Досліджено вплив багатошарового вакуумно-плазмового покриття (α -Ti+TiN)×5, а також покриття з MoS₂ на стійкість до руйнування зразків зі сталі в умовах фретинг-корозії при різних комбінаціях контактуючих поверхонь та амплітудах циклічного навантаження

D-

-0

Ключові слова: вакуумно-плазмове покриття, фретинг-корозія, адгезія

Исследовано влияние многослойного вакуумно-плазменного покрытия (α -Ti+TiN)×5, а также покрытия из MoS₂, на устойчивость к разрушению образцов из стали в условиях фреттинг-коррозии при различных комбинациях контактирующих поверхностей и амплитудах циклического нагружения

Ключевые слова: вакуумно-плазменное покрытие, фреттинг-коррозия, адгезия

ъ

Influence of multilayer vacuum-plasma coating $(\alpha$ -Ti+TiN)×5 and also coating from MoS₂ on damage resistance of steel samples in conditions of fretting-corrosion at different combinations of contact surfaces and repeated loading amplitudes has been investigated

Key words: vacuum-plasma coating, fretting-corrosion, adhesion ____

1. Введение

Решение проблемы повреждений в результате изнашивания в условиях фреттинга ответственных узлов машин и механизмов является одной из первоочередных задач. Процессы фреттинга характеризуются следующими отличительными признаками:

 относительная скорость перемещения поверхностей контактирующих тел значительно ниже по сравнению со скоростью при трении скольжения;

фреттинг, приводящий к разрушению, характеризуется амплитудами менее 25 мкм, но, в любом случае, – не более 130 мкм [1], при этом поверхности не выводятся из зоны контакта, а, следовательно, продукты износа не удаляются из зоны образования;

 внешний вид продуктов фреттинг-износа отличается по цветовым показателям: например, на стали они значительно краснее, чем обычная ржавчина;

– кислород интенсифицирует повреждения при фреттинг-коррозии. Так как фреттинг характеризуется малыми амплитудами взаимных перемещений контртел, то вторичные структуры в приповерхностных объемах, защищающие основу при других видах изнашивания, не успевают образоваться за счет частого взаимодействия одних и тех же неровностей в каждом цикле. Последовательное схватывание неровностей на соприкасающихся поверхностях с дальнейшим разрушением адгезионного шва является главной причиной разрушения при фреттинге. Для уменьшения адгезии и повышения фреттингусталостной прочности применяют следующие технологические методы: пластическое деформирование, химическую и электрохимическую обработку, различные виды химико-термической обработки [2]. Снизить интенсивность процессов схватывания, как отмечается в работе [1], можно путем использования различных видов смазок, защитных неметаллических пленок. Высокую износостойкость в условиях адгезионноусталостного изнашивания и низкую адгезионную активность продемонстрировали в качестве защитных при использовании в технике вакуумно-плазменные покрытия, состоящие из карбидов, нитридов, оксидов d-переходных металлов и sp-элементов [3].

Целью данной работы являлось исследование эффективности разработанных покрытий с большим сопротивление фреттинг-коррозии для предотвращения разрушения или уменьшения интенсивности коррозионной повреждаемости деталей из стали 20Х13.

2. Методика исследований

Разрабатываемое защитное покрытие должно иметь следующие характеристики: крепкое сцепление с подложкой; высокую когезионную прочность; адгезионную пассивность внешнего слоя относительно контртела; низкую химическую активность относительно среды.

ПОКРЫТИЯ ДЛЯ ЗАЩИТЫ ОТ ФРЕТТИНГ-КОРРОЗИИ

С.В. Ляшок Аспирантка

Отдел материаловедения

Институт проблем машиностроения им. А.Н. Подгорного ул. Дм. Пожарского, 2/10, г. Харьков, Украина, 61046 Контактный тел.: (057) 778-89-86, (057) 349-47-80 E-mail: matsevlad@ipmach.kharkov.ua Крепкая связь с подложкой может быть реализована за счет химической адгезии (адгезия, обеспечиваемая путем создания между поверхностью подложки и материалом покрытия межатомных связей), либо диффузионным взаимопроникновением материалов подложки и покрытия. Среди современных методов нанесения защитных покрытий, обеспечивающих надежную адгезию покрытия к металлической подложке, можно выделить вакуумно-плазменные и детонационные методы.

Нанесение разработанного вакуумно-плазменного покрытия осуществлялось по методу КИБ – конденсации с ионной бомбардировкой – на модернизированной установке «Булат-6». Бомбардировка подложки ионами металла или газа с энергией ~ 1 эВ позволяет распылять поверхностные пленки и нарушать стабильные электронные конфигурации валентных электронов металла на поверхности подложки для создания химических адгезионных связей. Непрерывность процесса осаждения покрытия, энергия, достаточная для организации химической адгезии, низкая микрохрупкость основной фазы покрытия и конструкция, состоящая из чередующихся слоев, обеспечивают высокую когезионную прочность покрытия. Для достижения низкой химической и адгезионной активности внешней стороны покрытия наносили поверхностный слой соответствующего химического и фазового состава – TiN.

Образцы из стали 20Х13 изготавливались из листового проката в нормализованном состоянии (НВ 175) в виде пластин разных размеров с припуском на шлифование после термообработки. Химический состав стали: С – 0,19%, Mn – 0,2-0,3%, Si – 0,2-0,3%, Cr – 12-13%, Ni – 0,10%.

Режим термообработки: нагревание до 1050°С, выдержка 40 минут, закалка в масле, отпуск в течение 2-х часов при 700°С, последующее охлаждение в воде. Твердость образцов составляет HRC 18–20. После термической обработки образцы со стороны больших граней сошлифовывали на глубину ~ 0,5 мм. Размеры образцов после шлифования следующие: длинные образцы ~ 110×14×4 мм; короткие образцы ~ 33×14×4 мм.

Было разработано защитное многослойное вакуумно-плазменное покрытие (α -Ti+TiN)×5, состоящее из чередующихся слоев α -Ti толщиной ~ 0,1 мкм и TiN толщиной ~ 1 мкм (приведена толщина для одного слоя каждого типа). Общее количество слоев в покрытии – 10, толщина полученного покрытия – 4-5 мкм.

Одним из методов защиты от фреттинг-коррозии является использование твердых смазок. По результатам экспериментов, проведенных авторами работ [4, 5], дисульфид молибдена – перспективное средство для уменьшения повреждений при фреттинг-коррозии. В связи с этим представляет интерес исследовать также взаимодействие поверхностей образцов в комбинации: сталь с покрытием (α -Ti+TiN)×5, находящаяся в контакте с контртелом, покрытым MoS₂.

После подготовки поверхности образцов для нанесения покрытия на основе MoS_2 на наждачной бумаге, они были подвергнуты влажной пескоструйной обработке, в результате чего поверхность стала достаточно шероховатой, содержащей значительное количество углублений и выступов. После этой обработки образцы тщательно промывали водой и выдерживали на воздухе. После обезжиривания путем погружения в бензин Б70 образцы подсушивали на воздухе в течение 15 минут.

Для нанесения покрытия использовали суспензию ВНИИНП-212, содержащую дисульфид молибдена, растворитель и мочевиноформальдегидную смолу. Покрытие наносили путем погружения нагретых до 100°С образцов в суспензию. После этого их подсушивали на воздухе до сухого состояния (10-15 минут) и далее переносили в термостат, нагретый до 100°С. Повышали температуру в термостате до 150°С, и выдерживали образцы при этой температуре на протяжении 2-х часов. После охлаждения на воздухе образцы готовы к использованию.

Долговечность образцов из стали в условиях фреттинга при различных комбинациях контактирующих поверхностей и амплитудах циклического нагружения оценивали по времени до полного разрушения плоских образцов на специальном стенде. На рис. 1 приведена схема нагружения образцов при испытаниях на фреттинг-усталость.

3. Результаты исследований

Исследование структуры поверхности полученных покрытий проводили на электронных сканирующих микроскопах JSM-840, а также ZEISS EVO 40XVP с системой рентгеновского микроанализа INCA Energy.

На рис. 2 продемонстрирована морфология поверхности и вид поперечного сечения образца с покрытием (α -Ti+TiN)×5, свидетельствующие о формировании при осаждении четко выраженной двухфазной структуры покрытия.

Рис. 1. Схема расположения образцов при испытаниях на фреттинг-усталость: 1 — усталостный (длинный) образец; 2 — прижимающие (короткие) образцы; Р — нагрузка, обеспечивающее постоянное сжимающее напряжение 100 МПа; N — циклическая нагрузка

Большее увеличение (рис. 2 в) позволяет отметить присутствие на поверхности значительного количества капельной фазы титана, а также отдельных пор, круглых ямок. Последние можно идентифицировать как следы, оставшиеся на поверхности в результате скола отдельных элементов капельной фазы, размер которых от 1 до 14 мкм. Относительная площадь поверхности покрытия, занятая капельной фазой, составляет ~ 10%.

Фазовый рентгеновский анализ поверхности многослойного покрытия и его структурных составляющих показал, что основной фазой является TiN, но с различным соотношением Ti и N (рис. 3 и табл. 1). В покрытии также присутствует некоторое количество α -Ti, сосредоточенного в тонких титановых слоях и в капельной фазе.

Качество адгезии и когезии разработанного покрытия оценивали с помощью системы глубокого проникновения в поверхность образца с покрыти-

Рис. 2. Морфология поверхности при разных увеличениях (а, в) и микроструктура поперечного шлифа (б) многослойного покрытия (α-Ti+TiN)×5

Рис. 3. Микрорентгеноспектральный анализ поверхности (а) и структурных составляющих (в) покрытия (α-Ti+TiN)×5 и их спектрограммы (б, г)

ем алмазного конуса при использовании системы нагружения твердомера Роквелла [6]. Анализ показал, что покрытие имеет удовлетворительную адгезионную и когезионную прочность: не наблюдается отслаивание слоев и скола отдельных участков покрытия от подложки.

На рис. 4 продемонстрирована поверхность покрытия MoS_2 толщиной ~ 10 мкм, по внешнему виду похожего на слой мелкой щебенки, которой засыпаны неровности поверхности образцов, образовавшиеся при влажной пескоструйной обработке.

Результаты испытаний образцов на фреттингусталость представлены в табл. 2, где σ – амплитуда изгибающегонапряжения, N – количество циклов до разрушения, К – коэффициент повышения долговечности стали в сравнении с вариантом 1.

Использование вакуумно-плазменного покрытия на контактирующих поверхностях контртел обеспечивает максимальные коэффициенты повышения долговечности стали при амплитудах изгибающего напряжения 150 МПа и 100 МПа (вариант 2). Несколько меньшая эффективность (вариант 3) наблюдается при нанесении покрытия (α-Ti+TiN)×5 на поверхность усталостного образца, находящуюся в контакте с поверхностью прижимающего, покрытого MoS₂. Покрытие из дисульфида молибдена (вариант 4) также приводит к повышению долговечности, однако в меньшей степени, чем вакуумно-плазменное покрытие (на 30% и 60% при соответствующих амплитудах).

Химический состав поверхности и структурных составляющих вакуумно-плазменного покрытия

Содержание	Место точечного анализа					
элементов	Спек	тр 1	Спектр 2			
	ат. %	масс. %	ат. %	масс. %		
N	53,6	25,5	66,4	36,7		
Ti	45,4	74,8	33,6	63,4		

Рис. 4. Поверхность образца после пескоструйной обработки (а) и нанесения покрытия, содержащего дисульфид молибдена (б)

Влияние покрытий на фреттинг-усталость

ант	Характеристика вариантов		σ = 100 MΠa		σ = 150 MΠa	
Bapr	Усталостный образец	Прижимающий образец	N·10 ⁻⁶	к	N·10 ⁻⁶	к
1	Сталь	Сталь	0,532	1	0,217	1
2	Сталь+(α-Ті+ТіN)×5	Сталь+(α-Ті+ТіN)×5	1,81	3,40	0,794	3,66
3	Сталь+(α-Ті+ТіN)×5	Сталь+ MoS ₂	1,45	2,73	0,548	2,5
4	Сталь	Сталь+ MoS ₂	0,854	1,6	0,282	1,3

3.	Выволы
~ •	2 DID OF ADI

По результатам исследования влияния разработанных покрытий на устойчивость к разрушению контактирующих образцов в условиях фреттинг-коррозии,

Таблица 1

установлено, что при нанесении вакуумно-плазменного покрытия на сопряженные поверхности контртел наблюдается наибольшее повышение долговечности. Использование покрытия (α -Ti+TiN)×5 на поверхности только одного образца (усталостного), а на другой – MoS_2 , также способствует значительному повышению долговечности стали. Таким образом, применение покрытий – вакуумно-плазменного с низкой адгезионной активностью и твердосмазочного – позволяет сни-

зить интенсивность процессов схватывания при фреттинг-коррозии, а, следовательно, повысить долговечность изделий из стали.

Литература

 Уотерхауз Р. Б. Фреттинг-коррозия / Р. Б. Уотерхауз. – Л.: Машиностроение, 1976. – 272 с.

2. Шевеля В. В. Фреттинг-усталость металлов / В. В. Шевеля, Г. С. Калда. – Х.: Поділля, 1998. – 299 с.

 Мацевитый В. М. Покрытия для режущих инструментов / В. М. Мацевитый. – Х.: Вища школа, 1987. – 128 с.

Таблица 2

4. Weismantel E. E. Friction and Fretting with Solid Film Lubricants / E. E. Weismantel // Lubrication Engineering. – 1955. – Vol. 11. – P. 97 – 100.

 Batten B. K. Fatigue Tests in Air on Model Propeller-Tailshaft Assemblies / B. K. Batten,
A. J. Couchman // Trans. N. E. Coast Instn.
Engrs. Ship-builders. – 1963. – Vol. 79, N 5.
– P. 189 – 228.

6. Мацевитый В. М. Способ контроля качества адгезии износостойких покрытий

/ В. М. Мацевитый, Л. М. Романова, В. М. Береснев // Применение прогрессивных инструментальных материалов и методов повышения стойкости режущих инструментов: I науч.-техн. конф., 1983 г.: тезисы докл. – Краснодар: НТО Машпром, 1983. – С. 93 – 94.