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межячеечного расстояния и скорости движения границы фаз в результате ячеистого 
распада на основании экспериментального исследования системы Pb-Sn при различных 
пересыщениях. 

Ключевые слова: диффузия, миграция границ зерен, ячеистый распад, 
максимальность производства энтропии.  

 
Summary. Yu.O. Lyashenko, L.I. Gladka, O.A. Shmatko. Comparison of the different 

approaches to solution of the cellular precipitation inverse problem. For the description of 
the cellular precipitation of the supersaturated binary alloys the values of the interlayer 
distance and interface velocity are included as some combination in the solution of the mass 
transport problem. The additional model assumptions, which include the principle of the 
maximal rate of the free energy dissipation, are used for the separate determination of these 
parameters. In our work we present the comparison of the two approaches for the separate 
calculation of the interlayer distance and interface velocity, which are made on the basis of 
the experimental investigation of the lead-tin system at different levels of the supersaturation. 

Keywords: diffusion, grain boundary migration, cellular precipitation, maximum 
entropy production.  
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OSTWALD RIPENING REVISITED 
 
Standard theory of coarsening (Ostwald ripening) assumes a very small volume fraction 

of the precipitated phase. Yet, most experiments have been conducted under the condition of 
volume fractions f of at least several %.  We call volume fraction “large” if a diffusive 
screening length is not more than an average interparticle distance (f larger than about 1%). 
In this case  large compositional noise and  short-range diffusive interaction invalids the 
LSW-type approach. To circumvent this crucial problem, we first reformulate the LSW basic 
growth/shrinkage equation in terms of “velocity = mobility x driving force”.  Then we apply 
the “normalized space approach”, developed recently for grain growth, to ripening with the 
mobility taken to be inversely proportional to particle size. 

Keywords: coarsening, diffusion, precipitation, size distribution, mean field analysis 
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Last stage of decomposition – Ostwald ripening – is usually described in the frame of 
LSW approach, developed 55 years ago, initially by Lifshitz and Slezov [1-3], and later by 
Wagner [4]. It predicts the 3/1t – law for mean particle size and the universal asymptotic (for 

t ) size distribution, )(ug against the reduced sizes 



r
ru , independent on any 

physical parameter. Today, LSW theory still remains the base for our understanding of 
diffusion controlled coarsening and is used sometimes even for interpreting phenomena 
without long range diffusion as in grain growth [5]. Moreover, LSW-type approach has been 
used recently for interpreting flux-driven ripening during reactive diffusion [6] and for flux-
driven grain growth during thin film deposition [7]. Despite so wide popularity, one of the 
two major LSW predictions contradicts most of available experimental results; the universal 
size distribution of LSW does not agree with the measured experimental particle size 
distributions (PSDs) while an excellent fit to the 3/1t - law for average size dependence exists 
[8-10]. The following explanations for this discrepancy have been offered: finite (non-zero) 
volume fraction f of the precipitating phase, annealing time not long enough to reach the 
asymptotic regime, possibility of direct collisions (and coalescence) of particles, as well as 
stresses in solid state ripening. Modifications of LSW theory for non-negligible volume 
fractions (see, for example, [11-13] and review [9]), as a rule, contradict the experimental data 
for solid state ripening by predicting an increasing growth rate for increasing volume 
fractions, which in fact is not observed. Here we present an attempt to formulate the criterion 
of what means a “large” volume fraction for ripening and to obtain a reasonable PSD for 
“large” volume fraction ripening. This attempt is based on approaching the ripening problem 
by decoupling the free energy of a central precipitate from the rest (reservoir) in the 
normalized space [14].  

Below we formulate the criterion of “large” volume fractions on the basis of the concept 
of diffusive screening, developed in Ref. [15, 12]. In large volume fractions each precipitate 
can diffusively feel only its nearest neighbors, resulting in a strong short-range interaction and 
correlation within the Wigner-Seitz cell around the precipitate and in turn the large local 
compositional fluctuations among cells. Thus, the LSW approach becomes inapplicable in 
principle in large volume fraction ripening. Then, we reformulate the basic growth/shrinkage 
equation of ripening in terms of “velocity = mobility x driving force” approach. Then in, we 
demonstrate that the driving force on an arbitrary precipitate can be decoupled from the rest 
(the reservoir), if we treat thermodynamics of ripening in the normalized space with unit 
length, changing with time and proportional to mean size. It enables us to formulate the 
“velocity = mobility x driving force” relation in the normalized space with a mobility which is 
inversely proportional to size. We obtain a new growth/shrinkage equation of ripening and 
new PSD. Finally, we make comparisons to experimental data and discuss the limitations of 
the theory of ripening in normalized space (RNS). 
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Criterion of large volume fraction in ripening 
One of the major developments of ripening theory after LSW was the discovery of 

diffusive screening effect [15, 12].  This effect seems to be crucial for understanding 
problems in ripening, so we discuss briefly here the main idea in it.  The concentration field 
around each precipitate is modified by the surrounding precipitates, which serve (in coarsened 
space scale) as a medium with sources/sinks.  Let ),( 

tC  be an atomic fraction of species B 

in a dilute solution of B in A, averaged over volume 3L , surrounding an arbitrary point 


, 
and L be approximately an average half-distance between the centers of neighboring 
precipitates (see below).   In this coarsened scale the diffusion equation for concentration field 
around a precipitate can be written as:  

   


 drrtf
dt
drrCD

t
tC







|,4),( 22   (1) 

with   ),(|, rtfrtf 


 being a PSD, normalized to density of precipitates per unit volume:  

   )3/4/(1),( 3Lndrrtf  , (2) 

and  
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
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for precipitation of almost pure elements in a dilute solution, where Ceq is solubility limit of 
solute (dimensionless) or the equilibrium concentration on a flat surface of the precipitated 
phase, D is diffusivity,  is the surface energy per unit area of the precipitate,  is atomic 
volume or partial molar volume of solute in the precipitate, and kT has the usual meaning of 
thermal energy.  We note that we have used f to represent volume fraction, but in Eq. (1) we 
use f(t, r) to represent size distribution function.  

Combination of Eqs.(1-3) with steady-state approximation for concentration gives:  

       





2
2 1 , (4)  

where  

 6/12/132/1 )3/()4(   fLfrrLrn . (5) 

In Eq. (5),   f is defined as the volume fraction of ripening and 3

3

L
rf 

 is the ratio of 

the volume of a precipitate and the volume of its Wigner-Seitz cell (see Discussion) or the 
ratio of the total volume of precipitates and the volume of the sample.  Eq. (4) is a typical 
equation for screening with a typical solution of   

     





/


Exp
,  (6) 

and   is a typical screening length.  
Existence of screening length means that each precipitate can feel the existence of other 

precipitates only within the  - sphere. In other words, a randomly walking atom can reach 
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the “central” precipitate without being trapped by other precipitates only if it starts its walking 
within the  - sphere. The radius of  - sphere as well as the number Z of particles 
( 2/133 /  fLZ  ) inside it increases with decreasing volume fraction as f  0.   This is the 
main reason why a mean-field approximation should work well in the limiting case f  0 
(LSW theory).   

It can be shown (see Appendix A), that the ”noise level” – the amplitude of composition 
fluctuations in each point 


 (in each Wigner-Seitz cell around precipitate) relative to average 

super-saturation - is tending to zero with 0f  as  

  sf
r
rfC 






 4/1
2

2
4/12 11

  

where s  is the  standard deviation of size distribution. It means that the stochastic inputs of a 
large number of precipitates from almost infinite  - sphere (f  0) compensate each other 
almost completely, allowing us to use the concept of mean-field or average concentration, 
which is similar to the “rigid” order parameter  in the superconductivity (due to overlapping 
of Cooper electron pairs).  In LSW case of a very small volume fraction ripening, the super-
saturation is such an order parameter.  Yet, it is clear that if   is less than the average 
distance 2L between neighboring precipitates, each precipitate will feel only its nearest 
neighbors (Z  6 to 12), and the use of coarsened space scale will also fail.  Another analogy 
is plasma.  Due to the long-range character of electrostatic interaction (the same as diffusive 
interaction), the rarefied plasma can be well described by the mean-field Vlasov equations 
[16].  Yet, when plasma becomes condensed liquid or solid, the mean-field concept is no 
longer applicable since in the condensed phases each atom feels only its nearest neighbors.   
In ripening the role of atoms is played by Wigner-Seitz cells with the precipitate inside being 
the nucleus.  When the fraction of the precipitate phase inside Wigner-Seitz cells exceeds 
some critical value, the diffusive interaction becomes trapped in the first coordination shell.  
In the following, we shall find this critical value. 

Since   and L are related by rather slow dependence ( 6/1/ fL ), it means that the 
mean-field approximation fails at about 
 62  ff  (less than 2%).  (7)  

Furthermore, we will treat Eq. (7) as the criterion of “large” volume fractions, for which 
the ripening theory should be different from LSW.  We can find at least two major reasons at 
large f for crucial difference from LSW:  

1) Non-negligible noise of concentrations around precipitate, and  
2) Very strong correlations between the sizes of neighboring precipitates.  
We shall treat the ripening with noise in a separate paper.  Here we shall concentrate on 

the correlation effect, which was first systematically investigated by Marder [12] with 2/1f as 
a small parameter.  

Under the condition in Eq. (7) of large volume fraction, each precipitate is able to 
exchange atoms only with the nearest neighbor precipitates due to a small screening length 
within its Wigner-Seitz cell.  In other words, while the wall of the cell is transparent for 
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diffusing atoms, they are nevertheless trapped inside the first coordination shell of neighbors.  
The nearest neighbors form a cage.  Each precipitate can grow only at the expense of its 
nearest neighbors.  In this respect the situation is similar to the grain growth (GG) case, when 
each grain can grow only at the expense of its neighbors.  In GG case grains touch each other, 
and in ripening case Wigner-Seitz cells touch each other.  The difference is that the mobility 
in GG is usually treated as constant, but the mobility in ripening is inversely proportional to 
the size of precipitate due to the diffusive nature of interaction (see Section III).  As we know, 
applying LSW-type approach to grain growth (e.g., by Hillert [5]) appeared to be 
unsuccessful since it has predicted a PSD, which is very far from experimental data.  So, 
LSW theory is not applicable to ripening under the condition in Eq. (7) for large volume 
fractions.  Moreover, the abovementioned short-range interaction between neighboring 
Wigner-Seitz cells leads to uphill–diffusion of sizes as shown in Appendix B. 

 
LSW in terms of driving force and mobility  
Thus, there exist very fundamental reasons why LSW cannot be applied to f larger than  

few percents. In this situation, the expanding of Marder’s correlation analysis [12] to higher 
orders of 2/1f  does not seem to be a good idea, because as we have just shown , at  ff , 
the coarsened space scale is not applicable anymore, moreover, the convergence of 
corresponding series is also questionable.  In other words, most probably, it is impossible to 
solve the ripening problem for large volume fractions by constructing any perturbation theory, 
based on LSW as a zero approximation.  A different approach for large f is presented below. 

It has been demonstrated recently [14] that a very reasonable grain size distribution 
under the normal grain growth mode in polycrystals can be derived if one applies the usual 
thermodynamic and kinetic arguments within a normalized size space, with the length scale in 
the normalized space being determined by the average grain size R.  If we intend to apply the 
same approach to ripening, i.e., ripening in a normalized size space, we should at first 
reformulate the main growth/shrinkage equation of ripening theory as a relation between 
thermodynamic driving force and growth rate.  In other words, this is a different approach in 
considering ripening and it may be convenient because in the case of strong nearest neighbor 
interactions, i.e., large volume fractions, the local super-saturation becomes a rather 
unpredictable function, so it is difficult to use mass balance to derive the growth/shrinkage 
equation.   

The alternative form for ripening can be obtained from the original LSW 
growth/shrinkage equation of the precipitated phase:  

 





 

rrr
D

dt
dr 11  (8) 

We shall first examine how can this equation be interpreted from the thermodynamic 
point of view.   We consider a system of N precipitates, consisting of a “central” precipitate of 
size r and the rest of N-1 precipitates with a mean size r as the “reservoir.”   The reservoir 
can be regarded as a mean-field for the central precipitate.  Considering all the precipitates as 
spheres for simplicity, we have the constraint of constant volume of all the precipitates in the 
form:  
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   ,)1(
3
4 33 constrNrV new    (9)  

(The volume is almost conserved, and just redistributed in ripening, leading to 
decreasing total interfacial area), so that if all the precipitates in the reservoir change equally, 
we have  

 
1

12










Nr
rdrrd . (10) 

It means that a change of size of the “central” precipitate leads to a change of others due 
to the constraint of almost constant volume.  While this change is small for each precipitate in 
the reservoir, it gives a non-negligible effect on the total surface: 

   drr
rr

rNrddS total 222 118)1(4 





   . (11) 

Thus, the driving force of the growth of the “central” precipitate is  

 





 












rrr

S
rdr

F
rV

F total 112
44

1
22 





, (12) 

where totalSF    is a free energy of the whole system (chemical bulk energy is much smaller 

than surface energy, 1surface

chem

F
F ), so the driving force is being just the difference of Laplace 

pressures between mean-field and the “central” precipitate. Then the basic growth/shrinkage 
equation can be represented in the standard “velocity = mobility x driving force” form, as it 
has been applied to normal grain growth problems [16, 5]:  

 











V
FM

dt
dr ,  (13)  

By combining Eqs. (8), (12) and (13), we obtain the mobility (for the simplest case of 
ripening in a dilute solution):   

 
kT

DCB
r
B

rkT
CD

r
DM

eqeq 



 ,11

2
 .  (14)  

We recall that in the case of normal grain growth, the mobility has been taken to be 
constant.  Thus, the main difference between normal grain growth and ripening is that in the 
latter case the mobility depends on size, which is quite clear due to the diffusive mechanism 
of growth/shrinkage of the precipitate.  Thus, eqs.(12-14) are just another set of basic LSW 
equations but, as explained above, they can be used only for the case of very small volume 
fractions.  

 
Ripening in normalized size space 
The driving force in Eq. (12) contains comparable inputs from both the central 

precipitate and the reservoir.  Such coupling leads to cross-term effects between a precipitate 
and its surrounding, which are difficult to account for in the cases of large volume fractions.  
This basic difficulty can be circumvented, by using the normalized size space.  Below we will 
repeat partly the main arguments of normalized size space concept, introduced in Ref. [14]. 
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Let R(t) be some average characteristics of the system, being proportional to all kinds of 
averages of the same dimension.  The proper choice of R will be made later to satisfy the 
constraint of constant total volume.  We introduce a non-dimensional space with R being a 
unit length, furthermore we shall consider ripening in this space.  In the following, we shall 
use the sign “” above a parameter to represent it in the normalized space.   

During the ripening stage, the surface energy is much larger than the bulk chemical 
energy of a slightly supersaturated solution.  In real space, the surface energy is given as   





N

i
irF

1

24 , 

In real space, the dimension of free energy is 22 / smkg  .  In the normalized space the 

free energy is represented by 2

~
R
FF  , with a dimension of 2/ skg ,  

 



N

i

i
ii R

r
rrF

1

2 ~,~4~  . (15) 

In the framework of mean-field approach, we shall consider an arbitrary precipitate 1 as 
the “central” precipitate, and all the others as the reservoir:  

  







 



22

2

22 ~)1(~4~~4~ rNrrrF
N

i
i   (16) 

Since R is proportional to average size, the ratio 
 2

2

2
~r

R
r  is constant.  The 

number of precipitates N can be treated as constant when the change of size is infinitesimal. 
(This condition is changed in LSW cases of very small volume fractions – see Discussion.)  
Thus, the second term in Eq. (16) is constant, and the change of free energy of the central 
precipitate  (defined in normalized size space) is independent on reservoir:  
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The influence of reservoir will be present only after the transition back to real space: 
22 ~~ dRFFdRdF  . 

Thus, in the normalized size space we have a base to use the linear relationship among 
driving force, mobility and velocity without cross-terms:  
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dt
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 . (18) 

The  “minus” sign means that in the normalized size space it is thermodynamically 
favorable to decrease the size of any precipitate.  In real space it translates to mean that even 
if some precipitate is growing, its growth rate is less than the rate of change of the mean size.  

Here M~  is mobility in the normalized size space.  It can be deduced from the mobility 
in real space by considering the dimensions in Eq.(14) and by taking into account that B in 

this equation has dimension of 113 kgsm  ( 232

~~,~,~,~
R
kTTk

RR
DD 


  ): 
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Thus, we obtain the main growth/shrinkage equation of ripening in the normalized 
space:  

 23 ~
1

)(

~

rtR
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dt
rd

 ,  or  
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A
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vd 
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where 3~
3
4~ rv  is the precipitate volume in the normalized space, and 

  DBA  2 . (21) 
Considering the constraint of constant volume, we obtain,  
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so that  (taking into account that all average sizes in normalized space are constant) 

 const
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dt
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
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tr
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Rd
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3 

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(the average cubed size depends on time linearly).  In the real size space, we obtain the 
following expression for the growth rate:  

 
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




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2
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In classical LSW theory the critical size is just an average one. In our approach , as it 

follows from Eq.(23),   3/13  rrcrit  . 
Our approach remains of mean-field type, but it is now in the normalized space.  This 

transition to normalized space provides some account of correlations in real space.  Indeed, 
comparing Eq. (23) with LSW Eq. (8), the effective super-saturation around a precipitate 

depends on its volume size: 



 3

2

)(
r

rr  instead of 



r
  in LSW.  The larger the 

particle when it is compared with average size, the larger the effective super-saturation around 
it.  It correlates with the fact that a large particle, in case of short-range interactions, has more 
chance to be surrounded by small precipitates, serving as its feeding base and therefore 
having higher concentration rC eq / around it. (See “uphill diffusion” of sizes in Appendix 
B.) 

Substituting Eq. (20) into the continuity equation in the normalized space or Eq. (23) in 
real space gives:  

For the normalized volume distribution 
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For the size distribution in real space 
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The scaling solution of Eqs. (24) and (25) are following (One can use, for example, the 
methods presented in Appendix B in Ref.[14] and in Sections 5-6 in Ref.[6] to obtain them.) : 

  










v
v

R
constvtf ~

~
exp)~,(
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3 ,  (26) 

or, in real space of volumes,  
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
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or, in real space of linear sizes: 
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Since usually experimental data for PSD are presented over the reduced size 



r
ru , 

we will reformulate Eq.(28) for this representation.  From Eq.(28) we obtain,  

 
 

 
3/13

0

32

0

33

3/13 89298.0 













r
dxxExpx

dxxExpx
rr , 712073.03

3





r
r . (29) 

Therefore the scaling part of PSD takes the following form: 
     1)(,712.013622.2)( 32 duuguExpuug  (30)  

According to Eqs. (22, 29), the kinetics for average size is determined by  
 tDAtr  14.2)3(712.03   (31) 

One can compare the scaling part of PSD g(u) as the function of reduced size u, given 
by LSW (dotted lines) and our RNS (dashed lines) theories, at Figs. 1-3. 
Finding the time dependence for average super-saturation in RNS is not so straightforward as 
in LSW theory since our approach is based on “velocity = mobility x driving force” 
relationship without direct use of super-saturation. Yet, as we have already mentioned, we can 

treat 



3

2

r
r  as effective super-saturation around individual particles.  Then the average 

super-saturation in the matrix can be found as  

 
    3/13/13

2

3

2

626.0806.0
14.2 tDtDu

u
rr

r




















 .  (32) 

 
Discussion 
The main feature of the obtained size distribution in RNS is the absence of a sharp cut-

off of the distribution function.  Actually, the cut-off is one of the main discrepancies between 
LSW theory and experiments.   So, our distribution is better in this aspect.  Moreover, our 
distribution is not so sharp (in comparison with LSW) in the vicinity of the average sizes, 
which also agrees better with experiments. 



ISSN 2076-5851. Вісник Черкаського університету. 2012. Випуск 229 (16) 

 80 

 To quantify the differences between RNS and LSW, we shall calculate the standard 

deviation in width,   2/12)1(  us , skewness    33 /)1( suSkew   and Kurtosis 

(sharpness of the peak)   3/)1( 44  suK .  
In LSW, s = 0.215, Skew = -0.920, K = 0.675.  
In RNS we obtain s = 0.363, Skew = +0.168, K = -0.271.  
In the following, we compare these numbers with some available experimental data.  
In Ref. [18] the ripening of Ni3Ti-presipitates in binary Ni-Ti alloys was investigated.  

Volume fractions varied from 1.73 % to 30.7 % (They are large according to our criterion in 
eq. (7)). The following “average” values were obtained: s = 0.294, Skew = +0.308, K = -
0.216.  

The datum for standard deviation does not seem to agree well with the RNS value. Yet, 
the averaging was made over all times from 1 to 64 hours, and the data at least for standard 
deviation clearly show the trend of increasing “s” with time.  For example, for the alloy with f 
= 1.7 %, the standard deviation increases with time from 0.285 at 1 hour to 0.36 at 64 hours; 
for the alloy with f = 11.7 %, it increases from 0.275 at 1 hour to 0.37 at 8 hours, and 0.36 at 
16 hours; and for the alloy with f = 24 %, it increases from 0.25 at 1 hour to 0.325 at 16 hours 
(no experimental points for longer annealing and for other alloys).  As we can see, for long 
annealing times the “s” value is close to RNS prediction.  Data for skewness in Ref. [18] are 
much more scattered (due to relatively small number of particles measured), but definitely 
they correspond to positive skewness instead of a negative one in LSW. Kurtosis values are 
also very scattered, but the “average” value (-0.216) is close to our predicted value of (-
0.271).  

Analogous experiments for ripening of Ni3Ge precipitates in Ni-Ge alloys give  
s = 0.292, Skew = -0.173, K = -0.235. Yet, the statistics in this case is poorer (about 200 

particles – just enough for average growth kinetics but not enough for reliable PSD). 
In Ref. [19] the ripening of Ni3Si-precipitates in binary Ni-Si alloys was investigated, 

giving s from 0.26 to 0.29 and very scattered data for skewness (from –0.6 to +0.5) and 
Kurtosis (from –1.2 to +0.2). 

For more illustration, we present the data for ripening of ice in water (by heat diffusion), 
and of cementite, taken from the paper of Bitti and diNunzio [10], with superimposed curves 
of LSW theory, of Bitti-di Nunzio (BN) theory, and of our RNS theory in Figs. 1 and 2.  In 
Fig.3 we superimpose our RNS-plot on the experimental data, summarized by Marder [12].  
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Fig. 1. Normalized PSD )(ug  over reduced size u  for ice ripening in water with superimposed 

LSW, BN and RNS-curves. Histogram – experimental data summarized by Bitti&Di Nunzio [10], 
dotted line – LSW theory, solid line –BN theory, dashed line - RNS theory. 

 
Fig. 2. PSDs for cementite ripening with superimposed LSW, BN and RNS-curves. 
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Scattered points –experimental data summarized by Bitti&Di Nunzio [10], dotted line – 
LSW theory, solid line –BN theory, dashed line - RNS theory.  

 
Fig.3. Experimental data, summarized by Marder [12] with superimposed LSW (dotted) 

and our RNS (dashed)-curves. 
In the following, we shall discuss some general features and limitations of the RNS. 
1. Our theory predicts the same linear time law for cubed mean size as LSW theory, 

differing only with pre-factor (2.14 in Eq. (31) instead of 4/9 in LSW).  
2. Possible stress influence is not discussed here. 
3. In our analysis the mobility as well as the driving force in normalized space do not 

depend on the volume fraction. So, in RNS the growth kinetics should not depend on f.  
4. In our analysis of ripening in normalized space, we obtain the expression for driving 

force by decoupling free energies.  As for mobility, we take LSW-mobility (though not used 
explicitly in the original LSW- papers) and recalculate it in new dimensions, corresponding to 
the normalized space. 

5. We investigate only asymptotic regime of ripening, when scaling is already 
established. In this regime all characteristic lengths including screening length and average 
inter-particle distance (size of Wigner-Seitz cell) change proportionally, so that the number of 
cells inside  - sphere remains constant (in our case of large volume fractions it is just one 
Wigner-Seitz cell).  

6. As was pointed out by Ardell [11], if the volume fraction is really large (in geometric 
sense), precipitates can overlap the neighboring Wigner-Seitz cells, due to non-spherical 
shape and random space distribution. In our treatment we neglected these geometric 
considerations, being more interested in a general picture. 

7. Universality of our PSD does not mean that RNS is applicable to all values of f.  It is 
designed for the case of large volume fractions (f > few percents), when the mean free path of 
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diffusing atoms is about the size of Wigner-Seitz cell around the precipitate.   Our approach 
cannot be applied to the limiting LSW case of f 0.  We may indicate at least one 
mathematical reason why this is so.  In our decoupling of surface energies in eq. (16), we 
treated the second term (reservoir) as constant, arguing that for infinitesimal change of the 
central precipitate, the other (N-1) precipitates have not enough time to change.  It is okay for 
normal grain growth, as well as for large f in RNS, but it is not so for very small volume 
fractions in LSW.  Indeed, let N be the number of precipitates in  - sphere of influence. One 
can show that the ratio of the characteristic time for disappearance of one precipitate in this 
sphere to the characteristic time of change of average size  tends to zero with 0f . It 
means, that in LSW-limit the N is changing so fast, that this fast blinking of N does not allow 
us to consider the contribution of reservoir to normalized energy as constant. Thus, in LSW 
limit the decoupling in normalized space fails.  So, LSW and RNS are for ripening 
phenomena in different volume fractions.  However, almost all experiments are usually made 
in RNS-region.  

8. Our estimation of critical volume fraction is very approximate, due to very strong 
(sixth power) dependence of this value on the ratio of L/  (see Eq. (5)).  For example, if we 
don’t neglect the factor 3 under the square root in Eq. (5) and take into account the difference 
between cubed average and averaged cube (see Eq. (29)), the critical volume fraction 
becomes significantly less - just about 0.1%.  On the other hand, one can take as cross-over 
case L3 (external boundaries of neighboring cells) instead of L2 , and it will return us 
to about 1%.  Yet, these possible changes of  the large volume criterion don’t change the 
presented picture. 

9. We have formulated our analysis for the original LSW case of ripening of almost 
pure B precipitates in a dilute solution of B in A.  So, in our equations D was just the 

diffusivity of B impurity in A, and 
kT

C eq 





2 . These two parameters, D and , can be 

found from Eqs. (31, 32) by simultaneous measuring the rate parameters for mean size and 
average super-saturation:  

 D
t

rr
k growth 14.2

3
0

3




  , 23 09.4
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1


D

t
kcomp 


 . (33) 

So, if the eqC  is known, the diffusivity D and surface tension   can be determined.   
10. In case of ripening of precipitates of intermediate phase in concentrated alloys, all 

main equations of presented model remain valid, but expressions for diffusivity and for  , 
should be, of course, changed. In the case of LSW ripening, it was made by Calderon et al 

[20] and Ardell et al [21]. Value of  should be calculated as   




gCC eqeq 



2   with g   

being the second derivative of Gibbs free energy per atom of the parent phase. As for 
rescaling of diffusivity, we should be cautious.  According to Ardell et al [22], we should treat 
D as an interdiffusion coefficient, determined by the Darken’s expression [23] with 
Manning’s corrections [24]. Yet, Darken’s approach is based on the account of Kirkendall 
shift of lattice planes.  Mechanism of Kirkendall shift is the dislocation climbing in the 
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processes of vacancy generation and annihilation – building up of extra-planes in one part of 
the diffusion couple (containing the slower diffusing species) and dismantling of planes in 
another part (containing the faster species).  In many cases [20,21], experiments are made in 
well homogenized alloys with inter-particle spacing not less than the mean free path of 
vacancy migration between sources and sinks. As was shown, for example in Ref. [25],  in 
this case Darken’s analysis is not applicable because the redistribution of species in 
mesoscopic regions between vacancy sources and sinks is governed not by Darken’s 
interdiffusivity BAABD DCDCD  , but instead by effective diffusivity 

BBAA

BA
eff DCDC

DD
D


  (known, for example, from diffusion theory of ionic crystals). The 

main difference is that Darken’s diffusivity in concentrated alloys is determined mainly by the 
fast species, but the effective diffusivity is determined by the slow species.  

11. Alternative developments of LSW approach can be found in [26-28] 
 
Conclusion  
Ripening cannot be described by one general theory for all possible volume fractions, f. 

LSW theory is correct for negligibly small f, and it can be modified in terms of perturbation 
theory for cases of still very small f.  Yet, there exists a critical value of volume fraction 
(about 1 %), above which LSW is not to be used even with perturbation, because the 
screening length is reduced to inter-particle distance.  For these “large” volume fractions 
(usually occurs in most experiments) each precipitate can exchange atoms only with nearest 
neighbors, and the ripening process becomes similar to grain growth but with the mobility 
inversely proportional to size due to diffusive nature of exchange.  For the large volume 
fraction cases, we propose a new approach, based on translating the basic growth/shrinkage 
equations into “velocity = mobility x driving force” and a transition from real space to 
normalized size space.  In the normalized space, the surface energy related driving force for 
an arbitrary particle can be decoupled from the rest or the reservoir. Thus, the concept of 
thermodynamics in normalized space enables us to take into account a cooperative character 
of ripening with only the nearest-neighbor diffusive interactions.  The predicted PSD looks 
reasonable and fits experimental data (for “large” volume fractions) much better than LSW.  
The RNS’s PSD has no cut-off.  It is broader and less peaked, and it has a  small positive 
skewness (instead of a large negative one in LSW). 
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Appendix A. Dependence of composition noise on volume fraction 
 
We shall analyze the noise effect for the case of very small volume fractions, where we 

can use the coarsened space scale.   We divide the space around a “central” particle into a 
series of concentric spheres of radii l and thickness dl << l, but containing enough 
precipitates (physically small volumes).  The number of precipitates inside each spherical 
slice is dlln 24 .  Each (k-th) precipitate gives the following contribution to the deviation of 
super-saturation around the central particle:  
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Here we treat the ][kr  (and corresponding ][1 kC ) as random values, uncorrelated with 
the central particle size, also not between each other.  The dispersion of contribution from one 
particle is then equal to  
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(Here we used the relations 0, 1 


 Cr  .) 

Since the contributions of all precipitates into composition around the central particle 
are regarded as independent, the total dispersion will be just the sum of dispersions of 
individual contributions:  
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with s  being the standard deviation of size distribution (0.215 in LSW). 
In terms of volume fractions it translates to the following “noise level” 

   sfC 


 4/121
 .  (A4) 

Eqs. (A3-A4) demonstrate why a mean-field approximation should work well in the 
limiting case  f  0.The inputs of large amount of precipitates from  -  sphere almost 
compensate each other, allowing the use of the concept of average concentration. Note that 
one cannot just neglect the contributions from distant precipitates: in Eq. (A3) the input of 

integral 


L

(from distant precipitates – small individual inputs, but a lot) is much larger than 

that of integral 
L

0

(from nearest neighbors) , if )0(  fL . 

The noise level even for f = 1 %, should be 6.8 %, which is significant enough, 
especially in the vicinity of critical size.  Moreover, the feedback will play its role – the noise 
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will broaden the PSD, and this broadening in turn will make the noise even larger.  
Noise analysis above was based on using the coarsened space scale with “elementary 

volume” 1/n much less than the volume of  - sphere. Certainly, such continuous description 
fails when the screening length   becomes of the order of or less than 2L, i.e., the average 
distance between the neighboring precipitates (if 6)2/1( ff .  For volume fractions 
about or higher than this threshold, we should consider L- sphere instead of  - sphere: each 
precipitate in this case is diffusively interacting only with its nearest neighbors. Then the 
noise level will be 13/12/1 10,  ZsfZ  (more than 30% at f=10%). 

 
Appendix B. “Uphill diffusion” of sizes during ripening 

 
To have some transparent physical picture of correlations, we shall analyze the 

following very simplified model of ripening of a precipitate with its nearest neighbors for an 
understanding of the kinetic process.  Let the precipitates form the simple cubic lattice in 
space with a lattice parameter of 2L, each precipitate being characterized by indexes (i, j, k) 
along axes X, Y, Z and size (radius) ],,[ kjir .  For our case of “large” f the average super-
saturation ],,[ kji around each precipitate is determined only by 6 nearest neighbors and can 
be taken as  
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Then the growth/shrinkage equation for (i, j, k) precipitate can be written as:  
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 (B2) 
Note, that the expressions in the brackets, in case of small differences between radii, can 

be interpreted as the second derivatives of curvature 1/r over x, y and z in finite differences, 
and the expression in large brackets – as Laplacian of curvature in finite differences.  
Multiplying both sides of Eq. (B2) by 2]),,[/(1 kjir , one obtains the finite-difference 
analogue of diffusion equation, but for inverse radii instead of concentration, and with 
negative effective diffusivity instead of positive one:  
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Equation (B3) is formally similar to uphill diffusion and it means that if some 
precipitate is growing, its neighbor will be most probably shrinking, making the local super-
saturation larger (accelerating the growth of the “central” precipitate).  Vice versa, a shrinking 
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precipitate will, most probably, have the growing neighbors, making local super-saturation 
smaller than the mean-field value.  Certainly, we cannot use Eq. (B3) for quantitative 
analysis, since finite differences can be treated as derivatives only for smooth r(x, y, z) 
dependence. Yet, qualitatively it is clear that the mean-field approach in real space fails for 
“large” volume fractions, with a few percents treated as “large”.  
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Анотація. А.М. Гусак, К.Н. Ту. Ще раз про Освальдівське дозрівання. В той час 

як ЛСВ теорія оствальдівського дозрівання припускає дуже малу об’ємну частку фази, 
що виділяється, більшість експериментів проведені в умовах об’ємних часток 
принаймні в кілька відсотків. Ми називаємо об’ємну частку «великою», якщо довжина 
дифузійного екранування  не перевищує середньої відстані між частинками (f більше за 
десь один відсоток). У цьому випадку шум концентрацій та ближні дифузійні взаємодії 
роблять підхід ЛСВ не валідним.  Аби обійти вказану проблему, ми спочатку 
переформульовуємо основне рівняння росту чи зменшення в ЛСВ теорії у вигляді 
«швидкість = рухливості, помноженій на рушійну силу». Далі ми застосовуємо підхід 
«нормалізованого простору», розвинутий нещодавно для росту зерен, до коалесценції. 
При цьому ми беремо рухливість обернено пропорційною розміру системи.  
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Ключові слова: огрубіння, дифузія, осаджування, розподіл за розмірами, 
середньо-польовий аналіз. 

 
Аннотация. А.М. Гусак, К.Н. Ту. Еще раз об Освальдовском созревании. В то 

время как ЛСВ теория оствальдовського созревания предполагает очень малую 
объемную долю выделившейся фазы, большинство экспериментов проведены в 
условиях объемных долей по крайней мере в несколько процентов. Мы называем 
объемную долю «большой», если длина диффузионного экранирования не превышает 
среднего расстояния между частицами (f больше где-то, чем один процент). В этом 
случае шум концентраций и ближние диффузионные взаимодействия делают подход 
ЛСВ НЕ валидным. Чтобы обойти указанную проблему, мы сначала переформулируем 
основное уравнение роста или уменьшения в ЛСВ теории в виде «скорость = 
подвижности, умноженной на движущую силу». Далее мы применяем подход 
«нормализованного пространства», развитый недавно для роста зерен, до 
коалесценции. При этом мы берем подвижность обратно пропорциональной размеру 
системы. 

Ключевые слова: огрубение, диффузия, осаждение, распределение по размерам, 
средне-полевой анализ. 
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