7. Чжен П. Управление отрывом потока [Текст]/ П. Чжен. – М.: Мир, 1979. – 552 с.

- Пенкхерст Р., Холдер Д. Техника эксперимента в аэродинамических трубах [Текст]/ Р. Пенхерст, Д. Холдер. М.: Изд.иностр. лит., 1955. – 320 с.
- Патент на корисну модель №54180 Україна, МПК G01P5/00. Спосіб візуалізації течії газового потоку [Текст]/ Є.М.Письменній, О.І Руденко, О.П. Ніщик, О.М. Терех, О.В. Семеняко; заявник та володар патенту на корисну модель НТУУ"КПІ" u201006121; заявл. 20.05.2010; опубл. 25.10.2010. Бюл. №20.
- 10. Baker C.I. The turbulent horseshoe vortex [Tekcr]/C.I. Baker//Iournal of Wind Engineering and Industrial Aerodynamics. 1980. – V. 6. – N 1-2. – P. 9-23).
- 11. Жукаускас А.А. Конвективный перенос в теплообменниках [Текст] / А.А. Жукаускас. М.: Наука, 1982. 472 с.

Представлено результати експериментального дослідження термічного опору мініатюрних теплових труб з металловолокневою капілярною структурою. Показано, що на величину термічного опору впливає велика кількість чинників. Одним з визначальних чинників є діаметр парового простору

Ключові слова: мініатюрна теплова труба, термічний опір, діаметр парового простору, кут нахилу

D-

р-

Представлены результаты экспериментального исследования термического сопротивления миниатюрных тепловых труб с металловолокнистой капиллярной структурой. Показано, что на величину термического сопротивления влияет большое количество факторов. Одним из определяющих факторов является диаметр парового пространства

Ключевые слова: миниатюрная тепловая труба, термическое сопротивление, диаметр парового пространства, угол наклона

The paper presents the results of an experimental study of thermal resistance of miniature heat pipes with metal-fibrous capillary structure. It is shown that the size of thermal resistance is influenced by a considerable quantity of factors. One of defining factors is a vapour space diameter

Keywords: miniature heat pipe, thermal resistance, vapour space diameter, angle of inclination

1. Введение

Впервые упоминание о миниатюрных тепловых трубах (МТТ) было в работе Коттера [1], где он предложил использовать МТТ в качестве элементов систем охлаждения для микроэлектронной техники, указав на ряд существенных отличий в процессе теплопереноса по сравнению с тепловыми трубами большого диаметра.

УДК 536.248.2

ИССЛЕДОВАНИЕ ТЕРМИЧЕСКОГО СОПРОТИВЛЕНИЯ МИНИАТЮРНЫХ ТЕПЛОВЫХ ТРУБ

В.Ю. Кравец

Кандидат технических наук, доцент* Контактный тел.: (044) 454-96-03, 066-780-99-50 E-mail: kravetz_kpi@ukr.net

Я.В. Некрашевич

Инженер 3 категории* Контактный тел.: 067-240-79-06 E-mail: niav@i.ua *Кафедра атомных электростанций и инженерной теплофизики Национальный технический университет Украины «Киевский политехнический институт» пр. Победы, 37, г. Киев, Украина, 03056

А.П. Гончарова

Инженер-конструктор компании «КиевЭнерго» пл. Франка, 5, г. Киев, Украина. 01001 Контактный тел.: 066-741-22-79

Ввиду малого поперечного размера парового канала, условия передачи тепловой энергии в МТТ затруднены, поскольку скорость движения пара может достигать значений, соизмеримых со скоростью звука в данной среде. Это приводит к значительному росту коэффициента гидравлического сопротивления и снижению передаваемого теплового потока. Поэтому МТТ передают небольшие тепловые потоки [2,3].

Принцип функционирования МТТ такой же, как и в большинстве общепринятых тепловых труб. Однако ввиду небольших размеров МТТ возникают трудности с организацией раздельного встречного движения пара и жидкости. С одной стороны необходимо обеспечить свободный выход паровой фазы из зоны испарения в зону конденсации, с другой стороны – создать условия для подачи жидкости за счет капиллярных сил из зоны конденсации в зону испарения. При этом основным в данной ситуации является обеспечение возвратного движения теплоносителя, что достигается капиллярно-пористой структурой. Существует достаточно большой спектр капиллярных структур (металловолокнистые, порошковые, сеточные, конструкционные и т.п.), которые в зависимости от пористости могут развивать капиллярный напор, достаточный для доставки жидкой фазы теплоносителя в зону испарения MTT.

Трудности, вызванные размещением капиллярной структуры (КС) внутри МТТ, привели к созданию конструкционных КС, которые изготавливаются путем вальцевания круглых труб в квадратные или треугольные[2,3,4]. Авторы [2] исследовали МТТ с треугольной формой, где теплоноситель, под действием капиллярных сил располагался по углам треугольника, позволяя обеспечить раздельное движение пара и жидкости в такой трубе. В [3] использовались МТТ квадратной формы, выполненные из меди или серебра, заправленные дистиллированной водой. Основным заданием для таких видов поперечных сечений МТТ является организация раздельного движения различных фаз теплоносителя. Это можно обеспечить в тонких, хорошо смачиваемых каналах. Чем меньше угол раскрытия такого канала, тем больше капиллярная сила, которая удерживает жидкую фазу внутри канала. Так в [4] были проведены сравнительные исследования теплопередающих характеристик МТТ треугольного и квадратного сечения. Было показано, что термическое сопротивление МТТ квадратного сечения ниже, чем у МТТ треугольного сечения. В [5] в качестве конструкционной КС предложено прокладывать в круглой трубе жгутик из тонких проволочек и тем самым создать более надежные условия для транспорта теплоносителя в зону испарения.

Для увеличения передаваемых тепловых потоков в [6,7] предложили использовать массивы МТТ, которые располагаются на одной подложке. Такие сборки позволяют передавать тепловые потоки до 45 Вт, что позволяет существенно снизить температуру охлаждаемого объекта и обеспечить его равномерное охлаждение.

Наряду с круглыми, треугольными и квадратными МТТ используют также плоские тепловые трубы с различными типами КС. Авторы [8] использовали в качестве КС канавки прямоугольной формы по всему периметру трубы. Такие плоские МТТ позволяют отводить значительно большие удельные тепловые потоки (до 10⁴ Вт/м²) по сравнению с треугольными МТТ. К недостаткам такой конструкции можно отнести то, что они практически не работают против сил тяжести.

Наиболее эффективными капиллярными структурами в настоящее время являются металловолокнистые и порошковые КС, которые позволяют улучшить теплопередающие характеристики МТТ [9,10]. Капиллярная структура, насыщенная теплоносителем позволяет решить проблему раздельного движения разных фаз теплоносителя, обладает достаточной капиллярной силой для движения жидкости по порам КС, даже при размещении трубы в пространстве против сил тяжести.

Основными показателями работы МТТ являются термическое сопротивление и максимальный тепловой поток. Сложность процессов не позволяет аналитически решить задачу моделирования работы МТТ. Большинство исследований посвящены определению значений термического сопротивления и величины максимального теплового потока для конкретных конструкций МТТ. Крайне мало публикаций изучают физические механизмы передачи теплоты внутри МТТ и влияние стесненных условий, различных типов теплоносителей.

2. Постановка задачи исследования

Настоящее исследование посвящено определению влияния на термическое сопротивление МТТ следующих факторов: диаметра парового пространства, типа теплоносителя и ориентации МТТ в пространстве. Геометрические характеристики исследованных медных МТТ представлены в таблице.

Таблица

Геометрические характеристики исследованных МТТ				
Внешний диаметр, d _{MTT} , мм	3	3	6	6
Внутренний диаметр парового	1,2	1,2	4,0	4,0
пространства,d _{вн} мм				
Общая длина, l _Σ , мм	100	300	200	230
Длина зоны испарения, l _и , мм	37	60	60	70
Длина зоны конденсации, l _к , мм	30	162	78	40
Толщина капиллярной структуры,	0,4	0,4	0,5	0,5
δ, мм				
Пористость, %	88	88	80	88
Теплоноситель	вода	вода	вода	этанол

Зона конденсации омывалась водой с фиксированными температурами t_{oxn} 20°С, 30°С, 40°С. Расход охлаждающей воды в конденсаторе устанавливался от 1,75·10⁻³кг/с до 7,5·10⁻³кг/с. Ориентация в пространстве была от +90° (по силам тяжести) до -90° (против сил тяжести).

2. Экспериментальная установка

Экспериментальные исследования теплопередающих характеристик МТТ проводились на установке, показанной на рис. 1. Миниатюрная тепловая труба, оснащенная омическим нагревателем 2 и конденсатором «труба в трубе» 3, располагалась вертикально. По всей длине МТТ были установлены медь-константановые термопары 11, по три в каждой из зон. Сигнал от термопар подавался на аналогово-цифровой преобразователь (АЦП) 9 и далее на персональный компьютер. Система опроса показаний термопар позволяла фиксировать температуру в реальном времени с частотой 1Гц. К зоне испарения МТТ тепловой поток подводился с помощью омического нагревателя, подключенного к лабораторному трансформатору 5 через стабилизатор напряжения 6. Контроль величины теплового потока осуществлялся с помощью ваттметра 4. С целью минимизации тепловых потерь в окружающую среду МТТ полностью теплоизолировалась базальтовым волокном с коэффициентом теплопроводности 0,04 Вт/м·К.

Зона конденсации омывалась водой с постоянным расходом G(кг/с), который поддерживался с помощью напорного бака 7 и контролировался ротаметром 8.

Температура воды на входе в конденсатор и на выходе из него измерялась двумя медь-константановыми термопарами 12, сигнал от которых также подавался на АЦП и далее на компьютер.

Рис. 1. Схема экспериментальной установки для исследования теплопередающих характеристик МТТ: 1 — МТТ; 2 — нагреватель зоны испарения; 3 — конденсатор типа «труба в трубе»; 4 — ваттметр; 5 — лабораторный автотрансформатор; 6 — стабилизатор напряжения; 7 — бак напорный; 8 — ротаметр; 9 — аналогово-цифровой преобразователь; 10 — персональный компьютер; 11,12 — медь-костантановые термопары (11шт)

Температура воды на входе в конденсатор во время эксперимента поддерживалась постоянной с точностью $\pm 0,5^{0}$ С. По показаниям термопар 12 ($t_{\rm Bblx}$ и $t_{\rm Bx}$) при известной удельной теплоемкости C_p и расходу воды G рассчитывался реальный передаваемый МТТ тепловой поток Q_{OTB} = C_p·G[$t_{\rm Bblx}(\tau)$ - $t_{\rm Bx}(\tau)$].

По известным значениям средних температур в зонах испарения и конденсации, а также величине реально отводимого теплового потока, в дальнейшем рассчитывались термические сопротивления:

$$R = \frac{\Delta t}{Q_{\text{OTB}}} = \frac{\overline{t_{3H}} - \overline{t_{3K}}}{Q_{\text{OTB}}} , \qquad (1)$$

где $t_{_{\rm 3H}}\,$ и $t_{_{\rm 3K}}\,$ - соответственно, средние температуры в зонах испарения и конденсации:

$$\overline{t_{3N}} = \frac{1}{3} \sum_{i=1}^{3} t_i , \qquad (2)$$

$$\overline{t_{3K}} = \frac{1}{3} \sum_{i=1}^{3} t_{j} , \qquad (3)$$

где і — номера термопар в зоне испарения, j — номера термопар в зоне конденсации.

3. Результаты исследования

Одной из важнейших характеристик МТТ является ее общее термическое сопротивление

$$R_{\rm MTT} = R_{\rm 3H}^{\rm CT} + R_{\rm 3H} + R_{\rm III} + R_{\rm 3K} + R_{\rm 3K}^{\rm CT} , \qquad (4)$$

где $R_{3\rm M}^{\rm CT}$; $R_{3\rm K}^{\rm CT}$ - термическое сопротивление стенки MTT; $R_{3\rm M}$ и $R_{3\rm K}$ - термические сопротивления теплоотдачи в зонах испарения и конденсации соответственно; $R_{\rm IIII}$ – термическое сопротивление в паровом пространстве.

Так как толщину стенки выбирают минимально допустимой, согласно заданным конструкционным характеристикам и используются, в основном, высокотеплопроводные материалы, то термическим сопротивлением стенки трубы обычно пренебрегают. Проведенный расчет показал, что по корпусу МТТ при самых неблагоприятных условиях (материал стенки – медь) передается не более 3% от общего теплового потока.

Термические сопротивления R_{3U} и R_{3K} зависят от интенсивности теплоотдачи в зонах испарения и конденсации, а также от площади этих зон. Значение коэффициента теплоотдачи в зоне испарения будет зависеть от режима теплообмена в ней. С повышением теплового потока режимы теплообмена внутри МТТ будут переходить от конвективного теплообмена к пузырьковому режиму кипения и дальше могут заходить даже в область переходного кипения, что соответствует предельным теплопередающим характеристикам таких МТТ.

Термическим сопротивлением в паровом пространстве при расчете общего термического сопротивления для тепловых труб большого размера обычно пренебрегают. Но для миниатюрных тепловых труб по всей вероятности учитывать $R_{\Pi\Pi}$ необходимо, поскольку при маленьких размерах парового пространства и возможного режима течения, при котором паром захватывается часть теплоносителя из КС и уносится в зону конденсации, перепад температур пара может быть существенным. Тогда термическое сопротивление $R_{\Pi\Pi}$ будет иметь значения, сравнимые с $R_{3И}$ и R_{3K} .

Таким образом, общее термическое сопротивление МТТ $R_{\rm MTT}$ будет определяться в основном термическими сопротивлениями $R_{\rm 3H}, R_{\rm 3K}$ и, возможно, в меньшей степени $R_{\rm \Pi\Pi}.$

В результате проведенных исследований были получены данные о термическом сопротивлении МТТ, которые позволяют судить о влиянии различных параметров на значение $R_{\rm MTT}$. Среди основных характеристик, от которых существенно зависит теплопередающая способность МТТ, можно выделить следующие: угол наклона трубы, диаметр парового пространства, геометрические характеристики зон МТТ и тип теплоносителя.

На рис. 2 показана зависимость R_{MTT} от угла наклона трубы. Характер кривых указывает на основной фактор, который существенно снижает теплопередачу трубы – противодействие сил гравитации. Как видно из рисунка величина термического сопротивления монотонно снижается с одновременным увеличением теплового потока до некоторого минимального значения, а затем начинает медленно возрастать. При горизонтальном расположении трубы ($\phi = 0^\circ$), когда действие сил гравитации отсутствует, теплопередающая способность МТТ будет определяться в основном только за счет капиллярных сил, которые в свою очередь зависят от конструкционных характеристик капиллярной структуры. Давление р_{кан}, создаваемое в капиллярной структуре, зависит от сил поверхностного натяжения о и главных радиусов кривизны мениска пор R₁ и R₂.

$$p_{\text{kall}} = \left(\frac{1}{R_1} + \frac{1}{R_2}\right) \sigma \cos\Theta \quad , \tag{5}$$

где Θ – краевой угол смачивания.

Рис. 2. Зависимость термического сопротивления МТТ длиной 100 мм и диаметром 3мм от теплового потока при различной ориентации в пространстве ($L_{
m 3\phi\phi} = 67$ мм; $G = 1,7\cdot 10^{-3}$ кг/с, t_{охл} = 20⁰C)

С отклонением расположения МТТ от горизонтального начинают действовать силы гравитации, которые либо помогают движению теплоносителя в зону испарения, либо противодействуют этому. Эти силы можно учесть с помощью выражения для гидростатического напора $\Delta_{\rm pw}$ [10]

$$\Delta p_{*} = \rho_{*} g L_{add} \sin \varphi , \qquad (6)$$

где ρ_{π} – плотность жидкости; g – ускорение свободного падения; $L_{\rho\phi\phi}$ - эффективная длина МТТ, равная $L_{\rho\phi\phi} = l_{\Sigma} - (l_{\mu} + l_{\kappa})/2$.

Как видно из выражений (5) и (6) теплопередающие характеристики МТТ сильно зависят от размеров пор КС и эффективной длины $L_{\rm эф\phi}$.

При этом влияние угла наклона будет тем ниже, чем меньше радиус пор и выше коэффициент поверхностного натяжения выбранного теплоносителя. Также чем меньше расстояние между зонами испарения и конденсации L_{эфф}.

Из рис. 2 видно, что при расположении МТТ против сил тяжести ($\phi = -90^{\circ}$) минимальное значение термического сопротивления равно $R_{min} = 2.7 K/BT$, а максимальный передаваемый тепловой поток $Q_{max} = 15BT$. Максимальный тепловой поток определялся по минимальному значению термического сопротивления. Когда же гравитационные силы помогают движению теплоносителя в зону испарения ($\phi = +90^{\circ}$), то R_{min} снижается до ~ 1K/BT, а Q_{max} возрастает до 25BT.

Увеличение длины MTT и, соответственно, $L_{{\rm э}\varphi\varphi}$ должно привести к снижению $Q_{max}.$

Так, на рис. З показано влияние расположения в пространстве МТТ диаметром 3 мм и длиной 300 мм ($L_{3\phi\phi} = 186$ мм) на изменение термического сопротивления. Там видно, что с увеличением теплового потока R_{MTT} монотонно снижается до некоторого минимума. Дальнейшее незначительное повышение Q приводило к резкому росту R_{MTT} , что не наблюдалось на МТТ 100мм. Это связано с началом осушения крайней точки зоны испарения (длина 60мм) и быстрым распространением этого явления на всю зону.

Рис. 3. Зависимость R_{MTT} , $I_{\Sigma} = 300$ мм и $d_{MTT} = 3$ мм от Q при различной ориентации в пространстве (G = 4,9·10⁻³кг/с, $t_{oxn} = 20^{0}$ C)

На рис. 4 приведено влияние температуры воды, охлаждающей зону конденсации МТТ, на ее термическое сопротивление. Характер изменения R_{MTT} такой же как и на рис. 3, однако с увеличением температуры t_{oxn} минимальное значение термического сопротивления значительно снижается и Q_{max} возрастает. Такое влияние t_{oxn} на R_{MTT} можно объяснить, если рассмотреть процессы происходящие внутри МТТ. При увеличении t_{oxn} соответственно возрастает и температура насыщения внутри МТТ (давление также увеличивается). А поскольку в зоне испарения происходит пузырьковое кипение, то отрывные диаметры паровых пузырей при повышении давления снижаются и количество паровой фазы, таким образом, также уменьшается. Это приводит к снижению скорости движения паровой фазы по паровому каналу и процесс передачи тепловой энергии улучшается, что соответственно приводит к росту Q_{max} и снижению R_{min} .

1-20°C; 2-30°C; 3-40°C

Рис. 4. Влияние t_{oxn} на R_{MTT} при горизонтальной ориентации МТТ ($I_{\Sigma} = 300$ мм, $d_{MTT} = 3$ мм, $G = 4,9\cdot 10^{-3} \kappa r/c$)

Одним из влияющих факторов является и расход охлаждающей воды G, омывающей зону конденсации. Ухудшение внешних условий теплоотдачи в зоне конденсации приводит увеличению температурного уровня всей MTT и соответственно давления внутри ее.

И, как описано выше, улучшаются условия эвакуации паровой фазы из зоны испарения в зону конденсации. Однако при этом величина термического сопротивления остается приблизительно на одном уровне, а Q_{max} возрастает (рис. 5).

 $1 - G = 6.8 \cdot 10^{-3} \text{kg/c}; 2 - G = 4.9 \cdot 10^{-3} \text{kg/c}; 3 - G = 1.75 \cdot 10^{-3} \text{kg/c}$

Рис. 5. Влияние расхода охлаждающей жидкости G на R_{MTT} при горизонтальном расположении MTT (I $_{\Sigma}$ = 200мм, d_{MTT} =6мм, t_{oxn} = 20 0 С, вода)

Однако, совершенно иная картина наблюдается при изменении вида теплоносителя. Испытания МТТ диаметром 6мм и длиной 230мм заправленной этанолом (см. рис. 6) показали, что с уменьшением расхода охлаждающей жидкости было зафиксировано снижение R_{min} в то время как максимальный тепловой поток оставался приблизительно на одном уровне. Значения Q_{max} примерно в 2,5 раза выше, чем у МТТ заправленной водой. Это можно объяснить, если рассчитать гидравлические сопротивления потока пара в паровом канале.

При одних и тех же тепловых потоках и температурах насыщения в МТТ с водой скорость пара будет примерно в 2 раза выше, чем у тепловой трубы с теплоносителем этанол. Гидравлические сопротивления, таким образом, будут выше в МТТ с водой примерно в 3 раза, чем у МТТ заправленной этанолом. Движение теплоносителя по капиллярной структуре также будет зависеть от теплофизических свойств теплоносителей.

$$1 - G = 1,8 \cdot 10^{-3} \text{Kr/c}; 2 - G = 4,2 \cdot 10^{-3} \text{Kr/c}; 3 - G = 7,5 \cdot 10^{-3} \text{Kr/c}$$

Рис. 6. Влияние расхода охлаждающей жидкости G на RMTT при горизонтальном расположении MTT (I $_{\Sigma}$ = 230мм, d_{MTT}=6мм, t_{охл} = 20⁰C, этанол)

Исходя из простых расчетов можно увидеть, что максимальный тепловой поток у МТТ заправленной этанолом должен быть выше, чем у такой же точно МТТ, заправленной водой.

Диаметр парового пространства также влияет на теплопередающие характеристики МТТ. С уменьшение размеров парового пространства термическое сопротивление возрастает, а максимальный тепловой поток падает.

На величины R_{min} и Q_{max} также оказывает влияние пористость и толщина капиллярной структуры, которые в этой статье не рассматриваются.

Выводы

Таким образом, проведенное исследование показало, что на величину термического сопротивления влияет большое количество факторов, причем к основным можно отнести как диаметр парового пространства, так и режимные факторы. При создании систем охлаждения на основе МТТ необходимо учитывать все особенности протекающих процессов внутри таких теплообменных устройств.

Литература

- Cotter, T. P. Principles and Prospects of Micro Heat Pipes [Texcr]/ T.P. Cotter // 5th International Heat Pipe Conference, Tsukuba, Japan. – 1984. – P. 328-335.
- 2. Ha, J. M. The Maximum Heat Transport Capacity of Micro Heat Pipes [Текст]/ J. M. Ha, G. P. Peterson // ASME J. Heat Transfer. 1998. Vol. 120, №4. pp. 1064-1071.
- Schneider, M. Investigation of interconnected mini heat pipe arrays for micro electronics cooling [Текст]/ M.Schneider, M.Yoshida, M.Groll // 11th International Heat Pipe Conference, Sept. 14, 1999, Tokyo, Japan, Vol.1. – р. 7-9.
- Moon, S.H. Experimental study on the thermal performance of micro-heat pipe with cross-section of polygon [Texct]/ S.H.Moon, G.Hwang, S.C.Ko, Y.T.Kim// Microelectronics Reliability. – 2004. – Vol. 44. – pp. 315 – 321.
- 5. Теплова мікротрубка [Текст]: пат. № 50435 А, Україна: / Кравець В.Ю., Ніколаєнко Ю.Є. 2002.
- 6. Hopkins R. Flat miniature heat pipes with micro capillary grooves/ R. Hopkins , A. Faghri , D. Khrustalev [Teκcr] // Journal of heat transfer −1999. –Vol. 121, №1, pp. 102-109.
- Paiva K.V. Experimental study of a wire mini heat pipe for microgravity test [Teκcτ]/ K.V.Paiva, M.B.H.Mantelli, A.J.A.Buschinelli // 13-th International Heat Pipe Conference, Sept. 21-25, 2004, Shanghai, China, -pp. 163 – 169.
- Babin B.R. Steady State Modeling and Testing of a Micro Heat Pipe [Teкct]/ B.R.Babin, G.P.Peterson, D.Wu // Journal of Heat Transfer –1990, –Vol. 112., –pp. 595 – 601.
- Vasiliev L.L. Miniature Heat Pipes For Electronic Equipment Thermal Control [Teκcτ]/ L.L.Vasiliev, A.G.Kulakov, M.I.Rabetsky, A.A. Antukh // Proceeding of the V Minsk International Seminar "Heat pipes, Heat Pumps, Refrigerators", September 4-7, 2002, Minsk, Belarus, -pp. 270-278.
- Семена М.Г. Тепловые трубы с металловолокнистыми капиллярными структурами [Текст] / М.Г. Семена, А.Н. Гершуни, В.К. Зарипов – К.: Вища шк., Головное изд-во, 1984. – 215 с.