УДК 004.652, 539.3

А.М. Назаренко, Б.Е. Панченко, С.А. Пилипенко

СХЕМА ПАРАЛЛЕЛЬНОГО РЕШЕНИЯ ЗАДАЧИ ДИФРАКЦИИ SH-ВОЛНЫ НА СИСТЕМЕ НЕКРУГОВЫХ ЖЕСТКИХ ВСТАВОК В БЕСКОНЕЧНОЙ УПРУГОЙ СРЕДЕ

Предложен параллельный алгоритм численного решения динамической задачи теории упругости о взаимодействии гармонической SH-волны с системой тонких жестких вставок некруговой формы в бесконечной упругой среде. Краевая задача сведена к системе сингулярных интегральных уравнений, которые реализованы численно с использованием высокоточных схем. Приведены результаты расчета максимальных напряжений в окрестности вставок в зависимости от частоты колебаний и периода решетки отражателей.

Ключевые слова: краевая задача, волна сдвига, сингулярные интегральные уравнения, параллельные вычисления, система тонких жестких вставок некруговой формы.

Введение

При исследовании напряженно-деформированного состояния тел, которые содержат разные неоднородности, в рамках плоской или трехмерной динамической задачи эффективно работает метод интегральных уравнений. Так, этим методом в [1] изучается среда с системой радиальных тонких жестких вставок. В [2] рассматривается дифракция упругих волн в полупространстве с жесткой вставкой. Асимптотический подход к решению задач дифракции упругих волн на тонких включениях разного типа предложен в [3, 4]. В данной работе развивается подход [2] на случай взаимодействия SH-волны с системой жестких криволинейных вставок.

Проблема концентрации динамических напряжений вблизи различного рода препятствий [5] представляет значительный интерес при проектировании современных конструкций, работающих в условиях динамических нагрузок. Динамические задачи теории упругости в случае криволинейных разрезов для условий антиплоской и плоской деформации были рассмотрены в [6]. Вычисления динамических характеристик проводились здесь на основании асимптотического анализа интегральных представлений для производных от перемещений. Неизвестные плотности получены из решения системы сингулярных интегральных уравнений (СИУ).

В [7] указанный подход был развит в серии задач о дифракции волн продольного сдвига и плоской деформации на системах отверстий или инородных включений, ограниченных замкнутыми кривыми некруговой формы.

Постановка задачи

Рассмотрим упругое изотропное пространство, ослабленное системой туннельных вдоль оси x_3 криволинейных жестких вставок $L_j(j=\overline{1,K})$ (рис.1), где L_j – простая разомкнутая дуга Ляпунова с началом в точке a_j и концом в точке b_j . При этом предполагаем, что $\bigcap L_i = 0$ – система вставок не имеет общих точек).

Считаем, что на берегах вставок перемещения при переходе через $L = \bigcup L_j$ непрерывны, а напряжения терпят разрыв. На вставке заданы смещения в виде константы:

$$W^{\pm} = const.$$

Или в более удобном виде:

$$\left[\frac{dW}{ds_0}\right]^{\pm} = 0 \tag{1}$$

Здесь верхний знак соответствует левому берегу вставки при движении от его начала к концу.

Для совокупности жестких вставок характерно то, что главный вектор усилий, возникающих на берегах *L*, равен нулю [2]. В дальнейшем эту закономерность выберем в качестве дополнительного условия.

Пусть из бесконечности излучается монохроматическая волна сдвига U_0 , нормаль к фронту которой составляет угол ψ_0 с осью x_1 :

$$U_{0} = \tau e^{-i\gamma(x_{1}\cos\psi_{0}+x_{2}\sin\psi_{0})},$$

$$\tau = const,$$

$$\gamma = \frac{\omega}{c},$$

$$c = \sqrt{\frac{\mu}{\rho}}$$
(2)

Здесь ω – частота колебаний, *с* – скорость распространения волны сдвига, μ – модуль сдвига, ρ – плотность среды, зависимость от времени выражается множителем $e^{-i\omega x}$.

В результате взаимодействия падающей U_0 волны с системой вставок возникает рассеянная волна перемещений U. Тогда суммарная амплитуда перемещений этой волны удовлетворяют волновому уравнению:

$$\Delta W + \gamma^2 W = 0,$$

$$\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2}, \quad W = U + U_0$$
(3)

Ненулевые компоненты тензора напряжений σ_{31}, σ_{32} представляют собой касательные напряжений в плоскости поперечного сечения цилиндров. Они связаны с перемещением формулами:

$$\sigma_{31} = \mu \frac{\partial W}{\partial x_1}, \ \sigma_{32} = \mu \frac{\partial W}{\partial x_2}, \ \sigma_{31} - i\sigma_{32} = 2\mu \frac{\partial W}{\partial z}, \ z = x_1 + ix_2$$

Касательное напряжение σ_n , действующее на L в точке $\zeta = \xi + i\eta \in L$ со стороны положительной нормали, равно:

$$\sigma_n = \sigma_{31} \sin \varphi - \sigma_{32} \cos \varphi = \operatorname{Im} \left\{ e^{i\varphi} \left(\sigma_{31} - i \sigma_{32} \right) \right\},\tag{4}$$

где φ – угол между положительной касательной к *L* в точке ζ и осью x_1 .

Метод решения

Для механики разрушения определяющее значение имеет асимптотическое распределение напряжений в окрестности вершин дефекта [2]. Запишем интегральное представление амплитуды рассеянной волны в виде:

$$W(x_1, x_2) = -\frac{1}{4i} \int_L p(s) H_0^{(1)}(\gamma r) ds + U_0, \quad p(s) = \left[\frac{\partial W}{\partial n}\right]$$
(5)

Здесь $\left[\frac{\partial W}{\partial n}\right]$ – скачок производной по нормали амплитуды рассеянной волны на L,

 $H_0^{(1)}(x)$ функция Ханкеля первого рода, *n*-го порядка.

Функция $W(x_1, x_2)$ удовлетворяет уравнению Гельмгольца (3), условиям излучения на бесконечности [8] и обеспечивает непрерывность перемещения и скачек напряжения $\sigma_n = \mu \frac{\partial W}{\partial n}$ на *L*.

Из равенства нулю главного вектора сил, действующих на контуре L, вытекает условие, которому должна удовлетворять неизвестная функция p(s):

$$\int_{L} p(s)ds = 0.$$
(6)

Подставляя в граничное условие (1) предельные значения производных функций Ханкеля при $z \to \zeta_0 \in L$ [8] получаем интегральное уравнение:

$$\int_{L} [g(\zeta_{0},\zeta) + G(\zeta_{0},\zeta)] p(s) ds = N(\zeta_{0}) ,$$

$$g(\zeta_{0},\zeta) = \frac{1}{2\pi} \operatorname{Re} \left\{ \frac{e^{i\varphi_{0}}}{\zeta - \zeta_{0}} \right\}, \quad G(\zeta_{0},\zeta) = \frac{\gamma}{4i} (H_{1}(\gamma_{0}) - \frac{2}{i\pi\gamma_{2}r_{0}}) \cos(\varphi_{0} - \alpha_{0}), \quad (7)$$

 $N(\zeta_0) = \pi \gamma(e^{-i\gamma\eta_0}) \sin \varphi_0, \ \zeta_0 - \zeta = r_0 e^{i\alpha_0}, \ \varphi_0 = \varphi(\zeta_0), \ \zeta = \xi + i\eta, \ \zeta_0 = \xi_0 + i\eta_0 \in L.$ Представим каждый контур L_i из совокупности L в параметрической форме:

$$\zeta = \zeta(\beta), \ \zeta_0 = \zeta(\beta_0), \ -1 \le \beta, \ \beta_0 \le 1, \ \zeta(-1) = a_i, \ \zeta(+1) = b_i$$

Из теории сингулярных интегральных уравнений [8] известно, что для обеспечения единственности решения интегрального уравнения в классе H^* необходимо и достаточно наложение одного дополнительного условия на неизвестную функцию. Таким дополнительным условием в рассматриваемой задаче является условие равенства нулю главного вектора сил, возникающих на берегах вставки (6). Система уравнений (7) с учетом (6) полностью определяет решение поставленной краевой задачи.

Умножим уравнение (7) на s'_0 и положим $p(s) = \frac{p_0(\beta)}{s'(\beta)}$. Получим параметрическую форму интегрального уравнения (7):

$$\frac{1}{2\pi}\int_{-1}^{1}\frac{p_{0}(\beta)}{\beta-\beta_{0}}+\frac{\gamma}{4i}\int_{-1}^{1}\left\{\operatorname{Re}\left(\zeta_{0}^{\prime}\frac{\left|\zeta_{0}-\zeta\right|}{\zeta_{0}-\zeta}\right)H_{1}^{(1)}\left(\gamma\left|\zeta_{0}-\zeta\right|\right)+\frac{2}{i\pi\gamma\left(\beta-\beta_{0}\right)}\right\}p_{0}(\beta)d\beta=\pi\gamma e^{-i\gamma\eta_{0}}\eta_{0}^{\prime}$$
(8)

Дискретизация задачи

Сингулярное интегральное уравнение (7) принадлежит к типу уравнений, подробно изученных в работе [8]. Численная реализация проводилась методом механических квадратур.

Представим неизвестную плотность $p(\beta)$ интегрального уравнения (7) как совокупность функций $\Omega_j(\beta^j)$, определенных на контурах L_j , $j = \overline{1, K}$ из следующего соотношения:

$$p_0(\beta) = \frac{\Omega(\beta)}{\sqrt{1-\beta^2}}, \ \beta = \cos \theta.$$

Уравнение, соответствующее одному из контуров L_j , удовлетворяется в узлах Чебышева второго рода $\theta_m = \frac{\pi m}{n_j}$ $(m = \overline{1, n_j - 1})$ и сводится к системе алгебраических уравнений относительно значений функции $\Omega_j(\beta)$ в узлах Чебышева первого рода $\theta_k = \frac{2k-1}{n_j} \pi$ $(k = \overline{1, n_j})$, где n_j – число точек разбиения контура L_j .

Для интеграла типа Коши используем квадратурную формулу:

$$\int_{-1}^{1} \frac{\Omega_j(\beta)}{\sqrt{1-\beta^2}(\beta-\beta_m)} d\beta \approx \frac{\pi}{n_j} \sum_{k=1}^{n_j} \frac{\Omega_j(\beta_k)}{\beta_k-\beta_m}, \ \beta_m = \cos\theta_m, \ \beta_k = \cos\theta_k.$$

К интегралу, содержащему регулярное ядро $D(\beta_0, \beta)$ и имеющему корневую особенность, применяем квадратурную формулу Гаусса:

$$\int_{-1}^{1} \frac{\Omega_j(\beta)}{\sqrt{1-\beta^2}} D(\beta_m,\beta) d\beta \approx \frac{\pi}{n_j} \sum_{k=1}^{n_j} D(\beta_m,\beta_k) \Omega_j(\beta_k) \, d\beta$$

Система линейных алгебраических уравнений относительно функций $\Omega_j, j = \overline{1, K}$ приобретает вид:

$$\sum_{k=1}^{n_j} B_{mk}^j \Omega_j(\beta_k) = T_m^j, \quad \sum_{k=1}^{n_j} \Omega_j(\beta_k) = 0,$$

$$B_{mk} = \frac{\pi}{N} \left\{ \frac{\gamma_2}{4i} \operatorname{Re} \left(\zeta'_m \frac{|\zeta_m - \zeta_k|}{\zeta_m - \zeta_k} \right) H_1^{(1)}(\gamma_2 |\zeta_m - \zeta_k|) \right\},$$

$$T_m = \pi \gamma_2 e^{-i\gamma \eta_m} \eta'_m.$$
(9)

Таким образом, при численной реализации СИУ (8), (6) задача сводится к решению системы линейных алгебраических уравнений (9) с

$$N = n_1 + n_2 + \ldots + n_k$$

неизвестными.

Схема вычислений

В работе проведено численное исследование описанной задачи. С целью проверки сходимости построенного алгоритма рассмотрен случай нормального падения волны сдвига на систему, состоящую из параболических вставок, расположенных в упругом пространстве на одинаковом расстоянии одна от другой и симметрично ориентированных вдоль оси x_1 (рис. 2). Однако число вставок справа и слева от центральной не является обязательно равным ($L_{-\tau} \neq L_{\kappa}$).

Параллельно-конвейерная схема вычислений [10] построена аналогично [7, 9]. Тут также вычисления имеют следующие этапы: синтез массивов исходных данных, синтез матрицы СЛАУ, решение СЛАУ методом Гаусса, синтез массивов итоговых решений. Первый, второй и четвертый этапы макроконвейера не требуют пересылок данных, что означает независимость вычислений. На третьем этапе для решения СЛАУ существует оптимальное число процессов, определяемое спецификой матрицы. Это означает, что

для 1, 2 и 4 этапов алгоритма оптимальным является число процессов, соответствующее числу коэффициентов СЛАУ.

В данной методике решения краевой задачи основной операцией является определение текущего расстояния между точками коллокации и интегрирования, заданного на множестве значений параметрических координат на линиях жестких вставок. Указанное расстояние является аргументом фундаментального решения, т.е. функции Ханкеля. И поскольку комбинации самих функций Ханкеля и коэффициентов при них являются элементами матрицы СЛАУ, указанная процедура может быть базовой при разработке приложения. Как показано в [7], алгоритм хорошо масштабируется по вычислительным узлам.

Вычислительный процесс решения СЛАУ распараллеливается согласно [7]. Параллельное вычисление итоговых искомых характеристик осуществляется путем подстановки массивов значений неизвестных функций $\Omega_k(\beta_p)$ в интегральные представления решений аналогично процедурам формирования матрицы СЛАУ. Для решения СЛАУ эффективнее использовать построчное распараллеливание, когда пересылки и вычисления находятся в балансе.

В качестве примера рассматривалось бесконечное пространство, содержащее систему тонких жестких вставок параболического сечения:

$$\xi = p_1 \beta, \, \eta = h + p \xi^2, \, -1 \le \beta \le 1.$$

Очевидно, что размер матрицы пропорционален числу вставок. Благодаря распараллеливанию точность получаемых результатов соответствует 10⁻¹⁰.

Численные исследования

Асимптотическое распределение напряжения δ_n в окрестности концов L определяется сингулярной частью:

$$\frac{1}{\pi i} \int_{L} \frac{p(s)}{\zeta - z} ds = \begin{cases} 1\\ i \end{cases} \frac{\Omega(\mp 1) e^{-i\frac{\varphi}{2}}}{\sqrt{2s'(\pm 1)}\sqrt{z - c}} + O(\rho_0^0),$$
$$z - c = \rho_0 e^{i\theta_c}, \ s'(\mp 1) = \frac{ds}{d\beta} \bigg|_{\beta = \mp 1}.$$

Здесь верхний знак берется при $c = a_j$, нижний – при $c = b_j$; φ_c – угол между положительной касательной к *L* в точке *c* и осью x_1 .

$$\sigma_{n}^{a_{j}} = \frac{\mu}{2\sqrt{2\rho_{0}s'(+1)}} \operatorname{Re}\left\{\Omega(\mp 1)e^{-i\omega t}\right\} \cos\psi_{a_{j}} + O(\rho_{0}^{0}),$$

$$\sigma_{n}^{b_{j}} = \frac{\mu}{2\sqrt{2\rho_{0}s'(-1)}} \operatorname{Re}\left\{\Omega(\mp 1)e^{-i\omega t}\right\} \sin\psi_{b_{j}} + O(\rho_{0}^{0}), \quad \psi_{c} = \frac{\theta_{c} - \varphi_{c}}{2}.$$

Значения функции $\Omega(\beta)$ на концах отрезка:

$$\Omega(-1) = \frac{1}{N} \sum_{k=1}^{N} (-1)^{k+N} \Omega_k tg \frac{\theta_k}{2},$$

$$\Omega(+1) = \frac{1}{N} \sum_{k=1}^{N} (-1)^{k+1} \Omega_k ctg \frac{\theta_k}{2}$$
(10)

Видно, что максимальные напряжения являются контактными $(\theta_{a_i} = \varphi_{a_i}, \theta_{b_i} = \varphi_{b_i} - \pi)$:

$$\sigma_n(\mp 1) = \frac{\mu}{2\sqrt{2\rho_0 s'(\mp 1)}} \operatorname{Re}\left\{\Omega(\mp 1)e^{-i\omega t}\right\}$$

В работе проводились вычисления безразмерной величины, характеризующей контактные напряжения:

$$\delta = \frac{\left|\Omega(\mp 1)\right|}{2\tau\gamma\sqrt{ls'(\mp 1)}}\,.\tag{11}$$

Результаты тестовых исследований для максимальных напряжений δ вблизи одиночной жесткой вставки (K = 1) в бесконечной упругой среде приведены на рис. 3. Тут кривые 1 и 2 соответствуют p = -0,5 и p = 0,5. Кривые полностью совпадают с результатами работы [9].

Также проведены вычисления при K = 3 и $d = 10^7$ (рис.2), что определяет значительное удаление вставок одна от другой. Результаты для каждой удаленной вставки с точностью до 10^{-6} совпадают между собой, а также совпадают с результатами, полученными для одиночной жесткой вставки. Это говорит о достоверности исследуемого алгоритма.

Численное исследование показало, что базовая часть алгоритма, по которой определяются плотности СИУ, а также компоненты напряженно-деформированного состояния в области по формулам типа (5) имеют высокую скорость сходимости. Точность вычислений напряжений и перемещений до 10⁻¹⁰ достигается уже при 100 точках коллокации каждого контура. Как и в [7], сходимость алгоритма также не

Однако интерполяционный процесс (10, зависит от числа вставок. 11) для напряжений существенно замедляет асимптотических контактных сходимость алгоритма. Тут для достижения точности 10⁻¹⁰ необходимо уже около 500 точек распараллеленный коллокации, что существенно замедляет не алгоритм. Обусловленность матриц при этом проверялась на основании алгоритма, описанного в [12].

Исследована система вставок (K = 3, d = 2) при p = 0,5 и p = -0,5 для крайнего (рис. 4a) и центрального (рис. 4б) отражателя. Кривые 1 и 2 соответственно показывают зависимость величины δ от волнового числа. А для той же системы вставок при k = 3, $\gamma = 1,7$ (p = 0,5 и p = -0,5) на рис.5а,6 кривые 1 и 2 показывают зависимость величины δ от расстояния между отражателями.

Данные результаты были получены с помощью приложения, написанного на C++ и поддерживаемого современными кластерными системами. Как и в [7, 11], кривизна кривой существенно искажает волновые поля напряжений в окрестности дефекта. Полное совпадение результатов с [9] гарантируют достоверность полученных новых выводов.

Выводы

В задаче дифракции SH-волны на системе жестких вставок параллельные алгоритмы позволяют значительно сократить время вычислений и более детально проанализировать характеристики волнового поля. Сочетание метода интегральных уравнений, который снижает на единицу размерность задачи, и значительная экономия времени вычислений за счет распараллеливания вычислительных процедур приводит к существенному увеличению эффективности предложенного алгоритма.

Литература

- 1. Попов В.Г. Взаимодействие плоских упругих волн с системами радиальных дефектов. Механика твердого тела. 1999.-№4.-С.118-129.
- 2. Назаренко А.М., Фильштинский Л.А. Взаимодействие волн напряжения с жесткими вставками в полупространстве (плоская деформация). Изв. АН СССР. Механика твердого тела. 1985. №4. С.95-102.
- Емец В.Ф., Кит Г.С., Кунец Я.И. Асимптотическое поведение решения задачи рассеяния упругой волны тонкостенным инородным включением. – Изв. ВАН. Механика твердого тела. – 1999. - №3. – C.55-64.
- 4. Лавров Н.А. Уравнения динамики тонкого жесткого включения в упругой среде. Преп. Институт проблем машиноведения. РАН. 1993. №91. С.1-43.
- 5. Селезов И.Т., Кривонос Ю.Г., Яковлев В.В. Рассеяние волн локальными неоднородностями в сплошных средах. К.: Наук. думка, 1985. 136 с.
- 6. Фильштинский Л.А. Дифракция упругих волн на трещинах, отверстиях, включениях в изотропной среде. Изв. АН СССР. Механика твердого тела. 1991. №4. С. 119 -127.
- 7. Панченко Б.Е., Назаренко А.М., Каркасный анализ предметной области: Стационарные динамические задачи теории упругости для изотропных сред с произвольными неоднородностями, Кибернетика и системный анализ, 2013, №1. С. 172–187.
- 8. Панасюк В.В., Саврук М.П., Назарчук З.Т. Метод сингулярных интегральных уравнений в двумерных задачах дифракции. К: Наук. думка, 1984. 344 с.
- Назаренко А.М., Фильштинский Л.А. Решение второй краевой задачи динамической теории упругости для трещины продольного сдвига. – Динамика и прочность машин. Респ. межвед. научно-техн. сб., 1982, вып.35, С. 32-35.
- Вертгейм И.И., Терпугов В.Н. Параллельные технологии вычислений в механике сплошных сред и МДТТ.: Учебное пособие. – Пермь, 2007. – 84 с.
- 11. Назаренко А.М., Панченко Б.Е, Пилипенко С.А. Схема параллельного решения задачи дифракции SH-волн на системе некруговых трещин в бесконечной упругой среде // Проблемы программирования. 2014. №2–3.– С. 82-87.
- 12. Химич А.М., Полянко В.В. Эффективность двумерных блочно-циклических параллельных алгоритмов. Проблемы программирования 2008. №3. С. 145-149.

Стаття надійшла _25_._02_._2014___ Прийнято до друку _04_._03_._2014____

Анотація

О.М. Назаренко, Б.Є. Панченко, С.О. Пилипенко

Схема паралельних обчислень у задачі дифракції SH хвиль на системі некругових жорстких включень в нескінченному пружному середовищі

Запропонований паралельний алгоритм чисельного розв'язання динамічної задачі теорії пружності про взаємодію гармонійної SH-хвилі з системою тонких жорстких некругових включень в нескінченному пружному середовищі. Крайова задача зводиться до системи сингулярних інтегральних рівнянь, які реалізуються чисельно з використанням високоточних схем. Наведені результати розрахунків максимальних напружень на околах кінців залежно від частоти коливань і період решітки відбивача, наведені.

Ключові слова: крайова задача, хвиля зсуву, сингулярні інтегральні рівняння, паралельні обчислення, система тонких жорстких вставок некругової форми.

Summary

A.M. Nazarenko. B.E. Panchenko, S.A. Pilipenko Scheme of parallel computing of the problem of diffraction of SH waves on a system of non-circular stiff inclusions in an infinite elastic medium

A parallel algorithm of a numerical solution of a stationary dynamic problem of the elasticity theory on the interaction of harmonic SH-waves with a system of thin stiff non-circular inclusions in an infinite elastic medium, is offered. The boundary value problem is reduced to a system of singular integral equations that are realized numerically with the use of high-precision schemes. The results of calculations of maximum contact stresses along the boundaries of the inclusions depending on the oscillation frequency and the period of the reflector grid, are given.

Key words: *boundary-value problem, shear wave, singular integral equations, parallel computings, system of thin non-circular stiff inclusions*