2. PCP in the CPU running time (1)
before GeForce GT 610 is enabled

by 100-preassignment

Fig. 3. The CPU running time (1)
before GeForce GT 610 is enabled

by 100-preassignment

Fig. 4. MIP for CPUMI-GPU in the GPU

running time (2) for GeForce GT 610
by 100-preassignment

Fig. 5. PCP on GeForce GT 610
in the GPU running time (2)

by 100-preassignment

Fig. 6. The GPU running time (2)
for GeForce GT 610

by 100-preassignment

When GeForce GTS 450 is on, MIP is shorter for CPU by 150M > , 150N > (compare Figures 7 — 9 to

Figures 10 — 12). PCP and the GPU running time (2) are surely shorter by 250M > independently of N .
DGPUMI by 100-preassignment for this GPU is impracticable also: it took 27, 45, 63, 80, 97, 115, 132, 150, 167
minutes to plot the meshes on { } { }2, 11 2, 400× going by 2M = through 11M = .

Fig. 7. MIP in the CPU running time (1)

before GeForce GTS 450 is enabled
by 100-preassignment

Fig. 8. PCP in the CPU running time (1)
before GeForce GTS 450 is enabled

by 100-preassignment

Fig. 9. The CPU running time (1)
before GeForce GTS 450 is enabled

by 100-preassignment

M NM NM N

M NM NM N

M NM NM N

 Technical sciences ISSN 2307-5732

Herald of Khmelnytskyi national university, Issue 5, 2015 (229) 246

Fig. 10. MIP for CPUMI-GPU in the GPU

running time (2) for GeForce GTS 450
by 100-preassignment

Fig. 11. PCP on GeForce GTS 450
in the GPU running time (2)

by 100-preassignment

Fig. 12. The GPU running time (2)
for GeForce GTS 450
by 100-preassignment

Amazingly enough, the meshes for Tesla K40c by 100-preassignment have strange region over

{ } { }2, 192 2, 400× (compare Figures 13 — 15 to Figures 16 — 18). The experiment was canceled after 192M = .

Nevertheless, MIP on { } { }193, 400 2, 400× are very similar for CPU and Tesla K40c. Resuming (restarting) the

experiment since 193M = , the GPU appears better than CPU (see the abrupt drop in Figures 17 and 18):

 () ()GPU , ,p M N p M N< and () ()GPU , ,t M N t M N< by { } { } { }, 193, 400 50, 400M N ∈ × . (12)

Note, however, that such an effect of hang makes Tesla K40c not so reliable as it might be expected. DGPUMI by
100-preassignment for Tesla K40c is impracticable: it took 17, 31, 44, 56 minutes progressively to plot the meshes
on { } { }2, 6 2, 400× going by 2M = through 6M = .

Fig. 13. MIP in the CPU running time (1)

before Tesla K40c is enabled
by 100-preassignment

Fig. 14. PCP in the CPU running time (1)
before Tesla K40c is enabled

by 100-preassignment

Fig. 15. The CPU running time (1)
before Tesla K40c is enabled

by 100-preassignment

Fig. 16. MIP for CPUMI-GPU
in the GPU running time (2)

for Tesla K40c by 100-preassignment;
the unexpected strange region over

{ } { }2, 192 2, 400× is occasional,

but it looks like such poor starts
of Tesla K40c can be systematic

Fig. 17. PCP on Tesla K40c
in the GPU running time (2)

by 100-preassignment

Fig. 18. The GPU running time (2)
for Tesla K40c

by 100-preassignment;
the unexpected strange region over

{ } { }2, 192 2, 400× is aftermath of the worst

MIP and PCP, whose inapplicability makes
Tesla K40c not so reliable

When matrices are preassigned singly (1-preassignment), GeForce GT 610 is fully inefficient again

(compare Figures 19 — 21 to Figure 22, where PCP on GeForce GT 610 in the GPU running time (2) by
1-preassignment is very similar to the mesh in Figure 22, and MIP for CPUMI-GPU is close to MIP in Figure 19).
DGPUMI is senseless (Figure 23).

M
N

M
N

M
N

M NM NM N

M NM NM N

 Технічні науки ISSN 2307-5732

Вісник Хмельницького національного університету, №5, 2015 (229) 247

Fig. 19. MIP in the CPU running time (1)

before GeForce GT 610 is enabled
by 1-preassignment

Fig. 20. PCP in the CPU running time (1)
before GeForce GT 610 is enabled

by 1-preassignment

Fig. 21. The CPU running time (1)
before GeForce GT 610 is enabled

by 1-preassignment

GeForce GTS 450 looks

pretty efficient by 1-preassignment
(Figure 24 and Figure 26) by

200M > and 50N > . MIP for
DGPUMI is problematic for
2 2× -matrices lasting up to,
particularly, 0.736 second. Such a
long MIP is likely taken for the
GPU commutation (porting).
Owing to generally short MIP, PCP
and the corresponding running
times (1) — (3) are very similar. By

Fig. 22. The GPU running time (2)
for GeForce GT 610 by 1-preassignment

Fig. 23. The GPU running time (3)
for GeForce GT 610 by 1-preassignment

1-preassignment, DGPUMI is fully ineffective (Figure 26). Curiously enough, the GPU running time (3) for
GeForce GTS 450 by 1-preassignment is independent of N , increasing quasi-linearly as M increases. Below, the
same disappointing DGPUMI results will be revealed for Tesla K40c.

Fig. 24. The CPU running time (1)

before GeForce GTS 450 is enabled
by 1-preassignment

Fig. 25. The GPU running time (2)
for GeForce GTS 450
by 1-preassignment

Fig. 26. The GPU running time (3)
for GeForce GTS 450
by 1-preassignment

The real RTE is observed when by 1-preassignment Tesla K40c is enabled (compare Figures 27 — 29 to

Figures 30 — 32), excepting DGPUMI (Figure 33 and Figure 34, where a strange region over { } { }2, 79 2, 400×

befell again forcing to restart the experiment from 80M =). Here

 () ()GPU , ,p M N p M N< and () ()GPU , ,t M N t M N< by { } { } { }, 70, 400 10, 400M N ∈ × (13)

is true almost surely. MIP for DGPUMI is again problematic for 2 2× -matrices lasting up to, particularly, 2.231
seconds taken for the GPU commutation (porting).

Fig. 27. MIP in the CPU running time (1)

before Tesla K40c is enabled
by 1-preassignment

Fig. 28. PCP in the CPU running time (1)
before Tesla K40c is enabled

by 1-preassignment

Fig. 29. The CPU running time (1)
before Tesla K40c is enabled

by 1-preassignment

M NM N

M NM NM N

M NM NM N

M NM NM N

 Technical sciences ISSN 2307-5732

Herald of Khmelnytskyi national university, Issue 5, 2015 (229) 248

Fig. 30. MIP for CPUMI-GPU in the GPU

running time (2) for Tesla K40c
by 1-preassignment

Fig. 31. PCP on Tesla K40c
in the GPU running time (2)

by 1-preassignment

Fig. 32. The GPU running time (2)
for Tesla K40c

by 1-preassignment

Review of results and conclusion
The research results in

Figures 1 — 34 fairly expose the
limitation of MATLAB gpuArray
method effectiveness. Generally,
using MATLAB gpuArray method
for calculating products of TSSM is
effective when number of lines of
the first matrix is about a hundred
and greater. Namely, GeForce GTS
450 is efficient when number of
lines and columns of the first matrix
is greater than 200 and 50,
respectively. Tesla K40c is efficient

Fig. 33. PCP on Tesla K40c after
DGPUMI in the GPU running time (3)

by 1-preassignment

Fig. 34. The GPU running time (3)
for Tesla K40c

by 1-preassignment

when number of lines and columns of the first matrix is greater than 70 and 10, respectively. Unlike GeForce GTS
450 and Tesla K40c, GeForce GT 610 is out of competitiveness [1]. However, now such a disappointing conclusion
is not only for square matrix product, but also for nonsquare matrix product calculation. Another result repeating a
finding in [1] is that, independently of the size, generating matrices directly on GPU is fully inefficient. Obviously,
this is not just a MATLAB gpuArray method problem. The reason is those hangs of Tesla K40c for CPUMI-GPU
(Figures 16 — 18). No hangs of GeForce GTS 450 were registered, although there are some pleated regions in
Figure 11 and Figure 25. Consequently, optimal parallelization [6, 7] of matrix computations with MATLAB
Parallel Computing Toolbox using its gpuArray method comes both with large sized matrices (at least, if nonsquare,
starting at about 70 10×), and accurate configuration of GPU, the operating system, CPU.

References

1. Romanuke V. V. MATLAB gpuArray method optimal use for square matrix product // Herald of
Khmelnytskyi national university. Technical sciences. — 2015. — № 3. — P. 243 — 250.

2. Silber-Chaussumier F. Generating data transfers for distributed GPU parallel programs /
F. Silber-Chaussumier, A. Muller, R. Habel // Journal of Parallel and Distributed Computing. — 2013. —
Volume 73, Issue 12. — P. 1649 — 1660.

3. Zhang L. High accuracy digital image correlation powered by GPU-based parallel computing / L. Zhang,
T. Wang, Z. Jiang, Q. Kemao, Y. Liu, Z. Liu, L. Tang, S. Dong // Optics and Lasers in Engineering. — 2015. —
Volume 69. — P. 7 — 12.

4. Kshemkalyani A. D. Distributed Computing Principles, Algorithms, and Systems / A. D. Kshemkalyani,
M. Singhal. — Cambridge University Press, 2008. — 754 p.

5. Trobec R. Parallel Computing. Numerics, Applications, and Trends / R. Trobec, M. Vajteršic,
P. Zinterhof (Eds.). — Springer, 2009. — 530 p.

6. Coppersmith D. Matrix multiplication via arithmetic progressions / D. Coppersmith, S. Winograd //
Journal of Symbolic Computation. — 1990. — Volume 9, Issue 3. — P. 251 — 280.

7. Chou C.-C. Parallelizing Strassen’s method for matrix multiplication on distributed-memory MIMD
architectures / C.-C. Chou, Y.-F. Deng, G. Li, Y. Wang // Computers & Mathematics with Applications. — 1995. —
Volume 30, Issue 2. — P. 49 — 69.

Рецензія/Peer review : 26.9.2015 р. Надрукована/Printed : 2.11.2015 р.

Стаття рецензована редакційною колегією

M
N

M
N

M NM NM N

