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“ZERO STABILITY” OF THE TWO-PHASE SYSTEMS AND RANDOM
WALK IN THE COMPOSITION SPACE.

The present paper considers possibilities of instability and random walk along the
conode within two-phase region of composition space for binary or ternary alloy. Some
simple models of such random walk are suggested.
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I. Introduction

In this paper we are not presenting any new final results. Instead, we are trying to
formulate some new problems.

To make things clear, let us start with “gedanken experiment” (so beloved by Einstein
and his followers). Imagine diffusion couple consisting of two-phase alloy with composition
40% Sn+60%Pb (left) and another two-phase alloy 60%Sn+40%Pb (right). What will happen
with coarsened concentration profile after long annealing of such couple at temperature lower
than eutectic one for Sn-Pb solder (183°C). Correct answer, according to classical
thermodynamics, is “nothing will happen” [1, 2]. Indeed, both of two starting two-phase
alloys are the mixtures (with different proportions) of the same two phases in equilibrium
between them. It means that chemical potential of any component is the same in the grains of
both phases:

ug = g g =g (D

Thus, there is no gradient of chemical potentials (zero driving force) between starting
members of diffusion couple. So, there will be no fluxes and no redistribution except effects
related to capillary effects including coarsening.

Yet, this logic has one fundamental drawback — it does not take stochastic factor
(fluctuations) into account. Fluctuations of fluxes and corresponding fluctuations of
concentrations are inevitable in any real system due to two main reasons.

(1) First reason of flux fluctuations is a so-called thermal noise (at atomic level) — it
means local non-zero fluxes of all components even at equilibrium due to random nature of
atomic migration. Typical spatial scale of such fluctuations in solid state is within few
nanometers. In the stable phases (for example, stable solid solutions) the probability of
fluctuation (as known from standard thermodynamics of fluctuations) is proportional to

atg
exp (—N % (C— {C}jz), (2)
(where N is a number of atoms in the region of fluctuation) so that mean squared
concentration deviation
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In a two-phase region, formally speaking, Gibbs free energy per atom is a linear
combination of its values for two phases in equilibrium (if one neglects the energy of
interphase interfaces):

g =p%g%+ pPgf withc = p*Cc* + pPch,ac = apP - (cf - c®). 4)
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Physically it means fixed equilibrium with respect to change of concentration or
phase volume fraction (of course, under global constraint of matter conservation) —
absence of response to any change of phase fractions. For correct account of compositional
fluctuations in this case one should take into account the input of interfaces.

(2) Second reason of flux fluctuations (much less studied) is related to stochastic
nature of structural defects which can be treated as the inevitable fluctuations of structure -
dislocation density, grain sizes, interfaces curvatures. (2.1) First, such fluctuations lead to
fluctuations of effective diffusivities (combinations of bulk diffusivity, grain-boundary and
dislocation diffusivity). (2.2) Second, climbing of dislocations leads to complicated spatial
and time-dependent distribution of drifts. (2.3) Third, gradients of curvatures between
neighboring two-phase cells lead to additional local fluxes generated by capillary forces. All
these fluctuations of the second type may lead to non-zero random fluxes with typical spatial
scale up to microns

As a simple example of the second type flux fluctuations, one may consider coarsening:
Indeed, imagine some very fine-dispersed two-phase alloy (for example, eutectic alloy with
submicron lamellar structure). Let us choose, say, 5 micron as a size of two-phase cell.
Initially, any such cell has a lot of particles of both phases. After long enough coarsening
many such cells will contain only alpha- or only beta-phases. It means that coarsening leads to
mutual transfer (actually, exchange) of phases between cells.

Detailed study of all possibilities leading to flux fluctuations, is a special interesting
problem which will be discussed elsewhere. Here we will just postulate some level of noise —
dispersion of random fluxes between neighboring two-phase cells. Most probably, at least the
noise of second type has some “memory” — substantial time correlations, since it is related to
the motion of mesoscopic objects (grain boundaries, interfaces, dislocations...). In this paper
we limit ourselves to the noise without memory.

The main peculiarity of noise in the two-phase mixture is that spatial redistribution of
phases, with preservation of local equilibrium between phases, does not cause any “back-
force”. Thus, random redistributions of phase fractions between neighboring two-phase cells
create gradients of mean concentrations but not the gradients of chemical potentials. So,
behavior of any two-phase cell in the composition space should be like random walk without
any “wind”. Hence, as a result of such random walk, system will have some, changing in
time, distribution of volume fractions, f(pz), satisfying two constraints:

Normalization condition -
1
I, flpp)dpg =1, (6)

B
Iy pef (pe)dpp =< pg >= 7. (7)

The width of such distribution surely depends on the chosen size of two-phase cells.
The larger are the cells - the more narrow is the distribution.

Natural question is - will this distribution, under continued noise and fixed size of two-
phase cells, tend to some steady-state function. If so, what will be this steady-state
distribution in the phase fractions space.

To answer these questions, we start from a simplified model example (Section II), and
then try to formulate the problem for the case of interdiffusion in the two-phase regions of the
ternary system. (Section III).

and matter conservation condition



Cepis «®Dizuxo-MaTeMaTH4Hi Haykm», 2015

I1. Model of random walk of the binary two-phase system along the conode

Consider 3D system consisting of N*N*N cubic two-phase cells. Let i be an index of
some fixed cell, and in is an index of one of its neighbors. Let fluctuations lead to random
exchange between these cells:

pynew(i)=p,(i)—Ap,(i —in),p new(i)=p,(i)+ Ap, (i —in) (8)
Pg new(in) = Pg (in) — Apg (i = in), pynew(in) =p.(in) — Apg (i = in), 9)
Ap (in = i) = ﬂp',g[i — irn). (10)

Evidently, the volume fractions cannot be negative neither be larger than 1. So, the
atomic fraction of some phase transferring from one cell to another, should be small if the
existing atomic fraction is small. To provide this property, in our algorithm, after randomly
choosing the cell and its neighbor, we first randomly determine in what direction the phase
beta will be transferred. If, according to this random choice, beta phase should be transferred
from i to in, that is, if Apg (i = in) = 0, then we randomly find the magnitude of transfer as

Apg(i — in) = pg(i) - p, (in) - dp0 - random == py(i)- {1 — g (L'n])- dp0 - random. (11)

In our model example, so far, we treated the factor dp0 as constant.
At Figure 1 a,b,c we present the steady-state distributions which correspond to three
different values of dp0 (0.1, 0.2 and 0.3)
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Fig.1. Steady-state distributions of compositions under various amplitude of random walk
step a — dp0=0.01, b — dp0=0.02, ¢ — dp0=0.03.
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As one may see at Fig.la,b,c, the distribution tends to some steady-state shape,
depending on the magnitude of dp0.

III. Stochastization of the diffusion path in the two-phase region of the ternary
systems

Consider the initial single-phase non-equilibrium ternary alloy (diffusion couple)
consisting of two regions of volumes V;, V; with concentrations (Cf,C3),(CF,CT).

After long annealing, “at the end of the day”, the full homogenization will be reached.
In the final state the homogeneous alloy is formed with uniform composition:

C? = W,CE+V CRY/(V, + V), i =1,2 (12)

The situation becomes more complicated with two-phase alloys (Fig. 2).

Consider, the points C*, C* are in the two-phase region of concentrations’ triangle. In
the final state the average concentration C, = (Cy, C,) is determined by the equalities (12),
but, in a general case, alloy in its final state must not be a homogeneous one. For example, it
may consist of of two regions 1 and 2, which are in equilibrium, the average concentrations of
which being on one and the same conode with the point of average state and the volume
fractions are bound with correlations:

p(F)=(V,p(1)+V,p(2))/ (V, +V;) (13)
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Fig.2. Scheme of diffusion path evolution in concentration triangle for the single-phase
diffusion couple.

Fig. 3. Schematic isothermal section of ternary phase diagram with two-phase region.

Apparently, in the final state the stratification is possible into arbitrary quantity of
regions on one and the same conode, with the normalizing condition maintained (12).

All terminal states are thermodynamically equivalent, they correspond to the identical
average all volume concentrations and in this sense they are equal. The main difference from
the one-phase region is laid in this indefiniteness. Naturally we should expect that the
indefiniteness of the final balanced state would influence the specific solutions of diffusion
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equations in the two-phase region, describing the system relaxation to the equilibrium. As
demonstrated in [1, 3], if we use the effective interdiffusion matrix for the description of
interdiffusion in two- phase regions, then we can use well-known equations but with an
important constraint — zero determinant of interdiffusivity matrix:

a5 8 e ac,
= (ZeuDa (14)
D303 = Dy Dy5

Degeneracy of effective diffusivity matrix leads to non-trivial behavior of diffusion path
[4-11]. We suggest to add the noise to these equations:

ac; 2 2 3¢ . : .
== T (—Ekle”{ >, T White Noise ofL—FEux:] (15)
Dy3D31 = D13 D5

It 1s convenient to make experiments for a different stochastic model with white noise

replaced by noise with step-wise probability distribution % V3 - (2 -random — 1).
7

ac; @ 5 ac, A4 =

S 2 (¥R, Dy 2E—2LV3 - (2 random — 1)) (16)
Dy2D34 = D44 Dy

Here the factor +/3 provides the unit dispersion of the random function

V3 - (2-random— 1) (< (2 -random —1)* == _f_llx:f[x]dx = _]"_:le:%rix = ?] The
random variable random clearly depends on time ¢, and has a uniform distribution on [0,1].
Zero stability along each conode should influence the solutions of equations (16). An analysis
of such solutions will be made elsewhere. In our future research we intend to enhance our
stochastic model, taking into account conodes and concentrations’ triangle.

Fig.4. Possibility of stratification. In the two-phase region.

Conclusion

Equalizing of chemical potentials for each component in the two-phase system is not a
last step of evolution. In general case, it should be followed by the random walk of
“physically small” two-phase cells along conode within the composition space. This random
effect may be not only the last stage of interdiffusion but, as well, may influence the diffusion
path evolution during interdiffusion in the ternary or multicomponent system.
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Anomauia. A. I'ycak, I. Jlewquncoxui, M. /lanineeécokuii, B. Knouau. Hynvoea
cmiikicms 06opaznux cucmem i 6UNAOKO6I ONYKAHHA Yy HPOCMOPI KOHUEHMpPAauiil.
Poszenanymi  moxcnueocmi  necmabinbHocmi ma 8UNAOKOBUX OJYKAHb B83008JC KOHOOU
8cepeOuHi 080(gasHux oobaacmell Npocmopy KOHYyeHmpayit 0ns OIHAPHUX [ NOMPIUHUX
cucmem. 3anponoHosami 0esKi npocmi Mooeii 6Ka3aH020 BUNAOKOB020 ONYKAHHL.

KimrouoBi caoBa: mudysiia, d¢uykryamnii, aBodasHuil craB, KOHOJA, BHUIAIKOBI
OnyKaHHs
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H.O. Mukurenko, A.1O. KiB, [I. ®ykc
ABTOMATH3ALISI METOIY KOPEJISIIIMHOI CEJEKIII MIEPOBCKITIB

3anpononosano nioxio, AKuU 00360J8€ ABMOMAMU3YEAMU BI00Ip NEPOBCKIMHUX
cnonyk ABQO;, axi ne matromv HeoOXionux enacmueocmeti. Cnouamxy — 30iUCHIOEMbCS
npoyedypa U3HAYEHHs KOPENAYIUHUX 3ANeHCHOCIeEN «8AACTNUBICMb — CKAAO CNOAVKU». ¥ yiti
pobomi  00CNiOHCYBANUCH  CNOAYKU 3  BUCOKUM  piBHeM  I0HHOI npogionocmi  (O).
Obeosoproromebcs  ocobausocmi  8i0OMUX  O0eCKpunmopie 6 onmumizayii napamempis
neposckimie ABQO;. B pospaxynkax kopenayiunux 3anexcHocmeli Mu  GUKOPUCTIANU
decKkpunmop, AKUuti Micmums 6 co0i cniggionowenHs ionHux padiycie R4 /Rp ma nomenyianise
ionizayii V4/Vp ona kamionie A i B. Kopensayiuni 3anexcHocmi Migxc 0ecKpunmopom i
BEIUYUHOIO O AHANIZY8ANU 3A OONOMO2010 CHeyianbHOi KoMn'tomepHoi npozpamu, axa 0yna
PpO3pobiena 0 cenekyii neposcKimis, wo 3abe3neyyoms 8ionogioHi Koeiyicumu Kopensayii,
moomo 00CmMamHvb0O BUCOKI 3HAYEHHSL IOHHOI NPOBIOHOCMII.

KuarouoBi cioBa: mnepoBcKkiTH, 10HHA MPOBIIHICTh, JAECKPUITOp, KOpEJsLiiiHa
3QJIC)KHICTh, PETPECIHHUN aHAIII3, KOMIT FOTEPHE MOJICTIOBaHHSI.

1. Beryn

Oi3uyH1 Ta XIMIYHI BIJIACTUBOCTI, a TaKoXX (YHKIIOHAJIbHI XapaKTEPUCTUKHU
MEPOBCKITHUX MaTepialiiB JAy)Ke YYTJIMBlI J0 IX €JIeMEHTHOro ckiaxy. Tomy s
BJIOCKOHAJIEHHST 1  Mojau@ikalii  NEepoBCKITHMX  MaTepiaidiB  MOTpiOHI  TpuBaii
EKCIIEpUMEHTAJIbHI Ta TEOPETUYH1 JOCHiKeHHsA. B ocTaHHi dYac mnpu IOCHIIKEHHI
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