

УДК 629.4.016.1:681.52:629

ПРИЛЕПСКИЙ Ю.В., к.т.н., доцент; АКИМОВА Ю.Н. Донецкий институт железнодорожного транспорта

МОДЕЛИРОВАНИЕ ПРОЦЕССОВ В ЭЛЕМЕНТАХ ТРАНСМИССИИ ТРАНСПОРТНЫХ МАШИН И МЕХАНИЗМОВ

Разработана модель передачи и трансформации энергосиловых потоков в механических приводах машин и механизмов с различными типами передач, позволяющая определять геометрические параметры элементов привода. Исследованиями подтверждена адекватность модели для ременной передачи гибкой связью

Ключевые слова: привод механический, передача ременная, загрязнение поверхности, скольжение, буксование

Постановка проблемы

Устройства трансформации энергосилового потока — неотъемлемая составная часть трансмиссии транспортных машин.

Наибольшее распространение в качестве преобразователей параметров энергосилового потока имеют механические конструкции с гибкой связью (ременная и цепная) и редукторы (цилиндрические, конические, червячные, гипоидные).

Каждый из этих типов конструкций обладает комплексом свойств, которые определяют сферу их использования. Внешние условия, предъявляемые к трансформаторам, конкретизируют геометрические параметры, определяют ступенчатость, наличие определённого типа ступеней.

На стадии проектирования трансформатора требуется вариантность схем конструкции с возможностью сравнения показателей и выбора необходимого варианта, который наилучшим образом соответствует поставленным требованиям.

При всем существующем разнообразии конструкций их целесообразно разделить на две группы:

- универсальные, которые используются в сфере машиностроения;
- специальные, которые разработаны и используются исключительно в транспортных системах.

Если конструкции первой группы при необходимости заменяют, то вторая группа подлежит усовершенствованию и модернизации. Кроме этого, в рамках требований научной организации труда возникают предложения по усовершенствованию устройств, использующих конструкции с целью улучшения их показателей. Все это приводит к существенному изменению конструкций, что обязательно требует проведения дополнительных подетальных расчетов.

Цель работы

В рамках данной работы разрабатывалась программа, позволяющая оперативно рассчитать параметры энерго-силового трансформатора, геометрические размеры его деталей в зависимости от требуемых выходных значений параметров и характеристик.

При создании программы учтены следующие требования:

– расчет должен быть максимально автоматизирован с корректировкой только исходных данных (внешних характеристик трансформатора, его кинематической схемы);

- база данных для обеспечения взаимозаменяемости деталей трансформатора должна содержать стандартные параметры, которые выбираются программой автоматически в процессе расчета;
- работа с программой должна быть максимально упрощена и не требовать специальной подготовки пользователя в области программирования;
- полученные результаты должны быть легко читаемыми, обладать возможностью переноса в текстовые редакторы за счет формирования связей или вручную блоками.

Поставленные требования наилучшим образом обеспечивает табличный процессор «*Excel*», в среде которого и создавалась программа по расчету привода.

Основная часть

Расчетная модель состоит из двух отдельных частей: из расчета передач трансформатора и расчета опорных элементов и соединений [1, 2, 3]. В первую очередь рассчитываются передачи, а затем на основе полученных результатов рассчитываются опорные элементы.

На рис. 1 представлена структурная схема расчета параметров передач. Как следует из приведенной схемы, программа расчета фактически делится на отдельные подпрограммы по расчету конкретных типов передач:

- от одной до трех ступеней передач энергосилового потока посредством зацепления (цилиндрического, конического или червячного), расположенных друг за другом в соответствии с выбранной кинематической схемой;
- передачи энергосилового потока посредством гибкой связи (ременной или цепной), которая находится перед зубчатыми передачами по кинематической схеме;
- передачи энергосилового потока посредством гибкой связи (ременной или цепной), которая находится после зубчатых передач по кинематической схеме.

Для удобства визуального восприятия информации и ее вывода на печать все подпрограммы расположены на отдельных листах процессора «Excel» (см.рис. 2).

Исходные данные вводятся в программу двумя способами: вручную в самом начале расчетов и в автоматическом режиме в ходе расчета на основании полученных результатов или поставленных условий.

Лист 1 программы включает в себя исходные параметры для расчетов, которые вводятся в начале работы с программой (рис. 2).

Вручную вводятся внешние параметры трансформатора: мощность на выходе и скорость вращения выходного вала. Кроме этого вводятся параметры кинематической схемы: типы передач и их компоновка в схеме.

Листы 1a, 1б, 1в, 1г и 1д содержат массивы данных с нормативными и стандартными параметрами общетехнического характера или присущими конкретным типам передач. Эти параметры включаются в расчеты за счет адресных или условных (по определенным параметрам) ссылок (см. рис. 3).

Энергосиловые параметры трансформатора рассчитываются [1, 2] в рамках подпрограммы, которая представлена на листе 2 (рис. 4) по следующей методике.

Крутящий момент на выходном валу трансформатора определяется по формуле:

$$T_{BblX} = \frac{N_{BblX}}{2 \cdot \pi \cdot \mathbf{n}_{RblX}}, \tag{1}$$

где N_{BMX} – мощность на выходе трансформатора, Вт;

 n_{BbIX} – частота вращения выходного вала, с⁻¹.

Нормативные коэффициенты полезного действия назначаются в зависимости от характера передачи на данной ступени, наличия подшипников, наличия и типа муфт в трансформаторе. Это осуществляется по условному выбору. Так, например, формульная строка ячейки D5 назначения коэффициента полезного действия первой ступени зубчатой передачи имеет вид:

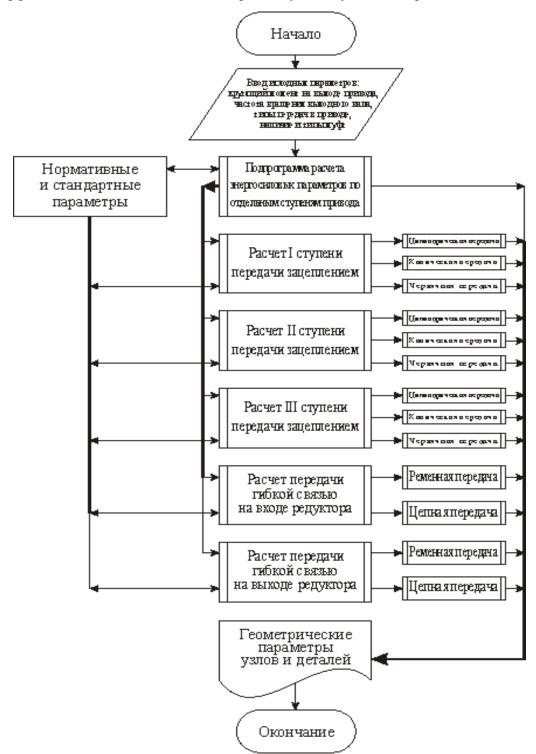


Рис. 1. Структурная схема расчета параметров энергосилового трансформатора

=ECЛИ(ИЛИ(Лист1!\$D\$22=1;Лист1!\$D\$22=2;Лист1!\$D\$22=3);0,98;1)*ECЛИ(ИЛИ(Лист1!\$D\$22=4;Лист1!\$D\$22=5);0,96;1)*ECЛИ(Лист1!\$D\$22=6;0,73;1)*ECЛИ(Лист1!\$D\$22=7;0,9;1)

По аналогичному принципу определяются другие значения коэффициентов полезного действия.

Общее значение коэффициента полезного действия трансформатора находят по формуле:

$$\eta_{OBIII} = \prod_{j=1}^{n} \eta_{j} , \qquad (2)$$

d	Α	В	C	D	E	F	G	Н	1
4		Основные параметры для расчета							
				Принятые	Рекомендуем.				
				значения	значения				
5	Nº n/n	Наименование параметра	Едизм	параметров	параметров	Примечания			
6	1	Мощность привода на выходе	Вт	2500					
7	2	Скорость вращения на выходном валу привода	об/с	0,03					
		Тип редуктора:цилиндрический-1,конический- 2,червячный-3,коническо-цилиндрический-							
18	3	2, червячный-3, коническо-ципинорический- 4, планетарный-5, иной-6	Nº	6					
19	3	• •		5					
20	4	Общее количество ступеней редуцирования (1,2,,	шт	3					
21	-	Количество ступеней в редукторе (1,2,,n)	- WI	3	Передат. Отнош				
411		Тип зацепления на 1-й ступени:			передат. Отнош				
		ципиндр.прямозубая-1, ципиндр.косозубая-2,							
		ципинор.прямозуовя-т, ципинор.косозуовя-2, ципинр.шевронная-3, конич.прямозубая-4,							
		конич.косозубая-5, червяч.Архимедова-6,							
22	5	червяч.глобоидная-7	Nº	5	2				
-	- 0	-	14=	J					
		Тип зацепления на 2-й ступени:							
		цилиндр.прямозубая-1, цилиндр.косозубая-2,							
		цилинр.шевронная-3, конич.прямозубая-4, конич.косозубая-5, червяч.Архимедова-6,							
		конич.косозуовя-э, червяч.архимеоова-э, червяч.глобоидная-7, при отсутств. ступени-							
23	6	0	Nº	2	2,8				
23		-	14=		2,0				
		Тип зацепления на 3-й ступени:							
		ципиндр.прямозубая-1, ципиндр.косозубая-2,							
		цилинр.шевронная-3, конич.прямозубая-4, конич.косозубая-5, червяч.Архимедова-6,							
		червяч.глобоидная-7 <u>, при отсутств. ступени-</u>							
24	7	0	Nº	6	32				
•		∑ Тип источника движения: электродвигатель-1,	11-		32				
25	8	ДВС-2	Nº	1					
-	-	Тип муфты на выходном валу: фланцевая-1, с		•					
		промежуточным подвижным звеном-2,							
		шарнирная-3, зубчатая-4, МУВП-5, при							
28	9	отсутствии-0	Nº	0					
		Тип муфты на входном валу: фланцевая-1, с							
		промежуточным подвижным звеном-2,							
		шарнирная-3, зубчатая-4, МУВП-5, при							
27	10	отсутствии-0	Nº	0					
		Наличие на выходном валу: ременной передачи-							
28	11	1, цепной передачи-2, <u>при отсутствии-0</u>	Nº	2	1,6				
		Наличие на входном валу: ременной передачи-1,							
29	12	цепной передачи-2, при отсутствии-0	Nº	1	1,8				
30	13	Расчет оптимальной скорости вращения электродвиг	об/с	15,48					
31	14	То же самое	об/мин	928,8					
2	15	Минимально допустимая мощность двигателя	Вт	4244					
33	16	Принятие ближайшей скорости вращения	об/мин						
34	17	То же самое	об/с	15,48					
35	18	Принятие мощности двигателя	Вт	4244					
8	19	Тип двигателя							-
7	20	Количество смен работы за сутки		1					-
	← → →	Лист 1 Лист 1а Лист 16 Лист 1в	Лист 1г	- Ductin	Лист2 / Лист	2 / Dur 25	Лист	26 / Di	ист4 / Ј

Рис.2. Общий вид табличного процессора «Excel» с листами программы по расчету параметров энергосилового потока

где ηј – коэффициент полезного действия каждого из элементов трансформатора.

Передаточные отношения по ступеням механического трансформатора переносятся с листа исходных данных и приводятся по максимальному приближению к ближайшему стандартному значению из массива листа 1а.

Так, для первой ступени зубчатой передачи зацеплением значение передаточного отношения в ячейке D19 (см. рис. 3, б) попадает между двумя стандартными параметрами, меньший из которых определяется в ячейке F19 по формульной строке:

 $=\Pi POCMOTP(\$D\$19; \Pi uct1a!\$C\$4:\$C\$33),$

а больший – в ячейке G19:

=ПРОСМОТР(\$F\$19;Лист1a!\$C\$4:\$C\$33;Лист1a!\$C\$5:\$C\$34).

В ячейке D20 из двух полученных значений выбирается то, что ближе к определенному в ячейке D19:

	Α	В	C	D	E	F (3 ├	A	В	С	D	E	F	G	Н		J	K	L
1	МАССИ						1 2		ы даннь	по зубчи	атым пер	РЕДАЧАМ							
							3		ния коэфф	ициента k	нв при Ш	од и тверд	ости пове	рхности					
2			редаточнь	е отнош	ения		4	Схема	Тверд.	0,2	0,4	0,6	8,0	1	1,2	1,4	1,6		
3	1-й ряд	2-й ряд	Общее				5		350	1,07	1,15	1,25	1,36						
4			1				7	Сдвиг	0	1,03	1,04	1,06	1,09	1,11	1,15	1,19	1,23		
5	1,25	1,12	1,12				8		350 0	1,04	1,09	1,14	1,21	1,29	1,36	1,4	1,5 1,08		
6	1,6	1,4	1,25				10		350	1,01	1,02	1,025	1,05	1.09	1,15	1,17	1,08		
7	2	1,8	1,4				11												
8	3.15	2.24					13												
9	4	-,-	- 1 -				14		евое расс	тояние а	, MM								
10	5	3,55	- / -				15		40	50	63	71	80	90	100	112	125	140	160
11	6.3						17				03	- / 1	00	30	100	112	120	140	100
							18												
12	8	-,-	-,-				19	3. Станда		ичина мод их передач									
13		7,1	-,				21	0	1	1,125	1,25	1,375	1,5	1,75	2	2,25	2,5	2,75	3
14		9	3,55				22		б) червяч 1	ных переді 1,6	2	2,5	3,15	4	5	8	10	12,5	16
15			4					4. Crene				2,5	3,15	-	5	•	10	12,5	- 10
16			4,5				25 26					9	8	7	6	6			
17			5					Цилиндр	Прямозуб	Менее35	0	4	8	12	18				
18			5,6				28		Прямозуб		0	3	5	10 25	15 36				
19			6,3				30	Цилиндр	Косозуб Косозуб		0	8	12	20	30				
20			7,1					Коническ			0	3	4	7	10				
21			8			зах	32	Коническ	Прямозус	ьолеезо	0	2,5	3		9				
22			-				34												
			9			зах		5. Коэфф	оициент К	На									
23			10			зах	36	Степ.точ	н.	При скоро	сти, м/с								
24			11,5			зах	38			0	5	10	15	20	25				
25			12,5		4	зах	39			1,002	1,007	1,005	1,01	1,015	1,02				
26			16		2	зах	41			1,02	1,03	1,07	1,085	1,12	1,12				
27			20		2	зах	42			1,05	1,09	1,13	1,13	1,13	1,13				
28			23		2	зах	44												
29			25		2	зах		Коэффиц Zv	иент фор			0		0.5					
30			32		1	зах	47			-0.5	-0,2	U	0,2	0,5 3,47					
31			40			зах	48						4	3,42					
32			46			3ax	49 50				4,55	4,28	3,85 3,75	3,39					
							51	25			4,2	3,9	3,66	3,39					
33		L	50	. /-	1	Зах ист3 / Лист3а / Лист	52	30		4.6	4,02	3,8	3,62	3,4		/-			- / -
4	▶ № \ Лист1 \	Лист1а / Лис	r16 / Лист1в / Л	ист1г / Лист	ц √Лист2 √Л	ист3 / Лист3а / Лист	36	4 > H/	Лист1 /	Пист 1а 🔎	Іист16 /	Лист 1в	Лист1г,	(Лист 1д	/ Лист2	Д Лист3	Д ЛистЗа	∠ Лист36	/ Лист

Рис.3. Вид листа 1a с массивами данных: a) общих для всех типов зубчатых передач; б) специфичных для зубчатых передач

=ЕСЛИ(ABS(\$D\$19-\$F\$19)<ABS(\$D\$19-\$G\$19);\$F\$19;\$G\$19).

Аналогичным образом ранее рассчитанные соотношения для всех ступеней трансформатора приводятся к стандартным значениям.

Частота вращения валов трансформатора определяется по формуле:

$$n_{j+1} = \frac{n_j}{i_j},\tag{3}$$

где n_j — частота вращения предыдущего вала со стороны вала источника энергосилового потока (мотора, двигателя) по кинематической схеме трансформатора, с⁻¹; i_j — передаточное отношение данной ступени трансформатора.

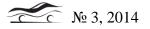
Мощность на *і-том* вале трансформатора определится:

$$N_{j} = N / \prod_{j=1}^{n} \eta_{j} , \qquad (4)$$

где η_i – коэффициент полезного действия каждого из элементов от выхода трансформатора к ј-тому валу.

Крутящие моменты на валах механического трансформатора энергосилового потока определяются по формуле:

$$T_{KP_{j}} = N_{j} / (2 \cdot \pi n_{j}), H \cdot M.$$
 (5)


После расчета энергосиловых параметров по ступеням трансформатора программой выполняются расчеты геометрических характеристик деталей, которые непосредственно реализуют кинематическую схему (зубчатые, червячные, ременные и цепные передачи).

-			C28		G	f _x					
И	A			В			С	D	E	F	G
2		Энер	ргетика	а и кинематика при	1ВОДВ						
							- 1	Значения	I_		
1	№ n/n			Наименование па				параметров	Примечани	ta .	
5	2			иомент на выходно	м валу привод	1,8	Нм	13262,			
-				упени редуктора			_				
3	3			упени редуктора			_	0,9		_	
'	4	кпд	3-й ст	упени редуктора		_		0,7	3		
3	5	кпд	муфть	ы на выходе привод	,a			1,0	0 Отсутствуе	PT	
9	е	кпд	муфть	на входе привода			- 1	1,0	0 Отсутствуе	PT .	
0	7	nem	ктора					0,9			
		-		v			_				
1	8	кид	перед	ачи гибкой связью	на входе реду	уктора	_	0,9	8		
2	9	кпд	приво,	да в целом				0,5	9		
3	10	Pac	етное	передаточное отн	ошение приво	ода		516,0	0		
Ī	- 12			ное отношение гиб			_	3.5,5	ii .		
4	11			дуктора				1,6	0	1,60	1,8
5	12			андартного ряда г	то тах. прибли	ижению		1,6	0		
		Перя	едаточ	ное отношение гиб	кой связью н	a					
в			це реду				_	1,8		1,80	2,0
7	13			андартного ряда г			_	1,8	0		
				передаточное отн	ошение редук	пора					
8	14	(общ				_	_	179,1			
9	15			ное отношение 1-й			_	2,0		2,00	2,2
0	16			андартного ряда г		ижению	_	2,0		2.80	2.4
2				ное отношение 2-й андартного ряда г		I CONTRACTOR OF THE PARTY OF TH	_	2,8		2,80	3,1
3	19			ное отношение 3-й		U.KEHURO	_	32,0		32,00	40,0
4				андартного ряда г		ижению	_	32,0		52,00	40,0
5	21			ное отношение ред				179,2			
6	22			ное отношение при		_	_				
								516,1	0		
7	23			е стандартного от			96	516,1			
7	23 24	Откг	тонени		расчетного		%				
8		Скор	онени ость в	е стандартного от	расчетного ням привода:		_[2	3 / Лист3а	/Лист3
8	24	Скор	онени ость в	е стандартного от вращения по ступен	расчетного ням привода:		_[0,0	2	3 / ЛистЗа	/Лист3
8	24	Скор	понени рость в	е стандартного от вращения по ступен Лист 1а / Лист 16	расчетного ням привода: УЛист1в ,		г / Л	0,0	2 ст 2 Лист3		/Лист3
8	24	Откг	т1 /	е стандартного от вращения по ступе: Лист 1а / Лист 16	расчетного ням привода: 5 / Лист 1в • В	,	r ∕n	0,0	2	В / Лист3а _/	Лист3
8	24	Скор	понени рость в	е стандартного от вращения по ступен Лист 1а Лист 16 С28 Скорость вращени	расчетного ням привода: Лист 1В В вя по ступеням	и привод:	r ∕∩ fx	0,0	2 ст 2 Лист3		Лист3
8	24	Откг	т1 /	е стандартного от вращения по ступе: Лист 1а / Лист 16	расчетного ням привода: Лист 1В В вя по ступеням	и привод: гибкой с	<i>f</i> _x в:	0,0	2 ст 2 Лист3		Лист3
3	24	Отки Скор	т1 / А 24	е стандартного от вращения по ступен Лист 1а Лист 16 С28 Скорость вращени	расчетного ням привода: Лист 1В В вя по ступеням	и привод: гибкой с	<i>f</i> _x в:	0,0	2 ст 2 Лист 3		Лист3
8	24	Откл Скор Лис 28 29 30 31	лонени рость в ст1 / А 24 25 26 27	е стандартного от вращения по ступен Лист 1а Лист 16 С28 Скорость вращени	расчетного ням привода: Лист 18 В вя по ступеням налу передачи	и привод: гибкой с входе р	f _x а: едуктор	0,00 ист1д Лис С С на ва) об/мин е об/с ра об/мин	D 516,00 8,60 258,00		Лист3
3	24	Отки Скор Лис 28 29 30 31 32	А 24 25 26 27 28	е стандартного от вращения по ступен Лист 1а Лист 16 С28 Скорость вращени	расчетного ням привода: Лист Ів в ня по ступеням ялу передачи б) на 2	и привод: гибкой с входе р 2-м валу р	f _x в: вязью (педуктор то ж редуктор то ж	0,0/ ист1д Лис в в в об/мин е об/с е об/с	D 516,00 8,60 258,00 4,30		/лист3
3	24	Отки Скор Лис 28 29 30 31 32 33	А 24 25 26 27 28 29	е стандартного от вращения по ступен Лист 1а Лист 16 С28 Скорость вращени	расчетного ням привода: Лист Ів в ня по ступеням ялу передачи б) на 2	и привод: гибкой с входе р 2-м валу р	f _x в: вязью (педуктор то ж редуктор то ж редуктор	0,0: истід Лис ва об/мин е об/с ра об/мин	D 516,00 8,60 258,00 4,30 92,14		Лист3
3	24	Отки Скор Лис 28 29 30 31 32 33 34	А 24 25 26 27 28 29 30	е стандартного от вращения по ступен Лист 1а Лист 16 С28 Скорость вращени	расчетного ням привода: Лист Ів в ня по ступеням налу передачи б) на 2	и привода гибкой с входе р 2-м валу р 3-м валу р	я: ва: вание по жером по жеро	0,0: ист1д Лис на на на на) об/мин е об/с ра об/мин е об/с ра об/мин е об/с	D 516,00 8,60 258,00 4,30 92,14 1,54		Лист3
3	24	Отки Скор Лис 28 29 30 31 32 33 34 35	а А 24 25 26 27 28 29 30 31	е стандартного от вращения по ступен Лист 1а Лист 16 С28 Скорость вращени	расчетного ням привода: Лист Ів в ня по ступеням налу передачи б) на 2	и привода гибкой с входе р 2-м валу р 3-м валу р	я: взязью (педуктор то ж редуктор то ж редуктор то ж	0,0: ист1д Лис в об/с ра об/мин е об/с ра об/мин е об/с ра об/мин	518,00 8,60 258,00 4,30 92,14 1,54 2,88		<u>/</u> Лист3
8	24	Отки Скор Лис 28 29 30 31 32 33 34	А 24 25 26 27 28 29 30	не стандартного от гращения по ступе: Лист 1а Лист 16 С28 Скорость вращени а) на выходном в	расчетного ням привода: Лист Ів В ня по отупеням нялу передачи б) на 2 в) на 3 г) на 4	и привод; гибкой с входе р 2-м валу р 3-м валу р	я: ва: вание и междуктор мо ж редуктор мо ж редуктор мо ж редуктор мо ж редуктор мо ж	0,0/ ист 1л Лис С В в в в в в в в в в в в в в в в в в в	D 516,00 8,60 258,00 4,30 92,14 1,54		ЛистЗ
8	24	Откот Скор Лис 28 29 30 31 32 33 34 35 36	а А 24 25 26 27 28 29 30 31	е стандартного от вращения по ступен Лист 1а Лист 16 С28 Скорость вращени	расчетного ням привода: Лист Ів В ня по отупеням нялу передачи б) на 2 в) на 3 г) на 4	и приводи гибкой с входе р 2-м валу р 3-м валу р 1-м валу р	а: вание и мание и ма	0,0: С На об/с	518.00 8.60 258,00 4.30 92.14 1.54 2.88 0.05		Лист3
8	24	Откет Скер Лис 28 29 30 31 32 33 34 35 36 37	а А 24 25 26 27 28 29 30 31	не стандартного от гращения по ступе: Лист 1а Лист 16 С28 Скорость вращени а) на выходном в	расчетного ням привода: Лист Ів В ня по отупеням нялу передачи б) на 2 в) на 3 г) на 4	и приводи гибкой с входе р 2-м валу р 3-м валу р 1-м валу р	я: в: в: в: в: в: в: в: в: в: в: в: в: в:	0,0: истіл Лис с с с об/с ра об/мин с об/с ра об/мин с об/с ра об/мин с об/с ра об/мин об/с о	D 516,00 8,60 258,00 92,14 1,54 2,88 0,05 1,80		Лист3
3	24	Откет Скер Лис 28 29 30 31 32 33 34 35 36 37 38	А 24 25 26 27 28 29 30 31 32	е стандартного от раздения по ступен Лист 1а Лист 16 С28 Скорость вращень в) на выходном в	расчетного ням привода: Лист IB	и приводи гибкой с входе р 2-м валу р 3-м валу р 1-м валу р	а: вание и мание и ма	0,0: истіл Лис с с с об/с ра об/мин с об/с ра об/мин с об/с ра об/мин с об/с ра об/мин об/с о	518.00 8.60 258,00 4.30 92.14 1.54 2.88 0.05		Лист3
3	24	Откет Скер Лис 28 29 30 31 32 33 34 35 36 37	а А 24 25 26 27 28 29 30 31	не стандартного от раждения по ступе: Лист 1а Лист 16 С28 Скорооть вращени а) на выходном в Д) на выходном и Мощность по вали	расчетного ням привода: Лист IB В ня по ступеням влу передачи б) на 2 в) на 3 г) на 4	и привод: гибкой с входе р 2-м валу р 1-м валу р 1-м валу р и гибкой с	а: ваязью (и ваязью и ваязью (и ваязы)	0,0 C C Ha a) 05/Muh e 05/0 ps 05/Muh e 05/0	D 516,00 8,60 258,00 92,14 1,54 2,88 0,05 1,80		ЛистЗ
3	24	Откет Скер Лис 28 29 30 31 32 33 34 35 36 37 38	А 24 25 26 27 28 29 30 31 32	е стандартного от раздения по ступен Лист 1а Лист 16 С28 Скорость вращень в) на выходном в	расчетного нам привода: Лист IB В ня по отупеням ня приводачи б) на 2 в) на 3 г) на 4 вапу передачи	и приводи гибкой с входе р 2-м валу р 1-м валу р и гибкой с рез	я: ванный развительный развите	0,0: C C B	D 516,00 8,60 258,00 4,30 92,14 1,54 2,88 0,05 1,80 0,03		ЛистЗ
3	24	28 29 30 31 32 33 34 35 36 37 38 39	А 24 25 26 27 28 29 30 31 32	не стандартного от раждения по ступе: Лист 1а Лист 16 С28 Скорооть вращени а) на выходном в Д) на выходном и Мощность по вали	расчетного ням привода: В ня по ступеням в на 2 в ня 3 г) ня 4 в ня привода в ня привода в ня привода в ня предвачи редукторої	и привода гибкой с входе р 2-м валу р 1-м валу р и гибкой с ре, вибкой о учети	я: ва: ваязью (педуктор то ж редуктор то ж редукто то ж редуктор то ж редуктор то ж редуктор то ж редуктор то ж	0,0: C HB HB HB B B C C C C C C C C C C C	D 516,00 8,00 258,00 4,30 92,14 1,54 2,88 0,05 1,80 0,03		Лист3
3	24	28 29 30 31 32 33 34 35 36 37 38 39 40	А 24 25 26 27 28 29 30 31 32 33 34	не стандартного от раждения по ступе: Лист 1а Лист 16 С28 Скорооть вращени а) на выходном в Д) на выходном и Мощность по вали	расчетного нам привода: Бист 18 В ня по ступеням алу передачи б) на 2 в) на 3 г) на 4 валу передачи ви привода налу передачи редукторою в) на 4	и привод; гибкой с входе р. 2-м валу р 1-м валу р 1-м валу р 1-м валу р ре; вибкой с м) о учет- м валу р	я: вазыью (педуктор мо ж редуктор мо мо ж редуктор мо	0,0: C C H3 3) 05/MuH 6 05/0 6 05/0 9 0	D 516,00 8,60 258,00 4,30 92,14 1,54 2,88 0,05 1,80 0,03		ЛистЗ
3	24	28 29 30 31 32 33 34 35 36 37 38 39 40 41	А 24 25 26 27 28 29 30 31 32 33 34 35	не стандартного от раждения по ступе: Лист 1а Лист 16 С28 Скорооть вращени а) на выходном в Д) на выходном и Мощность по вали	расчетного ням привода: Лист IB	и привода гибкой с входе р 2-м валу р 1-м валу р и гибкой с ре, вибкой о учети	а: а	0,0: C	D 516,00 8,00 258,00 4,30 92,14 1,54 2,88 0,05 1,80 0,03		<i>Лис</i> т3
3	24	28 29 30 31 32 33 34 36 37 38 39 40 41 42	А 24 25 26 27 28 29 30 31 32 33 34 35 36	не стандартного от раждения по ступе: Лист 1а Лист 16 С28 Скорооть вращени а) на выходном в Д) на выходном и Мощность по вали	расчетного ням привода: Лист IB	и приводи пибкой с входе р 2-м валу р 1-м валу р 1-м валу р 2-м валу р 2-м валу р 1-м валу р 1-м валу р	г Ли fx в: в: в: в: в: в: в: в: в: в	0,0 C Ha a) 05/Muh c 05/c	D 516,00 8,60 258,00 4,30 92,14 1,54 2,88 0,05 1,80 0,03 2500,00 2688,17 3682,43 7682,43		/Лист3
3	24	Отки Скор Лис 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	А 24 25 26 27 30 31 32 33 34 35 36 37	е стандартного от раздения по ступен / Лист 16 / Лист 16 / С28 / Скорость вращени в) на выходном в / Ду на выходном в / Мощность по вали в) на выходном в	расчетного ням привода: В ня по ступеням влу передачи б) на 2 в) на 3 г) на 4 валу передачи редукторо в) на 4 б) на 3 в) на 2 в) на 3	и приводи гибкой с входе р 2-м валу р 1-м валу р в гибкой с рег еибкой с м) с учет 1-м валу р 3-м валу р 3-м валу р	fe в: в в в в в в в в в в в в в в в в в в	0,0: С С С В ОБ/Мин В ОБ/	516,00 8,60 258,00 4,30 92,14 1,54 2,88 0,05 1,80 0,03		/ Лист3
3	24	28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	А 24 25 26 27 28 29 30 31 32 33 34 35 38 39	е стандартного от раздения по ступен / Лист 16 / Лист 16 / С28 / Скорость вращени в) на выходном в / Ду на выходном в / Мощность по вали в) на выходном в	расчетного	и приводи гибкой с входе р 2-м валу р 1-м валу р в гибкой с рег еибкой с м) с учет 1-м валу р 3-м валу р 3-м валу р	f₂ Вазавано (карамана и по	0,0 C H3 O O O O O O O O O O O O O	516,00 8,60 258,00 4,30 92,14 1,54 2,88 0,05 1,80 0,03		Лист3
3	24	28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	А 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	е стандартного от раздения по ступен / Лист 16 / Лист 16 / С28 / Скорость вращени в) на выходном в / Ду на выходном в / Мощность по вали в) на выходном в	расчетного ням привода: В ня по ступеням влу передачи б) на 2 в) на 3 г) на 4 валу передачи редукторо а) на 4 б) на 3 в) на 6 м валу передачи	и привод; гибкой с входе рм валу р гибкой с ре; вибкой с ре; -м валу р ом валу р ом валу р ом валу р ом валу р	f₂ Вазавано (карамана и по	0,0 C H3 O O O O O O O O O O O O O	D 516,00 8,00 258,00 4,30 92,14 1,54 2,88 0,05 1,80 0,03 2500,00 2688,17 3682,43 3757,58 3914,14		ЛистЗ
3	24	28 29 30 31 32 33 34 35 38 39 40 41 42 43 44 44 45	лонения организация (при при при при при при при при при при	не стандартного от сращения по ступе: Лист 1а Лист 16 С28 Скорость вращени а) на выходном в д) на выходном в Мощность по валь а) на выходном в	расчетного ням привода: Бия по ступеням влу передачи б) на 2 в) на 3 г) на 4 валу передачи вм привода од на 4 б) на 3 в) на 2 г) на входне од валу передачи по валам прив	и приводі. гибкой с входе рм валу р -м валу р гибкой с ре; вибкой с м) о учеті -м валу р	я вазыванно (и при при при при при при при при при пр	0,0 CC H3 a) 05/Mush c 05/0 c 05/	516,00 8,60 258,00 4,30 92,14 1,54 2,88 0,05 1,80 0,03 2500,00 2688,17 3682,43 3767,58 3914,14		Лист3
8	24	28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	А 24 25 26 27 28 29 30 31 32 33 34 35 38 39	не стандартного от гращения по ступен Лист 1а Лист 16 С28 Скорость вращени а) на выходном в мощность по валь а) на выходном в А) на выходном в Кругащий момент Крутащий момент	расчетного ням привода: Лист IB ня по ступеням влу передачи б) на 2 в) на 3 г) на 4 валу передачи ми привода влу передачи денения по ступеням влу передачи ми привода влу передачи денения влу передачи денения влу передачи по валам прив радукторого редукторого	и приводі. гибкой с входе рм валу р -м валу р гибкой с ре; вибкой с м) о учеті -м валу р	я: в: в: в: можность реализация по жерунтор можность реализация по жерунтор можность реализация по жерунтор реализация по жерунтор реализация по жерунтор реализация по жерунтор реализация по можность р	0,0: C	D 516,00 8,00 258,00 4,30 92,14 1,54 2,88 0,05 1,80 0,03 2500,00 2688,17 3682,43 3757,58 3914,14		<u>Лист3</u>

Рис.4. Вид верхней и нижней частей листа 2 с расчетом энергосиловых и кинематических параметров трансформатора

И ◆ ► Ы ЛИСТ1 / ЛИСТ1а / ЛИСТ1В / ЛИСТ1г / ЛИСТ1д] ЛИСТ2 / ЛИСТ3 /

52

Блок подпрограмм по расчету зубчатых передач дает возможность рассчитывать до трех ступеней передачи зацеплением цилиндрического, конического или червячного типа на любой из трех ступеней.

Расчет зубчатых колес трансформатора осуществляется по следующей методике [1, 2].

Суммарное количество циклов изменения напряжений для конкретного зубчатого колеса определяется по формуле:

$$N_{\Sigma} = 60 \, n \, t \,, \tag{6}$$

где n — частота вращения зубчатого колеса, мин⁻¹;

t – общее время работы редуктора, часов.

Общее время работы механического трансформатора энергосилового потока с зубчатым зацеплением (редуктора) рассчитывается:

$$t = k_P \cdot k_C \cdot k_{CM} \cdot \tau_{CM}, \tag{7}$$

где $k_{\scriptscriptstyle P}$ – расчетный срок непрерывной работы, лет;

 k_{C} – среднее количество рабочих суток за год, суток;

 $k_{{\it CM}}$ — количество рабочих смен в сутках, смен;

 $au_{\rm \scriptscriptstyle CM}$ — средняя продолжительность непрерывной работы за одну смену, часов.

Для ведущих и ведомых колес в зацеплении выбираем материал со схемой обработки, которая придает материалу определенный комплекс необходимых механических характеристик, например, сталь 40X. Для ведущих колес назначаем двухстадийное термическое упрочнение:

- объемная закалка с высоким отпуском для обеспечения достаточной прочности и ударной вязкости сердцевины;
- последующая поверхностная закалка с индукционного нагрева с низким отпуском для обеспечения высокой контактной прочности рабочей поверхности зубьев.

Для ведомых колес используется термическое улучшение – объемная закалка с высоким отпуском, которое обеспечивает на контактной поверхности зубьев достаточно высокую твердость.

Допускаемые контактные напряжения для зубьев колес определятся по формуле:

$$[\sigma_H] = \frac{\sigma_{H \lim b} \times K_{HL}}{[S_H]},\tag{8}$$

где $\sigma_{H \, \text{lim} b}$ – предел контактной выносливости рабочей поверхности зубьев, которая соответствует базе испытаний, МПа;

 $[S_H]$ – коэффициент безопасности (принимаем из исходных данных);

 K_{HL} — коэффициент долговечности (выбирается из массива исходных данных на основе базы испытаний и расчетного количества нагрузок).

Предел контактной выносливости материала поверхности зуба находим по формуле:

$$\sigma_{H \lim b} = 2HB + 70. \tag{9}$$

Расчетное контактное напряжение для зубчатых колес в одной ступени передачи определяется:

$$\left[\sigma_{H}\right] = 0.45 \cdot \left(\left[\sigma_{H1}\right] + \left[\sigma_{H2}\right]\right). \tag{10}$$

Допустимые напряжения изгиба определяются по формуле:

$$[\sigma_F] = \frac{\sigma_{F \text{ lim}b} \times K_{FL}}{[S_F]} \times K_{FC}, \text{ M}\Pi a, \qquad (11)$$

где $\sigma_{F \, {
m lim} b} \,$ – предел выносливости зубьев на изгиб, который отвечает базе испытаний, МПа;

 K_{FL} — коэффициент долговечности (принимается из массива исходных данных по твердости контактной поверхности зубьев);

 $[S_F]$ – коэффициент безопасности (принимается из массива исходных данных);

 K_{FC} — коэффициент, который учитывает воздействие двустороннего приложения нагрузки: при односторонней нагрузке он равняется 1, при реверсивной работе привода — 0.7...0.8.

Предел выносливости зубьев на изгиб определяется по формуле:

$$\sigma_{H \text{ lim} b} = HB + 260. \tag{12}$$

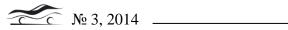
Основным геометрическим параметром проектного расчета цилиндрических закрытых зубчатых передач на контактную прочность является межосевое расстояние:

$$a_W = K_{\alpha}(U+1) \times \sqrt[3]{\frac{T_2 \times K_{H\beta}}{\left[\sigma_H\right]^2 \times U^2 \times \psi_{ba}}}, \text{MM}$$
(13)

где K_{α} — числовой коэффициент, который равняется: для прямозубых передач 49,5, для косозубых и шевронных — 43;

U – передаточное число данной ступени;

 T_2 – крутящий момент на колесе, $\mathbf{H} \cdot \mathbf{m}$;


 $K_{H\beta}$ — коэффициент неравномерности распределения нагрузки по длине зуба, принятый в зависимости от величины $\psi_{bd} = b_2/d_1$ (b_2 —ширина венца колеса, мм; d_1 — делительный диаметр шестерни, мм);

 $[\sigma_H]$ — предельно допустимое контактное напряжение в зубчатом зацеплении, МПа; $\psi_{ba} = b/a_w$ — коэффициент ширины венца (для прямозубых колес ≤ 0.25 , для косозубых колес 0.25...0,63.

Для определения wbd используется формула:

$$\psi_{bd} = \psi_{ba} \cdot (U+1)/2. \tag{14}$$

Нормальный модуль зацепления равен:

$$m_n = (0,01...0,02) \cdot a_w$$
 (15)

Он выбирается со стандартного ряда.

Угол наклона зубьев предварительный $\beta = 10^{\circ}...15^{\circ}$.

Количество зубьев шестерни:

$$Z_{1} = \frac{2 \cdot a_{W} \cdot \cos \beta}{(U+1) \cdot m_{n}}.$$
 (16)

Количество зубьев колеса:

$$Z_2 = U \cdot Z_1. \tag{17}$$

Угол наклона зубьев уточнённый:

$$\cos \beta = \frac{(Z_1 + Z_2) \cdot m_n}{2 \cdot a_w} \,. \tag{18}$$

Диаметры делительных окружностей колес:

$$d = \frac{m_n \cdot Z_1}{\cos \beta}.$$
 (19)

Диаметры вершин и впадин зубьев:

$$d_a = d + 2 \cdot m_n \,, \tag{20}$$

$$d_f = d - 2.5 \cdot m_n. \tag{21}$$

Ширина зубчатых венцов колеса и шестерни:

$$b_2 = \psi \cdot a_{\scriptscriptstyle W} \,, \tag{22}$$

$$b_1 = b_2 + 5. (23)$$

Проверочный расчет на усталость по контактным напряжениям осуществляется в следующей последовательности.

Окружная скорость в зацеплении:

$$\mathcal{G} = \frac{\pi \cdot d_1 \cdot n_1}{60 \cdot 1000} \,, \tag{24}$$

где d_{1} – делительный диаметр шестерни, мм;

 n_1 – частота вращения шестерни, мин⁻¹.

По значению линейной скорости, твердости контактной поверхности зубьев и форме зуба для цилиндрической передачи с помощью массива данных (листы с исходными данными) определяется степень точности изготовления колес.

Расчёт проверочный по контактным напряжением:

$$\sigma_H = Z_H \cdot Z_\beta \cdot Z_\xi \cdot \sqrt{\frac{2 \cdot T_2 \cdot k_H \cdot (U+1)}{d_2^2 \cdot b_2}} \subseteq [\sigma_H], \tag{25}$$

где $Z_{\scriptscriptstyle H}$ – коэффициент, учитывающий механические свойства контактирующих колес;

 $Z_{\beta} = 1,77 \cdot \cos \beta$ — безразмерный коэффициент, учитывающий форму контактирующих поверхностей зубьев;

 $Z_{\xi} = \left(1/\xi_{\alpha}\right)^{1/2}$ — безразмерный коэффициент, учитывающий суммарную длину контактных линий;

 $\xi_a = \left\lceil 1,88 - 3,2 \cdot \left(1/Z_1 + 1/Z_2 \right) \right\rceil \cdot \cos \beta$ — коэффициент торцевого перекрытия;

$$k = k_{\alpha} \cdot k_{\beta} \cdot k_{\nu}, \tag{26}$$

где k – коэффициент нагрузки;

 k_{α} — коэффициент распределения нагрузки между зубьями (принимается в зависимости от линейной скорости и точности изготовления зубчатого колеса из массивов исходных данных);

 k_{β} – коэффициент распределения нагрузки по ширине венца (принимается из массивов исходных данных в зависимости от твердости зубьев и значения ψ bd);

 k_{v} – коэффициент, который учитывает динамичность нагрузки в зацеплении.

Проверочный расчет по напряжениям изгиба осуществляли с использованием следующей формулы:

$$\sigma_F = 2 \cdot \mathbf{Y}_F \cdot \mathbf{Y}_{\xi} \cdot \mathbf{Y}_{\beta} \cdot \frac{T_2 \cdot k_F}{Z_i \cdot b_i \cdot m_n^2} \subseteq [\sigma_F], \tag{27}$$

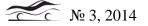
где Y_F – коэффициент, учитывающий форму зуба в зависимости от коэффициента смещения X и эквивалентного числа зубьев:

$$Z_{\nu} = \frac{Z}{\cos^3 \beta};\tag{28}$$

 Y_{ξ} — коэффициент перекрытия зубьев (для прямозубых передач $Y_{\xi}=0,9$, для косозубых $Y_{\xi}=1$);

 $Y_{\beta} = 1 - \beta/140$ — коэффициент наклона зуба;

 $k_{_{F\alpha}} = \frac{4 + (\xi_\alpha - 1) \cdot (S - 5)}{4 \cdot \xi_\alpha} - \text{коэффициент, учитывающий неравномерность распределе-}$


ния нагрузки между зубьями при изгибе;

 ξ_{α} – коэффициент торцового перекрытия;

S — степень точности передачи;

 α — коэффициент (для консольного расположения колеса α = 1, 2, для колеса, смещенного до одной из опор α = 1,15, для колеса в центре вала α = 1,10);

 $k_{\scriptscriptstyle D}$ – коэффициент динамичности нагрузки (выбирается в зависимости от степени точ-

ности передачи, твердости рабочей поверхности зубьев и линейной скорости в зубчатом зацеплении).

Расчет выполняется для того колеса зубчатого зацепления, у которого отношения $[\sigma_F]/Y_F$ минимальное.

На рис. 5 в качестве примера приведено изображение листа программы, в рамках которого осуществляется расчет второй ступени косозубой передачи зацеплением цилиндрического типа.

		E30 ▼ 🕙		f_{x}						E30 🕶 🕥		f _x			
al a	Α	В	С	D	E	- F	G		- A	8	С	D	E	F	
		Расчет II ступени (цилиндрическая передача)						31	1	b	n MM	61,00	T T		
١.				Значения				32	2						
N	le n/n	Наименование параметра 3.2.1. Расчет цилиндрической передачи	E2.1000	параметров	Примечания		_	33	3	ПРОВЕРОЧНЫЙ РАСЧЕТ ПО КОНТАКТНЫМ НА					⊢
		Твердость поверхности зубьев шестерни						34		Окружная окорость і ступени	M/C	0,99		_	\vdash
ų.		(нормализация: 200230; улучшение: 235285; пов.						35		Выбор степени точности передачи	+			_	\vdash
5		ynp.: 350400)	МПа	320,00				36		Выбор коэффициента Кнь	+	1,10		_	\vdash
5		Твердость поверхности зубьев колеса (то же) Величина коэффициента безопасности [SH]	МПа	290,00				37	7	Коэффициент торцового перекрытия &	-	1,71			_
		шестерни (нормализация,объемная закалка						38	3	Коэффициент длины контактных линий Z.		0,76			
		(1,11,2); поверхностное упрочнение (1,21,3):		1,20				39		Коэффициент формы поверхности зуба \mathbb{Z}_2		1.74			
		Величина коэффициента безопасности [SH] колеса											уоловие		П
B		(нормализация,объемная закалка (1,11,2); поверхностное упрочнение (1,21,3):		1.20				40		Проверочная величина контактного напряжения Он	МПа	440,22	выполняето		
		Допускаемое контактное напряжение [Он]	МПа	510,00				42			-				\vdash
			WILLIA	310,00				43	1	ПРОВЕРОЧНЫЙ РАСЧЕТ ПО НАПРЯЖЕНИЯМ	изгива			_	\vdash
0		Коэффициент ширины венца Vь (прямозубые: <=0.25; косозубые: 0.25_0.63)		0.40				43		THE OBER O THE PER THE THE TENTE THE	101110				-
1		Коэффициент ширины венца Уы		0.76				45		Эквивалентное число зубыев Zv1 шестерни		34			П
2		Выбор расположения (консоль, одвиг, оредина)		CIBNL				46	_	Эквивалентное число зубьев Zv2 колеса		96			
		Коэффициент К. (от велич. V/bd и твердости пов		Spi, Sti					_		_			_	\vdash
3		TV)		1,09				47	_	Коэффициент омещения инструмента Х	+			_	\vdash
4		Беличина межосевого расстояния а .« (расчет)	мм	130.55				48	_	Коэффициент формы зуба YF1 шестерни	-	3,80			-
5			MM	140.00				45	1	Коэффициент формы зуба У F2 колеса		3,61			\perp
\rightarrow		Стандартная величина межосевого расстояния а-								Коэффициент безопасности [Se] - 1,7_2	2				
6		Нормальный модуль Мн (расчет)	MM	2,10			-	50		(большие значения - для литых заготовок)	-	1,80			_
7		Стандартный модуль Мн	MM	2,25				_		К-т двухотороннего приложения нагрузки К∞с =1 пр	NI NI				
8		Угол наклона зуба (начальное:реком. 12,5град)	град.	12,50		-	-	51		односторонней и = 0,75 при реверсивной нагрузке	-	1,00			⊢
9		Z₁ при β=12,5 град		32,00				52	2	Предельное напряжение при изпибе [О»]1	Mna	322,00			
0		Z ₂		90,00				53	3	Предельное напряжение при излибе [Си]2	МПа	306,00			
1		Уточненный угол наклона зубьез В	град.	11,38				54		Величина (О»)-/У» 1		84.74			П
2		Геометрические размеры колеса:						55	_	Величина [Оп]з/Уп2		84.76			-
3		d ₂	MM	206,56					_	1 1	+			_	\vdash
4		daz	мм	211.06				56	_	Коэффициент наклона зуба У В	+	0,92			\vdash
5		dfz	мм	200.94				57	1	К-т перекрытия зубыев У г	-	1,00			_
-		bz						58	3	К-т неравномерности нагрузки между зубъями К∞о.		1,00			
7		С2 Геометрические размеры шестерни	MM	56,00			_	59	9	К-т распределения нагр. по ширине венца Кяβ		1,27			
8		ометрические размеры шестерия di	мм	73,44				60		к-т динамичности К≠v		1,10			П
-							_	61		Расчет ведется по колесу или по шестерне		по шестерне			\vdash
9		da ₁	MM	77,94		_							условие		
		М Лист 16 Лист 18 Лист 1г	ММ	67 82 ист 1д — Ли	ст2 / Ли		Лист	62	2	Определение напряжения изгиба Ся	Mna	136,93	выполнено		

Рис.5. Вид верхней и нижней частей листа 4 с расчетом второй ступени редуктора с цилиндрическим косозубым зацеплением

Разработанная по соответствующим методикам программа расчитывает параметры остальных типов передач зацеплением.

При передаче энергосилового потока гибкой связью обычно используют клиноременные и цепные передачи. Как правило, клиноременная передача, как более скоростная и менее нагруженная крутящим моментом, располагается на входе трансформатора (редуктора), а цепная — на выходе. Вместе с тем разработанная программа позволяет рассматривать разные компоновки передач гибкой связью в рамках энергосилового потока.

Исходными данными для расчета клиноременной передачи являются рассчитанные в листе 2 параметры: мощность, скорость вращения валов, крутящие моменты, предварительное значение передаточного числа.

По значению крутящего момента на ведущем вале T1 из массива данных листа 1 Γ программы выбирается сечение ремня и назначается диаметр ведущего шкива:

=ПРОСМОТР(Лист2!\$D\$53;Лист1г!\$C\$6:\$C\$10;Лист1г!\$D\$6:\$D\$10)

Диаметр ведомого шкива определяется формулой:

$$d_2 = d_1 \cdot i \cdot (1 - \varepsilon), \tag{29}$$

где i — передаточное отношение клиноременной передачи;

 ε – относительное скольжение ремня (принимается ε = 0,01).

Расчетное значение диаметра ведомого шкива приводится к стандартному значению из массива данных листа 1г:

=ПРОСМОТР(\$D\$11;Лист1г!\$A\$15:\$AH\$15;Лист1г!\$B15:AI\$15)

Фактическое передаточное отношение:

$$i = \frac{d_{P2}}{d_{P1} \cdot (1 - \varepsilon)}. (30)$$

Окружная скорость ремня:

$$\upsilon = \frac{\pi \cdot d_{P1} \cdot n_1}{1000} \,. \tag{31}$$

Предварительное межосевое расстояние:

$$a = 0.95 \cdot d_2. \tag{32}$$

Расчетная длина ремня:

$$L = 2 \cdot a + \frac{\pi}{2} \cdot (d_1 + d_{\Gamma}) + \frac{(d_{\Gamma} - d_1)^2}{4 \cdot a}.$$
 (33)

По полученному значению определяется стандартная длина ремня и уточняется величина межосевого расстояния:

$$a = \frac{2 \cdot L - \pi \cdot (d_1 + d_{\Gamma}) + \sqrt{[2 \cdot L - \pi \cdot (d_1 + d_{\Gamma})]^2 - 8 \cdot (d_{\Gamma} - d_1)^2}}{2}.$$
 (34)

Минимальное и максимальное межосевое расстояние (для снятия ремня и его натяжения):

$$a_{\min} = a - 0.01 \cdot L;$$
 (35)

$$a_{\text{max}} = a + 0,025 \cdot L$$
 (36)

Реальная длина ремня (L0) выбирается разработчиком.

Допустимая мощность на один ремень:

$$[P] = (P_0 \cdot C_\alpha \cdot C_L + \delta P) \cdot C_P, \tag{37}$$

где P_0 – выходная мощность, BT;

 C_{α} – коэффициент угла охвата;

 C_{L} – коэффициент длины;

 C_{P} – коэффициент режима работы;

 δP – производная по мощности, Вт:

$$\delta P = 0,0001 \cdot \delta T_1 \cdot n_1,\tag{38}$$

где δT_I – производная по крутящему моменту.

Расчетное количество ремней:

$$Z = \frac{P_1}{[P]}. (39)$$

Действительное количество ремней в передаче:

$$Z' = \frac{Z}{C_z},\tag{40}$$

где C_Z – коэффициент количества ремней (автоматически выбирается из массива данных листа 1г в зависимости от количества ремней):

=ПРОСМОТР(ОКРУГЛВВЕРХ(\$D\$31;0);Лист1г!\$B\$79:\$E\$79; Лист1г!\$B\$80:\$E\$80)

Сила начального натяжения одного клинового ремня:

$$S_{0,1} = \frac{780 \cdot P_1}{\upsilon \cdot C_\alpha \cdot C_P \cdot Z'} + q \cdot \upsilon^2, \tag{41}$$

где q — удельное круговое усилие.

Усилия, действующие на валы ременной передачи:

$$Q \approx 2 \cdot S_{0,1} \cdot Z' \cdot \sin \frac{\alpha_1}{2} \,. \tag{42}$$

Далее определяются геометрические параметры ободов шкивов.

Внешние диаметры шкивов:

$$d_{11} = d_1 + 2; (43)$$

$$d_{12} = d_2 + 2. (44)$$

Ширина обода шкивов:

$$M = (Z'-1)e + 2 \cdot f . \tag{45}$$

Лист с подпрограммой расчета клиноременной передачи, расположенной между электрическим двигателем и трансформатором, приведен на рис. 6.

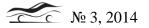
		E35 - (fx			
ra:	٨	8	c	0	E .	F	0
2		Реченная передача на входе редуктора		la .			
3	N2 n/n	Наименование параметра	E2 1911	Shavenum nepalietpos	Примечания		
		Выбор сечения и типа реиня от момента на ведущем					
4		Divise	MW2	1,38			_
5		Оредняя ширина ремня бо	MM	14,00	1		-
6		Максимальная ширина реиня бы	MIM	17,00			-
7		Высота ремня в	MM	10,50			-
8		Эквивалентный дивиетр de	MW	4,00			-
9		Минимальный дивиетр шкиза быти	MM	125,00			-
10		Дивиетр ведицего шкиза dr	MM	180,00			-
11		Дивиетр ведомого шкиза dz (расчет)	MW	319,14			
12		Дивиетр ведоиого шкиза dz (стандарт)	MM	355,00			_
13		Окружная окорость ремня V	M/C	8,75			_
14		Рекомендуемое межосевое ресстояние	MM	532,50			1
15		Расчетная длина речиня	MIM	1919,75			
16		Отандартная длина ремня L	MM	1900,00			
17		Уточненное межоревое расстояние 4	MM	522,49			_
18		āmm (ДЛЯ МОНТЕЖЕ И СНЯТИЯ)	MW	503,49			
19		āтж (ДЛЯ натгохения)	MM	569,99	-		1
20		Угол обхвата на меньшем шкизе асг	COOR	159,90	достаточен		
21		Исходная длина ремня Le	MW	2240,00			1
22		Относительная длина реиня L/Lo	227	0,85			1
22		Коэффициент длины реиня С ц	550	0,95			
24		Исходная мощность Ре	BT	2000,000			
25		Коэффициент угла обхвата С 🛦		0,92			1
26		Поправка к крутящему моменту с Т	Hhw	2,90			
27		Поправка к мощности в Р	BY	269,35			
28		Группа рабочих машин		1		ý i	1
29		К-т режима работы О р		1,00			1
30		Допускаем передаваемая мощника 1 ремень (Р]	ST	2017,35			
31		Расчетное число реккней Zp	- 14	2.02			
32		К-т числа рекіней O x		0,95			1
33		Действительное количество ремней Z		3			
34		Оила начального натяжения одного режня 8 к	н	145			
35		Усилие на валы передечи Q	H	859,16			
36		Расмеры обода шкизов:			(i) (i)		1
37		Lo	MM	14,00			
38		i h	MM	10,80		7	
39		b	MM	4,20	1.5000		1
40		•	MW	19,00	0,40		1
41		f	MM	12.50			
42		r	MIM	1,00			
43		h mm	MM	8.00			1
44		a.	rpez.	38.00			
45		b.	MIN	10.20			
45			0.77	7.1280			
47							1

Рис.6. Лист с подпрограммой расчета клиноременной передачи, которая по кинематической схеме расположена между электрическим двигателем и трансформатором

Разработанной по соответствующей методике программой рассчитывается цепная передача.

Преимуществами ременной передачи являются: простота конструкции, относительно низкая начальная стоимость, возможность использования при больших расстояниях между ведущими и ведомым валами; плавность и безударность работы; предохранение от перегрузки: при превышении определенной величины нагрузки происходит проскальзывание ремня (буксование) [4].

Однако из всех рассмотренных типов передач ременная является наиболее восприимчивой к воздействию внешних факторов, обусловленных технологическими параметрами работы [5, 6]. Среди таких факторов следует выделить возможность попадания на рабочую поверхность ремня или шкива смазочных материалов, пыли, грязи, влаги и тому подобного. Все это может существенно изменить расчётные показатели.


В данном разделе главы рассмотрено воздействие ряда факторов на тяговую способность клиноременной передачи согласно расчетной схеме, где силы (S_1 и S_2) приложенны к концам неподвижного цилиндра, который охватывается идеальным гибким и нерастяжимым телом (т.е. таким телом, на изгиб которого не тратится никакого усилия и которое не деформируется под действием растягивающей силы). Эти усилия при $S_1 > S_2$ находятся в равновесии. Тогда согласно формуле Эйлера [3, 7]:

$$S_1 = S_2 e^{f\alpha} \,, \tag{46}$$

где e – основа натурального логарифма;

f – коэффициент трения на поверхности контакта гибкого тела и цилиндра;

 α – угол охвата цилиндра гибким телом.

Так как:

$$S_1 = S_2 + F \,, \tag{47}$$

где F – сила трения, то:

$$F = S_2 \left(e^{f\alpha} - 1 \right). \tag{48}$$

Согласно формуле Эйлера можно прийти к заключению, что указанная выше зависимость может быть положена в основу расчета ременной передачи. Однако практика выявила ошибочность такого подхода.

Во-первых, ремень не является идеально гибким телом. Во-вторых, ремень является растяжимым. В-третьих, огибая вращающийся шкив, ремень подвергается действию центробежных сил, которые стремятся отделить ремень от шкива (эти силы не учтены формулой Эйлера). В-четвертых, работа ремня усложняется некоторыми явлениями, которые не получили отражения в формуле Эйлера. Например, это неминуемое скольжение ремня на шкиве, захватывание ремнем воздуха при набегании на шкив, что несколько уменьшает дугу охвата [7, 8].

Сила трения, с помощью которой ведущий шкив захватывает ремень и ведомый шкив захватывается ремнем, действительно находится в значительной зависимости от коэффициента трения и угла охвата, но не так, как это вытекает из формулы Эйлера. Попытки построить методику расчета ременной передачи на формуле Эйлера путем введения в формулу разных эмпирических исправлений удовлетворительных результатов не дают [9].

Современная методика расчета основана на результатах исследования явлений, которые имеют место при работе ременной передачи. Результаты исследований получили отражение в ряде эмпирических формул и в таблицах. Учтено, что для деталей ременных передач существуют стандартные таблицы, и поэтому расчёт ременной передачи осуществлён по справочным таблицам, которые однако не могут учесть конкретных условий эксплуатации ременных передач.

В связи с вышеизложенным в рамках данной работы проведены испытания и осуществлена попытка получения зависимости тяговой способности ременной передачи от условий эксплуатации, характерных для большинства промышленно-технологических предприятий и транспортных систем. Это условия увлажнения рабочей поверхности ремня и шкивов, загрязнения передачи пылью, загрязнения передачи смазочными материалами.

Для определения тяговой способности ременной передачи разработана установка, схема которой представлена на рис. 7.

Установка может работать как в динамическом, так и в статическом режиме. В динамическом режиме привод ременной передачи осуществляется электрическим двигателем постоянного тока (4) с возможностью изменения скорости вращения и её стабилизацией при значительном варьировании крутящего момента. Тормозной момент обеспечивается электротормозом (5), который представляет собой генератор переменного тока с изменяемым в широких пределах рабочим током. Натяжное устройство (6) механического типа с динамометрической шкалой, что позволяет создавать предварительное натяжение ремня и изменять его в значительных пределах.

Установка фиксирует частоту вращения ведущего и ведомого шкивов, что позволяет оценить эффект скольжения и определить момент начала буксования ременной передачи.

Силовые и энергетические параметры передачи оцениваются по значению электрических величин (ток и напряжение в двигателе и тормозе) и тарируются механическими приборами. В статическом режиме ведомый шкив (3) фиксируется неподвижно, а крутящий момент на веду-

щем шкиве (1) создается электродвигателем или вручную динамометрическим ключом, что позволяет с погрешностью $\pm 3\%$ оценить величину приложенного момента.

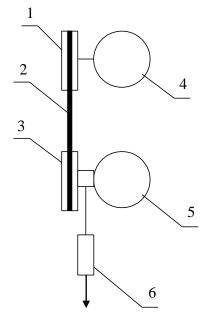


Рис.7. Схема установки для определения параметров ременной передачи:

1 — ведущий шкив; 2 — ремень; 3 — ведомый шкив; 4 — электродвигатель; 5 — электротормоз; 6 — натяжное устройство

Испытания проведены в динамическом режиме при скорости вращения ведущего шкива $20 \, \mathrm{c}^{\text{-1}} \, \mathrm{c}$ предельным значением величины крутящего момента $150 \, \mathrm{H\cdot m}$.

Натяжение ремня осуществлялось рычажным способом на ведомом шкиве с использованием динамометра с пределом измерения 100 Н.

Геометрические параметры ременной передачи приведены на рис. 8.

Из рисунка видна возможность значительного изменения межосевого расстояния, что позволило испытать клиновые ремни в широком диапазоне их длин.

Угол охвата ремнем ведущего и ведомого шкивов составлял 1800. Это позволило выровнять геометрию охвата для обоих шкивов и оценить процесс скольжения на каждом из шкивов вне зависимости от угла охвата.

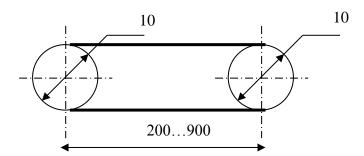


Рис. 8. Геометрические параметры ременной передачи

Для проведения исследований использовались 3 ремня сечением А с геометрическими параметрами, приведенными на рис. 9.

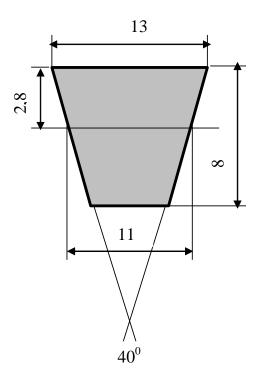


Рис. 9. Геометрические параметры клинового ремня сечением А

Длина ремня составила 1000 мм.

Эксперимент проводился в следующем порядке:

- регулятор тока генератора обеспечивал формирование тормозного момента на ведомом шкиве (3) (см. рис. 7) при начале скольжения;
- устройство рычажного типа для натяжения ремня формировало предварительное натяжение S_0 в диапазоне 0...100 H с шагом в 10 H;
- электрический двигатель постоянного тока создавал крутящий момент на ведущем валу
 (1) (рис. 7) ременной передачи;
 - после увеличения предварительного натяжения эксперимент повторялся.

С целью максимального абстрагирования от особенностей конструкции и свойств конкретного ремня и получения статистических результатов эксперимент осуществлялся на трех однотипных ремнях с максимально точным повторением условий эксперимента на каждом из них.

Для определения воздействия внешней среды (влажность, запыленность, попадание смазки на рабочую поверхность ремня и шкивов) проводили имитацию условий эксплуатации в следующем порядке:

- рабочие поверхности шкивов протирались влажной ветошью непосредственно перед посадкой ремня на шкивы; после измерения при заданной силе предварительного натяжения ведомый шкив растормаживался, свободная от шкивов рабочая поверхность ремня смачивалась дополнительно и шкивы проворачивались с таким расчетом, чтобы смоченная поверхность ремня вошла в контакт со шкивами;
- в контакт ведомого шкива и ремня засыпали порциями пыль, передавая энергосиловой поток от электродвигателя в течение 3 минут;
- на рабочие поверхности ремня и шкивов наносили промасленной ветошью смазку типа УС (солидол), как наиболее часто используемую для подшипников качения; передавая энергосиловой поток от электродвигателя в холостом режиме в течение 5 минут.

Результаты исследования приведены на рис. 10.

Согласно результатам исследований установлено, что тяговая способность ременной передачи в значительной мере зависит от появления в зоне контакта между ремнем и шкивами грязи

и смазки. Так, при предварительном натяжении ремня усилием 90 H буксование при незагрязненной поверхности начинается при тяговом усилии 112 H (рис. 10, а). Увлажнение поверхности контакта ремня и шкива (рис. 10, б) не снижает тяговую способность. Она составила 122 H. Однако при появлении в зоне контакта ремня и шкива пыли (рис 10, в) тяговая способность передачи снижается до 88 H. Значительно больший эффект снижения наблюдается при загрязнении поверхности ремня смазкой (рис. 10, г). Тяговое усилие в этом случае составляет в начале буксования лишь 54 H.

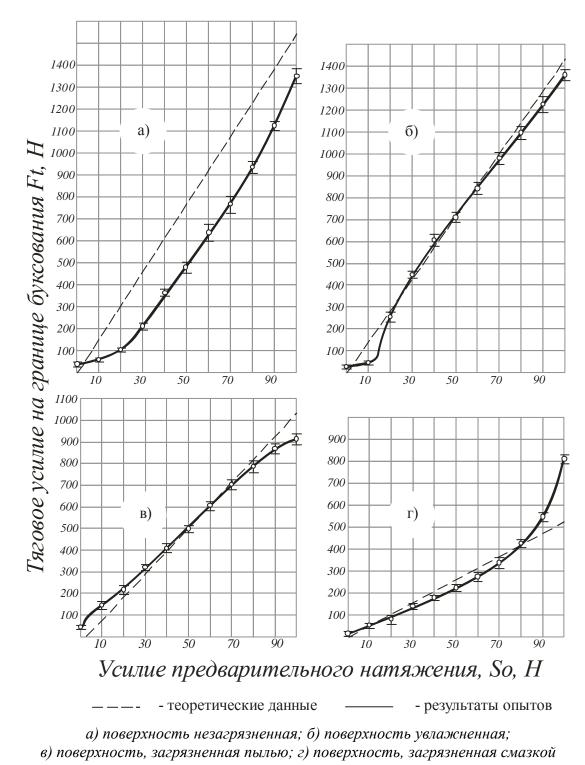


Рис.10. Зависимость тягового усилия ременной передачи на границе буксования от предварительного натяжения ремня

Выводы

Таким образом, загрязнение поверхности ремня усложняет работу клиноременной передачи, более чем вдвое уменьшает тяговую способность передачи. В результате велика вероятность возникновения устойчивого буксования и преждевременного выхода из строя ремня и передачи в целом.

Полученные на простейшей физической модели результаты не противоречат ранее известным исследованиям [1, 3, 10]. При этом раздел программы, который касается расчета ременной передачи, дает соотношение предварительного натяжения ремня к тяговой способности передачи приблизительно как 1:5,8. Установлено, что для случая загрязнения поверхности ремня смазкой, это соотношение на границе буксования составляет 1:6,1, что позволяет утверждать необходимость учета варианта загрязнения в рамках предложенной модели работы ременной передачи и привода в целом.

Список литературы

- 1. Решетов Д.Н. Детали машин: Учебник для студентов машиностроительных и механических специальностей вузов / Д.Н. Решетов. М.: Машиностроение, 1989. 496 с. ISBN 5-217-00335-9.
- 2. Детали машин и основы конструирования / Под ред. М.Н. Ерохина. М.: Колосс, 2005. 462 с. ISBN 5-9532-0044-7.
- 3. Математичне моделювання процесів експлуатації локомотивів та технологічного обладнання депо за допомогою ЕОМ: Монографія. [текст] / Черняк Ю.В., Сергієнко М.І., Горобченко О.М., Матвієнко С.А., Грицук І.В., Прилепський Ю.В. // Донецьк: ДонІЗТ. 2011. 242 с. ISBN 978-966-8707-29-2
- 4. Пронин Б.А. Клиноременные и фрикционные передачи и вариаторы / Б.А. Пронин М.: Машгиз, 1970. 126 с.
 - 5. Воробьев И.И. Ременные передачи / И.И. Воробьев. М: Машиностроение, 1979. 163 с.
- 6. Воробьев И.И. Передачи гибкой связью в приводах станков / И.И. Воробьев. М.: Машиностроение, 1971. 144 с.
- 7. Гервас К.И. К определению механических характеристик клиновых ремней при изгибе // «Каучук и резина». 1967. № 2. С. 37 69.
- 8. Галаджев Р.С. Определение осевых усилий, действующих на шкив со стороны клинового ремня // Труды НПИ. Т. 149. 1970. С. 58 60.
- 9. Галаджев Р.С. Исследование деформаций клинового ремня методом электротензометрирования // Труды НПИ. Т. 153. 1971. С. 41 44.
- 10. Пронин Б.А. Бесступенчатые клиноременные и фрикционные передачи / Б.А. Пронин, Г.А. Ревков. М.: Машиностроение, 1973. 404 с.

Прилепський Ю.В., Акімова Ю.М. Моделювання процесів в елементах трансмісії транспортних машин і механізмів

Анотація. Розроблено модель передачі й трансформації енергосилових потоків в механічних приводах машин і механізмів з різними типами передач, що дозволяє визначати геометричні параметри елементів привода. Дослідженнями підтверджена адекватність моделі для ремінної передачі гнучким зв'язком

Ключові слова: привод механічний, передача ремінна, забруднення поверхні, ковзання, буксування

Prylepskyi Yu.V., Akimova Yu. N. Modelling of processes in the transmission of transport machines and mechanisms

Abstract. A model of the transmission and transformation of energy and power flows in mechanical drives of machines and mechanisms with different types of gear, which allows to determine the geometric parameters of the drive elements. Research has confirmed the adequacy of the model for the belt drive flexible coupling

Keywords: mechanical drive, the transmission belt, surface contamination, sliding, slipping

Стаття надійшла до редакції 14.11.2014 р.