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A CRITERION OF AGGREGATING EXPERT ESTIMATIONS INTO CONSENSUS
PAIRWISE COMPARISON MATRIX BY A GIVEN COMPARISON SCALE WITHIN
THE CORRESPONDING SPACE OF POSITIVE INVERSE-SYMMETRIC MATRICES

An approach of aggregating expert estimations into consensus pairwise comparison matrix is suggested. The
aggregation criterion is minimization of the weighted distance between the consensus pairwise comparison matrix and
pairwise comparison matrices of experts. The matrix distance is Euclidean-based metric in the space of all positive inverse-
symmetric matrices whose subset is the space of all pairwise comparison matrices. The consensus is found slightly simpler for
experts with identical competences. Expert estimations are treated consistent if they do not differ badly. For checking
consistency or concordance of expert estimations, two inequalities are controlled. The first inequality addresses maximal
distance among weighted pairwise comparison matrices of experts. The second one addresses maximal difference among
entries of these matrices. For experts with identical competences, the two inequalities are stated simpler, without weighting.
The suggested approach is applicable, regardless the comparison scale, for solving hierarchical multicriteria problems by
finite number of alternatives.
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B.B. POMAHIOK

XMeNnbHULBKHI HALIOHATBHUH YHIBEPCUTET

KPUTEPII ATPET'YBAHHS EKCIIEPTHUX OLIHOK B Y3ATAJIbHEHY MATPUIIO IOIAPHUX
MOPIBHSIHB 3A JAHOIO IIKAJIOIO ITIOPIBHSIHD Y BIAIIOBITHOMY ITPOCTOPI
JOJATHUX OBEPHEHO-CUMETPUYHUX MATPUIIb

IlponoHyemuvcst nidxid do azpezys8aHHsi eKcnepmHUuX OYIHOK 8 Y3aza/ibHeHy Mampuyl NnonapHux nopisHsHo. Kpumepiem
azpezysaHHsl € MiHIMI3ayis 36axceHoi 8idcmaHi Mixc y3a2a1bHEHOI0 MAMpuyelo NONAPHUX NOPIGHSIHb | MaAMPUYSIMU NONAPHUX NOPIBHSIHb
exkcnepmie. MampuyHoio 8idcmaHHI0 € Mempuka Ha OCHO8I eskaidoeoi gidcmaui y npocmopi ycix dodamHux obepHeHo-CUMEempU4YHUX
Mampuyb, NiIOMHONCUHOI0 SIKO20 € Npocmip YCix Mampuyb NONApHUX NOPIBHSHL., Y3azanbHeHHs 3Haxodumucsi dewjo hpocmiwe 045
ekcnepmie 3 00HaKoguUMU KomhemeHmHocmsmu. EkcnepmHi oYiHKu 88axcaromucst y3200HCeHUMU, SKWO 80HU HE CUNbHO pi3HaImMbcs. [as
nepesipku y3zodiceHocmi ekcnepmHux OYiHOK KoHmpoawwmbucs 0ei HepieHocmi. [lepwia HepigHicmb 38epmaembubcs 00 MAKCUMAALHOT
sidcmaHi Mixc 36axceHUMU Mampuysimu nonapHux nopieHsiHb ekchepmis. /lpy2a HepigHicmb 386epmaemuvcst 00 MaKCUMAALHOI pi3HUY T MIdic
enemeHmamu yux mampuys. Jfani 08i HepigHocmi 3anucylombcsi npocmiwe, 6e3 38ajicy8aHHsl, 04151 ekchepmig 3 00HAKOBUMU
KomMnemeHmHocmsimu. HesasedxcHo 6i0 wkaau NnopieHsHb, 3anponoHo8aHull nioxid € 3acmoco@HUM 0451 p038’A3YyB8aHHSl iEpapXiuHux
6azamokpumepiasbHux 3a0a4 3i CKIHUEHHO KibKICMIo d/1bmepHamus.

Karwuosi cnoea: ekcnepmmi OYIHKU, WKAAGQ NOPIBHAHb, MAMPUYS NONAPHUX NOPIBHSAHb, A2pe2y8aHHS eKCNepmHux OYIHOK,
MampuyHa 8i0cmaib, y3a2aabHeHHs, KOMNEeMeHMHoCcmi ekcnepmie, y3200%4ceHicmb eKcnepmHUX OYiHOK.

Problem of aggregating expert estimations

Expert estimations (EE) may differ badly. Simple aggregation of such estimations, e. g., arithmetic or
geometrical mean, may turn inconsistent or incorrect. Therefore, a criterion of EE consistency should be. If EE are
consistent by the criterion, then the corresponding solution analysis is applicable.

As a pattern, consider pairwise comparison matrix (PCM) used in solving hierarchical multicriteria
problems (HMCP) by finite number of alternatives (possible solutions or strategies). PCM is widely applied within
the well-known Saaty method of analytic hierarchy process (AHP). Using the spread scale of comparisons [1, 2], the
variety of PCM is finite. Obviously, the consensus PCM must be a matrix of those ones in the PCM variety. Even a
trivial example shows, however, that averaging arithmetically or geometrically gives an off-the-scale matrix which
is not a PCM: if 2 and 3 are values given by two experts, their arithmetic mean 2.5 is off-the-scale value, and their

geometric mean \/g is off-the-scale value as well.
This is the motivation to develop an approach of EE aggregation such that the approach could be applicable
regardless the scale of comparisons. In other words, this approach should work on any variety of PCM.

How the consensus PCM is obtained

In most practical cases, while an HMCP is solved by PCM involved at least two experts, a question of how
the consensus PCM 1is obtained appears unclear. For instance, the paper [3] derives a group PCM, wherein a
consensus index of a sequence of individual PCM is defined and two consensus improving methods are developed
by introducing a general aggregation operator based on Abelian linearly ordered group. Based on multiplicative
AHP model with lognormal errors, the paper [4] proposes a Bayesian revision method for improving a sequence of
individual PCM under the assumption that the consensus exists among decision makers, which is considered an aid
to aggregation of individual judgments and aggregation of the individual priorities. In the paper [5], it is declared
that using the row geometric mean as the prioritization procedure, consensus is sought between the different
decision makers when the modifications of their initial positions or judgments are guaranteed to be within the range
of values accepted for a given inconsistency level. A general model to generate crisp priority weights of the
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alternatives from possibly inconsistent and conflicting fuzzy preference relations is proposed in [6], where the model
is expressed in terms of fuzzy matrix approximations, and in the aggregation process, the importance of each expert
is taken into consideration according to the agreement of the group with the expert.

A lot of apparent drawbacks of those decisional tools spring from superfluous complications, assumptions
needing supplementary substantiations, impossibility to achieve a complete matrix [5], invalidity of fuzzifying
numerical judgments in the AHP [7, §]. Besides, often supplementary statistics is needed [4, 6, 7, 9, 10]. Thus, the
EE aggregation is an issue.

Goal and items to be accomplished to meet it

The final goal is to state an approach of the EE aggregation into a consensus PCM along with a criterion of
consistency of this PCM. Note that here consistency of the consensus PCM is treated in the sense of succeeding to
EE consistency, rather than concerning the principal eigenvalue (PE) and consistency index [7, 10, 11]. This is so
because validity is the target in decision-making, not consistency, which can be successively improved by
manipulating the judgments as the answer gets farther and farther from reality [7]. And validity is founded on that
EE do not differ badly, what allows to bring them into the consensus.

For meeting the said goal, the following items are going to be made:

1. Formalize the scale of the comparison result.

2. Formalize the space (called earlier variety) of all PCM.

3. Formalize the space of all positive inverse-symmetric matrices (PISM) whose subset is the space of all
PCM.

4. Introduce a metric in the PISM space.

5. Suggest how to aggregate EE in their PCM into a consensus PCM belonging to the space of all PCM.

6. Suggest a criterion which would ensure consistency of EE in their PCM and let apply the corresponding
consensus PCM in solving an HMCP.

The comparison scale and spaces of PCM and PISM
By the Saaty method of AHP, the comparison result is reflected usually with the 17-pointed scale whose
values are [1,2,7, 11, 12]
11111111
PRE RPN R T R B ST _91’ 25 3’ 4’ 5’ 63 7’ 859 (1)
987 65432
and only these ones are elements of PCM. Each value in the set (1) has its own interpretation suitable to the
appropriate situation. Here the first nine natural numbers are used. Generalization of the comparison scale is that the

comparison result is reflected on the scale of the first S natural numbers for 2.5 —1 graduation marks
— -nS S N
A(S)={{m™"} L {m} by Se : )
Thus, having N objects (alternatives, criteria, subcriteria, etc.) by N € N and J experts by J €N , PCM
of the j-thexpertis A, = [af,f >] where
NxN
A < A(S) by af =L o)
Denote by
A N(S):{A:[aik]NxN:aik EA(S)’ aik:alzil} (4)

the space of all N x N PCM with the comparison scale (2). It is clear that A ; eA (S ) and the space (4) is finite.

However, the space (4) is a partial case of PCM variety generated by the scale (2). The space (4) contains not all
PISM. But the infinite space

B, ={B=[b],., b >0.b, =1} )
contains all Nx N PCM generated by any scale of positive values. So, A (S )CB y and a metric to measure
distance between two PCM should be introduced just right in the PISM space (5).

Euclidean-based metric in the space of PISM
Denote the distance between PISM

X:[xik]NxN eB, and Y:[yik]NxN eB, (6)
by pg , (X, Y). These two PISM (6) can be represented as ordinary N7 -dimensional points in Euclidean arithmetic

space R . Therefore, it is natural to measure distance [13] between PISM (6) by the Euclidean-based metric:

. (X Y>=||x—Y||=Jﬁﬁ<xﬂc-yi,(f. o

=l k=l
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Properties of PISM declared in (5) allow to deduce a formula for simpler calculation of the distance (7):

p (536 33 T ()

i=1 k=i+l

ZZ[ ylk ()’,k ik ] \/Zzh— 1kyzk ) _J’;k)z- ®)

i=l k=itl ( ,ky,A i= k=itl zkyzk

N(N -1
Excluding main diagonal, by formula (8) we need to sum up % terms instead of N (N —l) terms by
formula (7). This is twice faster.

The consensus PCM belonging to the space of all PCM
If there was just a single expert, no consensus PCM would be required because PCM of this expert would

J
be already applicable. In the case of J experts, whose weights {& /.} _, are such that
i) e

J
g e(0:1) for j=1,J by Y &,=1, ©)
-l

where the weight § ; indicates at the j-th expert’s competence, the consensus PCM must be selected among

IA N(S)| PCM of the space A N(S). Formally, this is to determine a mapping of J PCM {A/}J. into the

7=l

consensus PCM .~ sothat . A \ f) . Neither weighted arithmetic mean

J
M= [mik ]NxN by my = Z@,-af;f>
j=l

nor weighted geometric mean
J

Gz[gik]NxN by &y =H(az‘<1{>)éj

J=1

J
is the mapping unless all matrices {A ,} .

Jf,, are identical. But generally M ¢A  (S) and G ¢A (S). Moreover,

M¢gB , though GeB
If the g -th PCM in the space A () is
C,=|d!' | €A (S)=B, by g=LA (5 (10)

then the weighted distance between this PCM and J PCM {A /}J is

77 j=1

p J J 1N 1+( ay! lk)) Gy
p(Cq,{A_,}‘,,:l)=z&_,-pBN(Aj,Cq)=Z§,- D (=) (11)
j=1 J=1 i=] k=i+l ( ag'cy )
Then
- ( J
1 i o(C{a)) (12)
My

is the required consensus PCM. Note that if expert procedures involve experts with identical competences then the
consensus PCM (12) is found slightly simpler:

N O e T
’ l;qur?(i?)cB N Z ZZW(G,@ —C,-<,j>) . (13)
[ gL (s) | 7| A (aik Cik )

Either the minimization problem (12) by (11) or the minimization problem (13) is solved trivially (Figure 1) owing
to that they deal with the finite set A (S ) of possible solutions.
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Start

Y Y
Assignment of weights {éi}J

J

v
Making EE as PCM {A |’

J=1

False True
Y Y
Calculate the ¢ -th weighted Calculate distance between
distance (11), associated A, and C, by (8), j :L_J

with PCM C, by g=L A (S)| \

Sumup J distances

Y
Among |A N(S)| weighted {pB ) (Aj, C, )}J 1 associated
; i

distances, select the minimal one

with PCM C, by g=L|A (S|

associated with the corresponding

. Ay (s) L. A

PCM in the set {C hich
in the se { q}q:I which is Among IA N(S)| summed-up
the consensus PCM . distances, select the minimal one

associated with the corresponding

A (S)

PCM in the set {Cq} which is

the consensus PCM .,

~ A

EE are consistent

Y

Return

Figure 1. A routine for finding the consensus PCM .

It is important that the routine in Figure 1 describes the succession of steps for finding the consensus PCM
. before consistency of EE is checked. Though EE consistency was expected to be checked straight off after

J J ~
weights {@ j}‘ and PCM {A_/.}.:1 are known, matrix . may come indispensable for reasoning upon EE

consistency. That is why the EE consistency checking module has been put in the end of the routine, after the
consensus PCM ., is selected in the course of solving a trivial minimization problem.

Consistency of EE
The consensus PCM . , when found, can be applied in solving an HMCP only if there is a concordance
(consistency) of EE. Consistency is a requirement of that EE would not be badly diverse. This will prevent

premature conclusions on relationships among objects which are compared.
Basically, for making a conclusion on EE consistency, we should check how bad the expert matrices

J
{A j} ~ are scattered. For this, we calculate the maximal distance in the space A (S ) The maximal distance

between two PCM is reached when every pair of their entries of the same location is maximally opposite. Therefore,
81
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all the pairs (except the main diagonal) must include entries {S , S ’]} and

<\ M( (a) _ <’>)2=

it~ Cik

max pB_(C,C,,): max

nax __ 2
:1:; ?, V,:(f);l‘ :1::; E\L yi(f()st)l\ i=l k=itl (C,<: >C,-</:>)

1+(s-57 (-1 _ N(N-1) s*-1
ZZ (s-57) = L .2 - N(N-1). (14)
i=l k=i+l S 2 S

J
Furthermore, matrices {A j} _, may appear scattered not much, but if a pair of entries of the same location includes
=

too different comparisons, that is an evidence of inconsistency. Obviously, that the maximally different comparisons
N

constitute the same pair {S, S"} and R -distance between them is S—S5~' = . The minimally different

comparisons always constitute, without loss of generality, a pair
(. )=l

and R -distance between them is 1.
If experts have identical competences then, after the consensus PCM (13), we check if the inequality

S*-1

max pg (Aj,A,)< 5 N(N-1) by v,(S5)e(0;1) (15)
=41, 7
is true. Along with this, the inequality
2
0o | L1 S -l
,n11aJX1 lr?ejivxlmax{‘ a; I a.<l>} < by HN(S)G[L 3 (16)
1=+, J | k=itl, N ik ik

is checked also. Values yN(S ) and },LN(S ) are parameters of consistency of EE made by identical competence

experts. The lesser these parameters are taken the stronger requirement for EE consistency is.
If experts have non-identical competences, the consistency conditions (15) and (16) are not relevant.

Consequently, instead of comparing PCM A and A, the &, -weighted PCM A, must be compared to the &, -

weighted PCM A, . Denote the & ; ~weighted PCM by Ag.é" ) = [afkj ’€’>] . Apparently, the greater § ; the smaller

NxN

change of the non-main-diagonal entry afkj ) should be. Ultimately,

limal" % =4 by izk. (17)

g;—-l1
And vice versa, the smaller &, the greater change of the non-main-diagonal entry al.<kj ) should be, but here the
inaccessible ultimate value & ;=0 must correspond to the unitary PCM implying that, by zero competence EE,
objects are indistinguishable:

VS 1 by ixk. (18)
Basing upon conditions (17) and (18), define the mapping of PCM A ; into the & ; -weighted PCM as

A=z, (A.g) by APV B, and ¥ =14g (af) <1) for k>i VE=iTLN.  (19)

J

It is clear that properties of the mapping (19) satisfy two conditions (17) and (18) of weighting a PCM. Then, after
the consensus PCM (12) is found by (11), we check if the inequality

2
max pg, (A<‘§f>,A§&f>)< SS_l N(N=1) by 1,(S)e(0:1) (20)
J

I=j+1,J

is true. Along with this, the inequality

1 1

max { max max ——T
=l J-1 | =1, N- (8)  glw
1 i ai/c ik

) . ay ik
=j+1, J | k=i+l, N

<~f’ ii> a</ §1>"

< by uN(S)e(o; %} @1

is checked. Parameters of EE consistency 7y, (S ) and L, (S ) for (20) and (21) are adjusted in the same way as for
(15) and (16), although their order may be different (Figure 2).
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Y

Assignment of weights {gj }J

J=1

False

Define parameters v, (S)e(0;1)

2
and pN(S)e[O; SS_IJ

Y

True

Y

2
and uN(S)e{l; 2 _lj

Define parameters v, (S)e(0;1)

S

Executing the mapping
of PCM A into

Inequalities

(15) and (16)
the & -weighted PCM

by (19), j=1,J

Inequalities

(20) and (21)

Y Y
EE are consistent and

so is the consensus PCM .

Y

Return

J
Figure 2. A routine for checking consistency of EE in their PCM {A/.} .
j=

J
The routine in Figure 2 describes that module which checks whether EE in their PCM {A/.}

J=
consistent or not. The checking module is the bottom diamond in the routine in Figure 1. And so when the routine in
Figure 1 runs, it uses the routine in Figure 2 as its subroutine.

are
1

Discussion

Consistency of EE is believed to come first before consistency related to final ranking comes. The reason is
that when EE are not concordant the final ranking based on the consensus PCM is perceived just like an average,
although this average may seem to reflect a fallacious “trustworthy” relationship among objects which are
compared. If “trustworthy” then the consensus PCM will be PE-consistent (but inconsistent following EE
inconsistency). EE inconsistency, or bad differences among expert judgments, is an evidence of that the objects are
not studied well yet. And PE-consistent ranking of such objects is senseless.

There is an opinion that, however, EE consistency relates to PE-consistency. This is explained with that too
“close” EE are probably going to be inherited by good PE-consistency. Nonetheless, good PE-consistency does not
always mean EE consistency.

It is worthy to note that instead of Euclidean-based metric in the space of PISM, stated as (7) and calculated
as (8), some other metrics could have been used [13]. They are Manhattan, Cosine, Dice, and Jaccard distance
functions whose application produces significant differences in the measurement of consensus [13]. Besides, these

BicHuk XMeabHUYbK020 HAYioHA/IbHO20 YHigepcumemy, Nel, 2016 (233) 83



Technical sciences ISSN 2307-5732

four metrics are not more natural than the Euclidean-based metric (7), and so their usage is a matter of another issue.
In assessing the EE consistency, when experts have non-identical competences, the weighted distances

{‘:f Ps, (Aj’ U)}j

being the unitary PCM is the inaccessible ultimate case implying indistinguishability of the studied objects.

or max Pg (A§.§’>, U) could have been used by the unitary Nx N matrix U . Matrix U
j=1,J N

=1

Nevertheless, the proposed mapping of PCM A | into the &, -weighted PCM A_</;’> satisfies two limit conditions

(17) and (18), what lets use the metric (7) and engage inequalities (20) and (21) with inequalities (15) and (16). This
eventually completes the approach of aggregating EE and checking their consistency.

Conclusion
The suggested criterion of aggregating EE into the consensus PCM is independent of the comparison scale.
It ensures consistency of EE in their PCM by plain requirements which regard competences of experts. The stated
approach of the EE aggregation is realized as the routine in Figure 1 with its subroutine in Figure 2, where the EE

J J
consistency checking module could have been put at the start, straight off after weights {g ].} . and PCM {A /.}
iy

Jj=1
are known, and before the consensus PCM . is found. And matrix . is not needful for checking consistency of
J

EE in their PCM {A/} A
=

Once EE is revealed to be consistent (i.e., without bad differences among expert judgments), the
corresponding consensus PCM and the objects’ ranking should be applied in solving an HMCP. Certainly,
consistency of EE depends strongly on competences of experts. If expert procedures recur then competences change,

1 but, not to lose generality, the consensus PCM is included into the subroutine.

J
and accurate tracking of those competences expressed as weights {§ j} . by (9) is required. Hence, the next must be
=

an approach to re-evaluate the experts’ competences while a group of objects is studied sequentially.
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