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NEUROEVOLUTION OF CONVOLUTIONAL NEURAL NETWORKS FOR THE 

CLASSIFICATION OF LUNG CANCER IMAGES 
 
Convolutional neural networks demonstrate impressive results during medical imaging of lung cancer. It may be 

possible to make diagnoses with convolutional neural networks on conventional chest X-rays that are definitively apparent 
on subsequently computed tomography and biopsy. Computer vision may reduce the need for further evaluation with invasive 
testing or prevent errors of missed diagnoses. Using over twelve thousand images of proven lung cancer from the Prostate, 
Lung, Colorectal, and Ovarian dataset, we developed an algorithm to predict the presence or absence of lung cancer. The 
classification algorithm has achieved an accuracy of 96.09% with a positive predictive value of 99.11% and a negative 
predictive value of 93.25%. 
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НЕЙРОЕВОЛЮЦІЯ КОНВОЛІЦІЙНИХ НЕЙРОННИХ МЕРЕЖ  

ДЛЯ КЛАСИФІКАЦІЇ ЛІКУВАННЯ ЛЕГЕНЬ РАКУ 
 
Згорткові нейронні мережі демонструють вражаючі результати під час медичної візуалізації раку легенів. Є 

можливість провести діагнози з використанням згорткових нейронних мереж за звичайними рентгенівськими знімками грудної 
клітки, які остаточно проявляються на подальшій комп'ютерній томографії та біопсії. Комп'ютерне бачення може зменшити 
потребу в подальшій оцінці за допомогою інвазивного тестування або запобігання помилкам пропущених діагнозів. 
Використовуючи понад дванадцять тисяч зображень виявленого раку легень із набору даних з раком простати, легень, 
колоректалу та яєчників, ми представляємо алгоритм для прогнозування наявності або відсутності раку легенів. Алгоритм 
класифікації досягнув точності розпізнавання 96.09% з позитивною прогностичною цінністю 99.11% та негативною 
прогностичною цінністю 93.25%. 

Ключові слова: згорткові нейронні мережі, генетичні алгоритми, гіперпараметри, набір даних, рак легень. 
 

Introduction 
Over recent decades, the number of lung cancer patients has increased dramatically. Former or current 

smokers and those exposed to radiation or chemicals in the workplace have especially higher risks to the disease. 
According to the recent researches, over 1,465,000 people die every year from cancers, 18.2% of which is a variant 
of lung cancer [1]. The tumours resulting from this disease at a particular stage are visible to experienced 
radiologists on such mediums as chest X-rays, computed tomography scans, and positron emission tomography 
scans. The images of lung cancer serve as a preventative measure in several cases. Late detection of the disease 
leads to fatal consequences. Nowadays the level of survival from lung cancer is about 10% [2]. 

Owing to continued research into deep learning and convolutional neural networks (CNNs) during the past 
several years, image classification and object detection have shown tremendous improvements in performance [3]. 
Not only does the success of CNNs owe to computing power and large datasets but also the innovations into the 
model structure [4]. Replacement of the activation function on ReLU [5], insertion of dropout layers [6], fully 
connected layers, and various optimisation techniques significantly changed and improved approaches of using 
CNNs [7], [8]. 

Genetic algorithms are search heuristics that try to imitate the process of natural selection to find possible 
solutions to optimisation as well as search problems. They have two main components: genetic representation of the 
solution space and the ability to evaluate the fitness of solutions. At first, we form every possible CNN architecture 
through our genetic encoding scheme. Having trained the model on the training data, we evaluate the fitness of the 
solution. In the end, we test the trained solution on our test set, which then becomes the solution’s fitness [9]. 

Genetic algorithms begin with the original population of genes and populations of problem-solving. Once 
every solution in the population is evaluated, they all are chosen based on their suitability for modification to create 
a new generation of solutions. In the result, the more fit the solution, the more likely it has a descendant. The 
population becomes better at solving the task with time. The algorithm ends when at least one individual across all 
generations is recognised as the best solution to the problem. 

The use of neural networks in medical diagnosis 
The use of data analysis on medical images is not a new approach to medical diagnosis. However, many 

applications of computer vision for medical applications struggle due to the medical data being noisy, inexact, 
sparse, or just too big. Therefore, algorithms of medical diagnosis based on CNNs have been continually improving. 

In a recent project performed at the University of Bern, a group of researchers created a deep CNN 
architecture for the classification of lung diseases based on lung slices from computed tomography images that 
performed with an accuracy of 85.5% on its dataset [10]. They successfully classified lung computed tomography 
image patches between six different lung diseases. The dataset consisted of 2,032 different diseases. To handle such 
a diverse dataset, they balanced their classes using a dynamic tree-taxonomy. To eliminate the problem of small 
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training classes, researchers generated classes based on the number of examples rather than final diagnoses. It 
resulted in having 757 classes, instead of 2,032. 

In another project performed at the Federal University of Parana, a CNN performed to classify images of 
cell slides of breast cancer patients [11]. Using the BreaKHis dataset [12], researchers used AlexNet to classify 
microscopic biopsy images of benign and malignant breast tumours. Each slide of breast tissue contained four 
images, each with different levels of magnification. To handle the high-resolution nature of their dataset, they 
invoked a few techniques. The first was the use of sliding windows with 50% overlap, and the second was random 
crops of the raw image with no overlap.  

The goal of the article and tasks to fulfil 
For this paper, we used the modified NEAT algorithm, dubbed DeepNEAT [13], to evolve the architecture 

of CNN. We inserted convolution and pooling layers with pseudorandom hyperparameters into a minimal 
architecture and then optimised the weights through backpropagation on the training set. The fitness of a model is 
the final accuracy on the test set after two epochs of training. 

During neural networks deployment, dozens of parameters require optimisation. Optimising parameters 
through any search algorithm is impractical, especially one based on chance. 

We claim the following tasks that must be fulfilled: 
1. The encoding had to be able to encode directed acyclic graphs of variable size; 
2. Be able to track topological innovations over time, 
3. Be able to create a new, coherent, individual from the genes of two parent individuals; 
4. The encoding scheme must inherently allow for an efficient search for optimal network architectures. 
Few encoding schemes satisfy all these requirements. We chose direct encoding in the form of graph 

encoding. More specifically, we used Schiffman encoding [14]. Its basic structure is a list of neurons with their 
connectivity information. We program our own rules for mutations, so mutations do not result in illegal phenotypes. 
Each vertex in the graph represented a layer in a CNN, and also stored hyper-parameter information for the 
construction node. 

The NEAT algorithm was slightly modified in order to evolve a CNN. First of all, we defined primary 
mutations. Inject Node injects a random node (convolution, pool, or ReLU) with pseudo-random hyperparameters 
into the genome’s network between a pre-existing connection. Before injecting the new node, we checked to ensure 
that it would produce a valid network. If it did, the injection occurred, if it did not, we changed the hyperparameters 
to values that would result in a valid network. This approach solves the problem of convolving the image to zero 
dimensions, as is guaranteed to occur as the number of injects increases. Inject Segment injects a pair of convolution 
with a ReLU, as well as a pool layer in a preexisting connection. Point Mutate changes the essential 
hyperparameters of a node. 

Dataset 
The dataset used for training and testing was compiled from the Prostate, Lung, Colorectal, and Ovarian 

Cancer Screening Trial (PLCO) 
dataset [15]. The dataset contains 
images of randomised and controlled 
trials to determine whether specific 
screening exams reduce the mortality 
of prostate, lung, colorectal, and 
ovarian cancer. Approximately 
155,000 participants took part in the 
screening portion of the trial from 
1993 to 2006. If a participant 
developed cancer at any point during 
the screening phase, all CXRs 
preceding the diagnosis were 
considered to be cancerous and marked 
as positives, which resulted in over 
9,200 positives in the dataset. The 
typical instance of the PLCO dataset is 

presented in figure 1. 
The original PLCO image dataset occupied 2.2TB in TIF format with individual images of chest 

radiographs having an approximate size of 2000x3000 pixels. In [16], the dataset was improved through down-
scaling and then cropped. The current dataset was uniformly downscaled to 256 x 256 pixels and stored in PNG 
format. The dataset was randomly split into 70% and 30% for training and testing, respectively. In order to train the 
DeepNEAT algorithm, we selected several CNN models and applied them using the machine learning framework 
TensorFlow v. 1.10.0 [17]. 

Training 
During the training, we used a gene pool of fifty individuals, throughout ten generations. The DeepNEAT 

algorithm received mutation rate parameters, which determined the frequency of each mutation. Each mutation 
received specific rate (table 1). 

 
Fig. 1. From the PLCO dataset to lung cancer diagnosis 
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Table 1 
The mutation rate of the genetic algorithm 

Mutation Rate, % 
Inject Convolution 50 

Inject Pooling 50 
Add ReLU 30 

Point Mutate 45 
Inject Segment 15 

 
At the first stage of training, the genetic algorithm graphically coded the network. After that, we export the 

created graph to the TensorFlow model. Each model received an identical set of hyperparameters. The names of 
hyperparameters and their values are listed in table 2. 
 

Table 2 
Parameters of the CNN 

Hyperparameter Value 
Optimisation function SGD 

Epochs 5 
Learning rate policy INV 

Learning rate 0.01 
Momentum 0.9 

Weight Decay 0.0005 
 

Results 
We conducted several experiments with different sizes of generations of the population. According to the 

training results, fifty individuals for ten generations were the most efficient in producing a fit population, as well as 
producing very fit top models. We trained five hundred models and outperformed the state-of-the-art classification 
models by 4%. The recognition accuracy increases with the increase in the number of generations of the DeepNEAT 
algorithm (fig. 2). 
 

 
Fig. 2. Improvement of accuracy over generations 

 
To test the effectiveness of DeepNEAT, we compared it to the best models from the past 5 years. As shown 

in table 3, the accuracy of DeepNEAT exceeds every model. DeepNEAT executed in its entirety in 4 hours, whereas 
AlexNet, ResNet-151 and GoogLeNet took over 21, 40 and 35 hours to train, respectively. 
 

Table 3 
Testing accuracy for applied models 

Model Test accuracy, % Time training, hours 
AlexNet 79.88 21.06 

GoogleNet 89.34 40.19 
ResNet-151 92.03 35.56 
DeepNEAT 96.09 4.89 

 
For binary classifiers, such as the DeepNEAT model, we calculated several statistics regarding the performance of 
the algorithm. In table 4 we introduce the contingency statistical data, which present the frequency of the real 
condition variable and the predicted condition variable. 
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Table 4 
Binary classifier evaluation contingency table 

 True positive False negative False positive True negative 
Population, 

numbers 
1224 94 11 1298 

Rate, % 92.87 7.13 0.84 99.16 
 
From table 4 many ratios can be derived, most notably the rates of false positives and negatives among the 
population. The statistical ratios were calculated from these inputs and presented in table 5. To calculate the 
contingency rates, the network, based on the DeepNEAT model, has been calculated on all 1,884. Statistical 
coefficients were calculated from these data and are presented in table 5. 
 

Table 5 
Statistical rations of predicted and confirmed population samples 
Positive predictive rate, % 99.11 

False discovery rate, % 0.89 
False omission rate, % 6.75 

Negative predictive value, % 93.25 
Positive likelihood ratio, % 51.29 
Negative likelihood ratio, % 7.19 

Accuracy, % 96.09 
 
The best model generated by the DeepNEAT algorithm achieved an accuracy of 96.09% with a positive predictive 
rate of 99.11% and a negative predictive rate of 93.25%. 

Conclusion 
The final accuracy of the network over a set check of 96.09% indicates that the model has succeeded in learning the 
functions associated with the presence of different types of confirmed lung cancer in these images. Given that the 
human radiologist must spend a significant amount of time in each image to make the correct prediction, indications 
for many types of cancer are not often seen early, causing diagnoses often arriving during the late stages of these 
diseases. This model can handle images at a speed of 3.41 milliseconds each; the potential for using such a model as 
the previous step of screening can save many lives from early detection and misdiagnosis. The automation provided 
by this tool may reduce costs as well as increase the speed and accuracy of diagnoses. 
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