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LIMITATION OF EFFECTIVENESSIN USING MATLAB GPUARRAY METHOD FOR
CALCULATING PRODUCTS OF TRANSPOSE-SYMMETRICALLY SIZED MATRICES

A research of effectiveness in using MATLAB gpuArray method for calculating products of transpose-symmetrically
sized matrices is represented. For this, MATLAB gpuArray method is used on three types of NVIDIA® GPU. It is revealed that,
independently of the size, generating matrices directly on GPU is fully inefficient. GeForce GT 610 is inefficient in itself.
GeForce GTS 450 is efficient when number of lines and columns of the first matrix is greater than 200 and 50, respectively.
The running time efficiency of matrix product calculation for Tesla K40c is stronger, as it comes when number of lines and
columns of the first matrix is greater than 70 and 10, respectively.
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B. B. POMAHIOK

XMeJbHUIbKUI HALIOHATBHUI YHIBEpCHUTET

OBMEXEHHS EODEKTUBHOCTI BUKOPUCTAHHS MATLAB-METOAY GPUARRAY UISA OBUNCJIEHHS
JOBYTKY MATPUIlb TPAHCIIOHOBAHO-CUMETPUYHOT' O PO3MIPY

Ilpedcmasasemovcst docaidxcenus egpekmusHocmi esukopucmanuss MATLAB-memody gpuArray 0451 o64ucsieHHs: 0o6ymky
Mampuyb mpaHcnoOHO8AHO-CUMEMPUYHO20 po3Mmipy. [las yboeo sukopucmogyemuvcsi MATLAB-memod gpuArray Ha mpwox munax NVIDIA®
GPU. Busiessiembcsi, Wjo 2eHepy8aHHs mMampuysb 6esnocepedrHbo Ha GPU € nosHicmio HeehekmueHuM HesasexncHo 8id po3mipy. GeForce GT
610 € HeepekmusHum no cymi. GeForce GTS 450 € egpekmugHum modi, kKoau yucao psdkie i cmosnyie nepwoi mampuyi € 6iabWUM
8idnoeioHo 3a 200 ma 50. [IpodykmuseHicms yacy paxyHky mampuihozo do6ymky das Tesla KAQc 6inbw sigHa, ocKiibku 6oHa Hacmynae 3a
uucaa psiokie i cmoenyis nepwioi mampuyi, 6inbwozo 8ionogioHo 3a 70 ma 10.

Katouoei caoea: do6ymok mampuys, napasenizayis, egpekmugnicms, MATLAB, memod gpuArray, npodykmusHicms uacy
DAXYHKY.

Motivation of exploring therunning time efficiency of nonsquar e matrix product calculation

In the article [1], a research of efficient computation of square matrix product on GPU was represented.
While researching, MATLAB gpuArray method was used on three types of NVIDIA® GPU (GeForce GTS 450,
TedaK40c, GeForce GT 610). The research exposed that MATLAB gpuArray method optimal use, if any, requires
the matrix order be greater than 120. Generating matrices directly on GPU [2, 3] is fully inefficient for a long
sequence of products. The running time is shortened when matrices are already on GPU, and the efficiency holds if
matrices are generated directly on GPU just for afew times[1, p. 250].

Generally speaking, the article [1] proves the effectiveness of GPU computations becomes apparent for
large sized arrays, but MATLAB gpuArray method may have specific optimal use when numbers of lines and
columns are different. For instance, calculating on CPU, product of 10 1000 matrix and 1000” 10 matrix is
calculated faster than product of two 100” 100 matrices. And product of 1000” 10 matrix and 10" 1000 matrix is
calculated much slower. This specificity motivatesto explore the running time efficiency (RTE) of nonsguare matrix
product calculation.

Goal and itemsto befulfilled

For determining RTE of using MATLAB gpuArray method for calculating nonsquare matrix products, let
multiply M~ N matricesby N° M matrices and measure the running time. Along with results of the article [1],
thiswill allow to ascertain optimal parallelization of matrix computations [4, 5] with MATLAB Parallel Computing
Toolbox using its gpuArray method. To get it realized, the following items are to be fulfilled:

1. Formalize the problem in mathematical notation.

2. Definethe range of numbers of lines and columns in transpose-symmetrically sized matrices (TSSM).

3. Run the MATLAB code for multiplying TSSM increasing progressively numbers of their lines and
columns. Make it for an appropriate number of cyclesto ensure stable statitical estimation of the running time.

4. Both for CPU and GPU, estimate time for initialization of the matrix elements depending on the size
(i.e. numbers M and N). Similarly, estimate time for TSSM product depending on the size.

5. For each type of the applied GPU (GeForce GTS 450, Tesla K40c, GeForce GT 610), find subranges of
numbers M and N (and, probably, their combination), where the GPU running time is shorter than the CPU
running time.

Formalization of RTE problem
The running time consists of the matrices initialization period (MIP) and their product calculation period
(PCP). Matrices can be initialized by a way among those three ones:
1. CPU matrix initialization, without transferring to GPU (CPUMI). This way presupposes product
calculation just on CPU. The CPU running timeis

t(M, N)=g(M, N)+p(M, N) 6h)
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by MIP g(M, N) and PCP p(M, N) on CPU.

2. CPU matrix initiaization, with subsequent transferring to GPU (CPUMI-GPU). This way presupposes
product calculation on GPU. The GPU running timeis

tGPU(M’N):qGPU(M’N)+pGPU(M’N) )
by MIP qgp, (M, N) for CPUMI-GPU and PCP pg, (M, N) on GPU.

3. Direct GPU matrix initialization (DGPUMI) [1, p. 244]. The matrix product is calculated on GPU, and
here the GPU running timeis

topy (M, N) = dgey (M. N) + pgey (M, N) 3
by MIP g, (M, N) for DGPUMI and PCP pg, (M, N) on GPU after DGPUMI.
Let matrices A =(a1.j)
normal variates:
AT N (0,1, M"N) and BT N (0,1, N"M) by MT U\{} and NT 0 \{g} (4)
for the infinite st N (0,1, L" Q) of L" Q-matrices in which every entry is a value drawn from the standard

normal distribution. By CPUMI, the product of matrices (4) is the matrix
&) 0
C:(C.k)M'M =AB=¢q aijbjki : )
=t 20 m
The period of assignment (4) is MIP q(M, N) in the CPU running time (1). By CPUMI-GPU, matrices (4) are
preliminarily copied to a GPU device. The copier is a mapping C taking a matrix Z on CPU and returning the
matrix Z ., on GPU, where Z ., =Z [1], so the CPUMI-GPU product of matrices (4) isthe matrix

, ad B :(qk)N,M to be multiplied have entries which are values of standard

&y 0
Ceru :(Clk)M'M =Agpy Bepy = a a jki . (6)
= G m
MIP dgpy (M, N) in the GPU running time (2) consists of the period of assignment (4) and period of transferring
Agy =C(A) and By, =C(B). @)
By DGPUMI, the matrix (6) is calculated just after matrices are generated directly on GPU:
AgyT N(0,,M" N) and Bgoy T N (0,4 N M) by MT O\{1} and NT 0\{Z}. (8

Then MIP gy (M, N) inthe GPU running time (3) isjust the period of assignment (8). Note that the product (6) is
not returned back (in MATLAB notation, not gathered) to CPU. And, theoretically, PCP pgs, (M, N) and

Peru (M, N) are expected to be the same. However, some differences occur [1, Figure 7 on p. 247, Figure 10 on p.

248, Figure 13 on p. 249].
For some maximum numbers M, and N

R R {2M} {2 N} 9)
at which the following inequalities are true;
tepu (M, N) <t(M, N), tgo, (M, N)<t(M, N), pgey (M, N)<p(M, N), pgmy (M, N)<p(M, N)
by {M.N}T R,” RyT {2 M.} {2 N} (10)
The relationship between tgy, (M, N) and tg, (M, N) along with pgs, (M, N) and pgmy (M, N) ought to be
ascertained. Thus we have three objects to be evaluated and compared pairwise [1].

the goal isto find those subranges

Range of number s of linesand columnsin TSSM
To complete the range of numbers of lines and columns in TSSM, appoint the maximum numbers M,

and N, . Obviously, they must be identical. The abscissa and ordinate axes in Figures 6 — 14 of the article [1]
alow to put M, =N, =500. Excepting MIP where singly two matrices on GeForce GTS 450 are preassigned
[1, Figure 8 on p. 247], the range may be shortened by to M, = N,, =400.

Clocking the running times and estimations
For clocking the running times, we use the mentioned three types of NVIDIA® GPU [1, Figures1 — 3 on
p. 245]. The conclusion about MATLAB gpuArray method not suitable for any square matrix computations on
GeForce GT 610 [1, p. 249] does not restrict us to try this GPU for TSSM. Only DGPUMI will be executed single
time because it takes badly increasing MIP by the cycled DGPUMI both for GeForce GTS 450 and Tedla K40c [1,
Figure 4 on p. 245, Figure 5 on p. 246]. However, the inequality
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Aeeu (M, N)>q(M, N) (11)
observed in [1, Figure 6 on p. 246, Figure 8 on p. 247, Figure 9 on p. 247, Figure 11 on p. 248, Figure 12 on p. 248,
Figure 14 on p. 249] should be nonethd ess checked for TSSM.

An appropriate number of cycles to ensure stable statistical estimation of the running times shouldn’t be
necessarily equal to 1000. For accelerating estimation procedures, we take 100 cycles. This is enough to make
gualitative conclusions.

After the MATLAB code for multiplying TSSM has been run and executed, we visualize 3D graphs of the

meshed surfaces in the inequalities (10) and (11) and g, (M, N). Note that CPU are different for GeForce GTS
450 and Tedla K40c (GeForce GT 610 iswith the same CPU as Tesla K40c), so graphs of the CPU running time (1)
anditsMIP g(M, N) and PCP p(M, N) will be re-visualized afresh.

When matrices are preassigned during 100 cycles (100-preassignment), GeForce GT 610 isfully inefficient
(compare Figures 1 — 3 to Figures 4 — 6). Deplorably, DGPUMI by 100-preassignment for this GPU is

impracticable, because it took more than two days to plot the meshes on just {2, 23} ! {2, 400} . Firgtly, it took about

16 minutes to plot thelineat M =3 after M =2. Further, the time was increasing progressively (half an hour for
M =4, 44 minutes for M =5, ...). Findly, the lineat M =23 after M =22 was plotted taken 4 hours and 22
minutes.

o M) -
Fig. 1. MIP in the CPU running time (1) Fig. 2. PCP in the CPU running time (1) Fig. 3. The CPU running time (1)
before GeForce GT 610 isenabled before GeForce GT 610 isenabled before GeForce GT 610 isenabled
by 100-pr eassignment by 100-pr eassignment by 100-pr eassignment

r L ) Ll
Fig. 4. MIP for CPUMI-GPU in the GPU Fig. 5. PCP on GeForce GT 610 Fig. 6. The GPU running time (2)
running time (2) for GeForce GT 610 in the GPU running time (2) for GeForce GT 610
by 100-pr eassignment by 100-pr eassignment by 100-pr eassignment

When GeForce GTS 450 ison, MIP is shorter for CPU by M >150, N >150 (compare Figures7 — 9to
Figures 10 — 12). PCP and the GPU running time (2) are surely shorter by M > 250 independently of N.
DGPUMI by 100-preassignment for this GPU is impracticable also: it took 27, 45, 63, 80, 97, 115, 132, 150, 167

minutes to plot the meshes on {m} {2, 400} going by M =2 through M =11.

Fig. 7.MIP in the CPU running time (1) Fig. 8. PCP in the CPU running time (1) Fig. 9. The CPU running time (1)
before GeForce GTS 450 is enabled before GeForce GTS 450 is enabled before GeForce GTS 450 is enabled
by 100-pr eassignment by 100-pr eassignment by 100-pr eassignment

BicHuk Xme/nbHUYbK020 HayioHa/1bHOo20 yHigepcumemy, Ne5, 2015 (229) 245



Technical sciences ISSN 2307-5732

- - N

: d v N
Fig. 10. MIP for CPUMI-GPU in the GPU Fig. 11. PCP on GeForce GTS450 Fig. 12. The GPU running time (2)
running time (2) for GeForce GT S450 in the GPU running time (2) for GeForce GT S450
by 100-pr eassignment by 100-pr eassignment by 100-pr eassignment

Amazingly enough, the meshes for Tesa K40c by 100-preassignment have strange region over
{2, 192} ’ {2, 400} (compare Figures 13 — 15 to Figures 16 — 18). The experiment was canceled after M =192.

Nevertheless, MIP on {193,400} {2,400} are very similar for CPU and Tesla K40c. Resuming (restarting) the
experiment since M =193, the GPU appears better than CPU (see the abrupt drop in Figures 17 and 18):

Pory (M. N) < p(M, N) and te (M, N)<t(M, N) by {m, N}T {193 200} {50, 400} (12)

Note, however, that such an effect of hang makes Tesla K40c not so reliable as it might be expected. DGPUMI by
100-preassignment for Tesla K40c isimpracticable: it took 17, 31, 44, 56 minutes progressively to plot the meshes

on {2_6} {m} going by M =2 through M =6.

| r o
Fig. 13. MIP in the CPU running time (1) Fig. 14. PCP in the CPU running time (1) Fig. 15. The CPU running time (1)
before Tesla K40c is enabled before Tesla K40c is enabled before Tesla K40c is enabled
by 100-pr eassignment by 100-pr eassignment by 100-pr eassignment

Fig. 16. MIP for CPUMI-GPU e : : E Fig. 18. The GPU running time (2)

in the GPU running time (2) g i o for TeslaK40c
for Tesla K40c by 100-preassignment; p o -, by 100-pr eassignment;
the unexpected strange region over W R : the unexpected strange region over
{2, 192} ’ {2, 400} isoccasional, Fig. 17. PCP on Tesa K4O’(\:A {2, 192} ’ {2, 400} is aftermath of the wor st
but it looks like such poor starts in the GPU running time (2) MIP and PCP, whose inapplicability makes
of Tesla K 40c can be systematic by 100-pr eassignment TeslaK40c not so reliable

When matrices are preassigned singly (1-preassignment), GeForce GT 610 is fully inefficient again
(compare Figures 19 — 21 to Figure 22, where PCP on GeForce GT 610 in the GPU running time (2) by
1-preassignment is very similar to the mesh in Figure 22, and MIP for CPUMI-GPU is close to MIP in Figure 19).
DGPUMI is sensdless (Figure 23).
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Fig. 19. MIP in the CPU running time (1) Fig. 20. PCP in the CPU running time (1) Fig. 21.TheéPU running time (1)
before GeForce GT 610 isenabled before GeForce GT 610 isenabled before GeForce GT 610 isenabled
by 1-preassignment by 1-preassignment by 1-preassignment

GeForce GTS 450 looks
pretty efficient by 1-preassignment
(Figure 24 and Figure 26) by
M >200 and N>50. MIP for ...
DGPUMI is problematic for = -
2" 2-matrices lasting up to, L
particularly, 0.736 second. Such a ..
long MIP is likely taken for the
GPU  commutation  (porting). ,
Owing to generally §1th MIP, P_CP Fig.22. The Glsu.running time(2) Fig.23.The GI;UIrunning time (3)
and the corresponding running  for GeForce GT 610 by 1-preassignment for GeForce GT 610 by 1-preassignment
times (1) — (3) are very similar. By
1-preassignment, DGPUMI is fully ineffective (Figure 26). Curiously enough, the GPU running time (3) for
GeForce GTS 450 by 1-preassignment is independent of N, increasing quasi-linearly as M increases. Below, the
same disappointing DGPUMI resultswill be revealed for Tesla K40c.

ok N

Mo

Fig. 24. The CPU running time (1) Fig. 25. The GPU running time (2) Fig. 26. The GPU running time (3)
before GeForce GTS 450 is enabled for GeForce GT S450 for GeForce GT S450
by 1-preassignment by 1-preassignment by 1-preassignment

Thereal RTE is observed when by 1-preassignment Tesla K40c is enabled (compare Figures 27 — 29 to
Figures 30 — 32), excepting DGPUMI (Figure 33 and Figure 34, where a strange region over {2, 79} ! {2, 400}
befell again forcing to restart the experiment from M =80). Here

Pory (M, N)< p(M, N) and ts, (M, N)<t(M, N) by {M, N} {70,400} {10, 400} (13)

is true almost surely. MIP for DGPUMI is again problematic for 2 2 -matrices lasting up to, particularly, 2.231
seconds taken for the GPU commutation (porting).

N

N
EE L N
Fig. 27. MIP in the CPU running time (1) Fig. 28. PCP in the CPU running time (1) Fig. 29. The CPU running time (1)
before Tesla K40c is enabled before Tesla K40c is enabled before Tesla K40c is enabled
by 1-preassignment by 1-preassignment by 1-preassignment
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M B N v M 4¢ TR
Fig. 30. MIP for CPUMI-GPU in the GPU Fig. 31. PCP on TedaK40c Fig. 32. The GPU running time (2)
running time (2) for Tesla K40c in the GPU running time (2) for TeslaK40c
by 1-preassignment by 1-preassignment by 1-preassignment

Review of resultsand conclusion

The research results in
Figures 1 — 34 fairly expose the
limitation of MATLAB gpuArray
method effectiveness.  Generally,
usng MATLAB gpuArray method
for calculating products of TSSM is
effective when number of lines of
the first matrix is about a hundred
and greater. Namely, GeForce GTS

who Tt

4 . ' M M
450 is efficient when number of Fig. 33. PCP on TeslaK40c after Fig. 34. The GPU running time (3)
lines and columns of the first matrix DGPUMI inthe GPU running time (3) for TeslaK40c
is greater than 200 and 50, by 1-preassignment by 1-preassignment

respectively. Teda K40c is efficient

when number of lines and columns of the first matrix is greater than 70 and 10, respectively. Unlike GeForce GTS
450 and Tedla K40c, GeForce GT 610 is out of competitiveness [1]. However, now such a disappointing conclusion
is not only for square matrix product, but also for nonsquare matrix product calculation. Another result repeating a
finding in [1] isthat, independently of the size, generating matrices directly on GPU is fully inefficient. Obvioudly,
thisisnot just a MATLAB gpuArray method problem. The reason is those hangs of Teda K40c for CPUMI-GPU
(Figures 16 — 18). No hangs of GeForce GTS 450 were registered, although there are some pleated regions in
Figure 11 and Figure 25. Consequently, optimal parallelization [6, 7] of matrix computations with MATLAB
Parallel Computing Toolbox using its gpuArray method comes both with large sized matrices (at least, if nonsgquare,
gtarting at about 70" 10 ), and accurate configuration of GPU, the operating system, CPU.

References

1. Romanuke V. V. MATLAB gpuArray method optimal use for square matrix product // Herald of
Khmelnytskyi national university. Technical sciences. — 2015. — Ne 3. — P. 243 — 250.

2. Silber-Chaussumier F. Generating data transfers for distributed GPU paralle programs /
F. Silber-Chaussumier, A. Muller, R. Habe // Journa of Paralld and Distributed Computing. — 2013, —
Volume 73, Issue 12. — P. 1649 — 1660.

3. Zhang L. High accuracy digital image correlation powered by GPU-based parallel computing / L. Zhang,
T. Wang, Z. Jang, Q. Kemao, Y. Liu, Z. Liu, L. Tang, S. Dong // Optics and Lasers in Engineering. — 2015. —
Volume69. — P. 7— 12.

4. Kshemkalyani A. D. Distributed Computing Principles, Algorithms, and Systems/ A. D. Kshemkalyani,
M. Singha. — Cambridge University Press, 2008. — 754 p.

5. Trobec R. Paralld Computing. Numerics, Applications, and Trends / R. Trobec, M. Vatersic,
P. Zinterhof (Eds.). — Springer, 2009. — 530 p.

6. Coppersmith D. Matrix multiplication via arithmetic progressions / D. Coppersmith, S. Winograd //
Journal of Symbolic Computation. — 1990. — Volume 9, Issue 3. — P. 251 — 280.

7. Chou C.-C. Pardldizing Strassen’s method for matrix multiplication on distributed-memory MIMD
architectures/ C.-C. Chou, Y .-F. Deng, G. Li, Y. Wang // Computers & Mathematics with Applications. — 1995. —
Volume 30, Issue 2. — P. 49 — 69.

Penensis/Peer review : 26.9.2015 p. Hanpykosana/Printed : 2.11.2015 p.
CTaTTs pereH30BaHa PelaKiHOI KOJETi€r0

248 Herald of Khmelnytskyi national university, Issue 5, 2015 (229)





