-0

D-

Розглядається процес розповсюдження нестаціонарних згинних хвиль у балці на основі уточнених рівнянь [1]; раптово прикладений момент, що згинає. На відміну від [2], швидкості розповсюдження фронтів повздовжніх та поперечних хвиль відповідають швидкостям теорії пружності

Ключові слова: асимптотико-груповий, квазіфронт, момент, хвиля що згинає

D-

Рассматривается процесс распространения нестационарных изгибных волн в балке на основе уточненных уравнений [1]; внезапно приложен изгибающий момент. В отличие от [2], скорости распространения фронтов продольных и поперечных волн соответствуют скоростям теории упругости

Ключевые слова: асимптотико-групповой, квазифронт, момент, изгибная волна

The process of distribution of non-stationary waves in the bending beam is examined on the basis of the specified equalizations [1]; the moment of flection is suddenly attached. Unlike to the [2], the speeds of the longitudinal and transversal waves fronts distribution coincide with speeds in the elasticity theory

Key words: asymptotic-group, quasifront, the moment, flexural wave

1. Введение

Уравнения динамики стержней получаются обычно на основе каких-то предположений о характере распределения искомых величин - напряжений и деформаций по поперечному сечению стержня [3]. В случае свободных колебаний все величины считаются постоянными по сечению стержня. Ранее в работе [4] было показано, как известные динамические уравнения продольной деформации стержня получаются из трехмерных уравнений теории упругости при помощи метода асимптотико-группового анализа, не требующего использования каких-либо гипотез. Однако в динамических задачах существенную роль могут играть некоторые факторы, которые не учитываются классическими уравнениями, например, поперечные колебания стержня, возникающие при движении продольной волны. В [1] аналогично производится поиск уточненных одномерных динамических уравнений изгиба стержня на основе трехмерных уравнений теории упругости. Таким образом, получаются асимптотически обоснованные уточненные уравнения, позволяющие учитывать как известные в изгибе балки эффекты, так и некоторые новые. В данной работе показано решение этих уравнений, а также проанализирован процесс распространения нестационарных волн по стержню прямоугольного сечения при его изгибе на основе полученных решений.

РЕШЕНИЕ УТОЧНЕННЫХ УРАВНЕНИЙ, ПРИМЕР ВНЕЗАПНО ПРИЛОЖЕННОГО НА ТОРЦЕ ИЗГИБАЮЩЕГО МОМЕНТА

А.Д. Шамровский

Доктор технических наук, професор* Контактный тел.: (0612) 223-82-16 E-mail:adshamr@rambler.ru

Л.Н. Егармина

Аспирант, младший научный сотрудник* Контактный тел.: 068-449-13-31 E-mail:neverojatnonofakt@rambler.ru *Кафедра программного обеспечения автоматизированных систем Запорожская государственная инженерная академия пр. Ленина, 226, г. Запорожье, 69006

2. Решение найденных уточненных динамических уравнений изгиба балки прямоугольного поперечного сечения для случая внезапно приложенного изгибающего момента

В работе [1] изложена процедура получения уточненных динамических уравнений изгиба балки на основе трехмерных уравнений теории упругости при помощи метода асимптотико-группового анализа. При этом реализовано, так называемое, неминимальное упрощение трехмерных уравнений, приводящее к одномерным уравнениям.

Перепишем полученные в [1] уравнения в однородном случае, отвечающем отсутствию нагрузок на боковых поверхностях балки:

$$\begin{split} \partial_x^2 \varphi + c \partial_x W + c \partial_x V - 8a_s^2 (\partial_x w + \varphi) - \partial_t^2 \varphi &= 0; \\ a_s^2 \partial_x^2 w + (a_s^2 + c) \partial_x \varphi + W + c V - \partial_t^2 w &= 0; \\ 8a_s^2 \partial_x^2 w + (8a_s^2 + 24c) \partial_x \varphi + 24(W + c V) + \partial_t^2 W &= 0; \\ 8(V + c \partial_x \varphi + c W) + \epsilon \partial_t^2 V &= 0; \quad Q = \partial_x w + \varphi; \end{split}$$

$$M = \partial_x \phi + cW + cV; N = W + c\partial_x \phi + cV; K = V + c\partial_x \phi + cW$$

Выполним преобразования:

$$\begin{aligned} \partial_{x} &= \delta^{\alpha_{1}} \partial_{x}^{*}, \ \partial_{t} = \delta^{\alpha_{2}} \partial_{t}^{*}, \ \phi = \delta^{\alpha_{3}} \phi^{*}, \ w = \delta^{\alpha_{4}} w^{*}, \ W = \delta^{\alpha_{5}} W^{*}, \\ V &= \delta^{\alpha_{6}} V^{*}, \ Q = \delta^{\alpha_{7}} Q^{*}, \ M = \delta^{\alpha_{8}} M^{*}, \ N = \delta^{\alpha_{9}} N^{*}, \ K = K^{*}, \end{aligned}$$

приводящие к соотношениям:

$$\partial_x^* \sim 1, \ \partial_t^* \sim 1, \ \varphi^* \sim W^* \sim W^* \sim V^* \sim Q^* \sim M^* \sim N^* \sim K$$

Соответствующая таблица показателей степени будет:

$$2\alpha_1 + \alpha_3, \alpha_1 + \alpha_5, \alpha_1 + \alpha_6, \alpha_1 + \alpha_4, \alpha_3, 2\alpha_2 + \alpha_3;$$
(1)

 $2\alpha_1+\alpha_4,\,\alpha_1+\alpha_3,\,\alpha_5,\,\alpha_6,\,2\alpha_2+\alpha_4;$

$$2\alpha_1 + \alpha_4, \alpha_1 + \alpha_3, \alpha_5, \alpha_6, 2\alpha_2 + \alpha_5;$$

$$\alpha_6, \alpha_1 + \alpha_3, \alpha_5, 2\alpha_2 + \alpha_6; \quad \alpha_7, \alpha_1 + \alpha_4, \alpha_3;$$

$$\alpha_8, \alpha_1 + \alpha_3, \alpha_5, \alpha_6; \ \alpha_9, \alpha_5, \alpha_1 + \alpha_3, \alpha_6; \ 0, \alpha_6, \alpha_1 + \alpha_3, \alpha_5$$

Рассмотрим следующие значения параметров:

 $\alpha_1 = -1, \ \alpha_2 = -1, \ \alpha_3 = 1, \ \alpha_4 = 2,$

 $\alpha_5 = 2, \ \alpha_6 = 2, \ \alpha_7 = 1, \ \alpha_8 = 0, \ \alpha_9 = 0$

Таблица (1):

Упрощенные уравнения:

$$\begin{aligned} \partial_x^2 \phi - \partial_t^2 \phi &= 0; \\ a_s^2 \partial_x^2 w + \left(a_s^2 + c\right) \partial_x \phi - \partial_t^2 w &= 0; \\ 8a_s^2 \partial_x^2 w + \left(8a_s^2 + 24c\right) \partial_x \phi + \partial_t^2 W &= 0; \\ 8c \partial_x \phi + \epsilon \partial_t^2 V &= 0; \\ Q &= \partial_x w + \phi; \quad M &= \partial_x \phi; \\ N &= c \partial_x \phi; \quad K &= c \partial_x \phi \end{aligned}$$

$$(2)$$

Перейдем к более подробному изучению полученного варианта упрощения. Он отвечает быстрым изменениям по x и по t, что отвечает отрицательным значениям параметров α_1 и α_2 и, соответственно, большим значениям дифференциальных операторов ∂_x и ∂_t . В этих условиях результаты, получаемые в первом приближении, нуждаются в уточнениях, достигаемых путем построения процедур последовательных приближений.

Представим искомые функции в виде рядов:

$$\begin{split} \varphi &= \sum_{i=1}^{\infty} \varphi_i; w = \sum_{i=1}^{\infty} w_i; W = \sum_{i=1}^{\infty} W_i; V = \sum_{i=1}^{\infty} V_i; \\ Q &= \sum_{i=1}^{\infty} Q_i; M = \sum_{i=1}^{\infty} M_i; N = \sum_{i=1}^{\infty} N_i; K = \sum_{i=1}^{\infty} K_i \end{split}$$
(3)

Упрощенные уравнения (2) порождают бесконечную рекуррентную систему уравнений:

$$\begin{split} \partial_{x}^{2}\varphi_{i} + c\partial_{x}W_{i-1} + c\partial_{x}V_{i-1} - 8a_{s}^{2}\left(\partial_{x}W_{i-1} + \varphi_{i-1}\right) - \partial_{t}^{2}\varphi_{i} &= 0; \quad (4) \\ a_{s}^{2}\partial_{x}^{2}W_{i} + \left(a_{s}^{2} + c\right)\partial_{x}\varphi_{i} + W_{i-1} + cV_{i-1} - \partial_{t}^{2}W_{i} &= 0; \\ 8a_{s}^{2}\partial_{x}^{2}W_{i} + \left(8a_{s}^{2} + 24c\right)\partial_{x}\varphi_{i} + 24\left(W_{i-1} + cV_{i-1}\right) + \partial_{t}^{2}W_{i} &= 0; \\ 8\left(V_{i-1} + c\partial_{x}\varphi_{i} + cW_{i-1}\right) + \epsilon\partial_{t}^{2}V_{i} &= 0; \\ Q_{i} &= \partial_{x}W_{i} + \varphi_{i}; \quad M_{i} &= \partial_{x}\varphi_{i} + c\left(W_{i-1} + V_{i-1}\right); \\ N_{i} &= W_{i-1} + c\left(\partial_{x}\varphi_{i} + V_{i-1}\right); \\ K_{i} &= V_{i-1} + c\left(\partial_{x}\varphi_{i} + W_{i-1}\right), \\ (i &= 1, 2, ...) \end{split}$$

Решение этих уравнений разыскиваем в виде:

$$\begin{split} \varphi_{i} &= \sum_{j=1}^{i} \varphi_{i,j}^{1} x^{i-j} (t-x)^{\gamma+i+j-1} + \sum_{j=2}^{i} \varphi_{i,j}^{2} x^{i-j} (a_{s}t-x)^{\gamma+i+j-1} \end{split} \tag{5}$$

$$w_{i} &= \sum_{j=1}^{i} w_{i,j}^{1} x^{i-j} (t-x)^{\gamma+i+j} + \sum_{j=1}^{i} w_{i,j}^{2} x^{i-j} (a_{s}t-x)^{\gamma+i+j}$$

$$W_{i} &= \sum_{j=1}^{i} W_{i,j}^{1} x^{i-j} (t-x)^{\gamma+i+j} + \sum_{j=1}^{i} W_{i,j}^{2} x^{i-j} (a_{s}t-x)^{\gamma+i+j}$$

$$V_{i} &= \sum_{j=1}^{i} V_{i,j}^{1} x^{i-j} (t-x)^{\gamma+i+j} + \sum_{j=2}^{i} V_{i,j}^{2} x^{i-j} (a_{s}t-x)^{\gamma+i+j}$$

$$M_{i} &= \sum_{j=1}^{i} M_{i,j}^{1} x^{i-j} (t-x)^{\gamma+i+j-2} + \sum_{j=2}^{i} M_{i,j}^{2} x^{i-j} (a_{s}t-x)^{\gamma+i+j-2}$$

$$K_{i} &= \sum_{j=1}^{i} K_{i,j}^{1} x^{i-j} (t-x)^{\gamma+i+j-2} + \sum_{j=2}^{i} K_{i,j}^{2} x^{i-j} (a_{s}t-x)^{\gamma+i+j-2}$$

$$N_{i} &= \sum_{j=1}^{i} N_{i,j}^{1} x^{i-j} (t-x)^{\gamma+i+j-2} + \sum_{j=2}^{i} N_{i,j}^{2} x^{i-j} (a_{s}t-x)^{\gamma+i+j-2}$$

$$Q_{i} &= \sum_{j=1}^{i} Q_{i,j}^{1} x^{i-j} (t-x)^{\gamma+i+j-1} + \sum_{j=1}^{i} Q_{i,j}^{2} x^{i-j} (a_{s}t-x)^{\gamma+i+j-2}$$

Выражения вида t-x определены при $x \le t$ и равны нулю при x > t; выражения вида a_st-x определены при $x \le a_st$ и равны нулю при $x > a_st$. Коэффициенты сумм (4) определены при значениях ј, заданных в записях соответствующих сумм. Если индекс выходит за указанные пределы, то коэффициенты считаются равными нулю.

После подстановки решений (5) в рекуррентные уравнения (4), а также применения к получившемуся результату некоторых несложных математических преобразований будем иметь:

$$\begin{split} \varphi_{i,j-1}^{1} &= \frac{1}{2(i-j+1)(\gamma+i+j-2)} \Big\{ (i-j+2)(i-j+1)\varphi_{i,j-2}^{1} + \\ &+ c \Big[(i-j+1)W_{i-1,j-2}^{1} - (\gamma+i+j-2)W_{i-1,j-1}^{1} + \\ &+ (i-j+1)V_{i-1,j-2}^{1} - (\gamma+i+j-2)V_{i-1,j-1}^{1} \Big] - \\ &8 a_{s}^{2} \Big[(i-j+1)w_{i-1,j-2}^{1} - (\gamma+i+j-2)w_{i-1,j-1}^{1} + \varphi_{i-1,j-1}^{1} \Big] \Big\}, \\ &(i=2,3,...; \ j=2,...,i); \end{split}$$

$$\begin{split} \varphi_{i,j}^2 &= \frac{1}{\left(a_s^2 - 1\right)(\gamma + i + j - 1)(\gamma + i + j - 2)} \Big\{ (i - j + 2)(i - j + 1)\varphi_{i,j-2}^2 - \\ &- 2(i - j + 1)(\gamma + i + j - 2)\varphi_{i,j-1}^2 + c\Big[(i - j + 1)(W_{i-1,j-2}^2 + V_{i-1,j-2}^2) - \\ &- (\gamma + i + j - 2)(W_{i-1,j-1}^2 + V_{i-1,j-1}^2)\Big] - 8a_s^2\Big[(i - j + 1)w_{i-1,j-2}^2 - \\ &- (\gamma + i + j - 2)w_{i-1,j-1}^2 + \varphi_{i-1,j-1}^2\Big] \Big\}, \quad (i = 2, 3, ...; j = 2, ..., i); \\ w_{ij}^1 &= \frac{1}{\left(1 - a_s^2\right)(\gamma + i + j)(\gamma + i + j - 1)} \Big\{a_s^2(i - j + 2)(i - j + 1)w_{i,j-2}^1 - \\ &- 2a_s^2(i - j + 1)(\gamma + i + j - 1)w_{i,j-1}^1 + (a_s^2 + c)\Big[(i - j + 1)\varphi_{i,j-1}^1 - \\ &- (\gamma + i + j - 1)\varphi_{ij}^1\Big] + W_{i-1,j-1}^1 + cV_{i-1,j-1}^1\Big\}, \quad (i = 1, 2, ...; j = 1, ..., i); \\ w_{i,j-1}^2 &= \frac{1}{2a_s^2(i - j + 1)(\gamma + i + j - 1)} \Big\{a_s^2(i - j + 2)(i - j + 1)w_{i,j-2}^2 + \\ &+ \left(a_s^2 + c)\Big[(i - j + 1)\varphi_{i,j-1}^2 - (\gamma + i + j - 1)\varphi_{ij}^2\Big] + W_{i-1,j-1}^2 + cV_{i-1,j-1}^2\Big\}, \\ (i = 2, 3, ...; j = 2, ..., i); \\ W_{ij}^1 &= -\frac{1}{(\gamma + i + j)(\gamma + i + j - 1)} \Big\{8a_s^2\Big[(i - j + 2)(i - j + 1)w_{i,j-2}^1 - \\ &- 2(i - j + 1)(\gamma + i + j - 1)w_{i,j-1}^1 - (\gamma + i + j)(\gamma + i + j - 1)w_{ij}^1\Big] + \\ &+ \Big(8a_s^2 + 24c\Big)\Big[(i - j + 1)\varphi_{i,j-1}^1 - (\gamma + i + j - 1)\varphi_{ij}^1\Big] + 24\Big(W_{i-1,j-1}^1 + \\ &+ cV_{i-1,j-1}^1\Big)\Big\}, \quad (i = 1, 2, ...; j = 1, ..., i); \end{split}$$

$$\begin{split} W_{ij}^2 &= -\frac{1}{a_s^2 \big(\gamma + i + j\big) \big(\gamma + i + j - 1\big)} \Big\{ 8a_s^2 \Big[\big(i - j + 2\big) \big(i - j + 1\big) w_{i,j-2}^2 \\ &- 2 \big(i - j + 1\big) \big(\gamma + i + j - 1\big) w_{i,j-1}^2 + \big(\gamma + i + j\big) \big(\gamma + i + j - 1\big) w_{ij}^2 \Big] + \\ &+ \Big(8a_s^2 + 24c \big) \Big[\big(i - j + 1\big) \phi_{i,j-1}^2 - \big(\gamma + i + j - 1\big) \phi_{ij}^2 \Big] + 24 \Big(W_{i-1,j-1}^2 + \\ &+ c V_{i-1,j-1}^2 \Big) \Big\}, \quad (i = 1, 2, ...; j = 1, ..., i); \end{split}$$

$$\begin{split} V^{1}_{ij} &= -\frac{8}{\epsilon \big(\gamma + i + j\big)\big(\gamma + i + j - 1\big)} \Big\{ V^{1}_{i-1,j-1} + c\Big[\big(i - j + 1\big)\varphi^{1}_{i,j-1} - \\ &- \big(\gamma + i + j - 1\big)\varphi^{1}_{ij}\Big] + cW^{1}_{i-1,j-1} \Big\}, \quad (i = 1, 2, ...; j = 1, ..., i); \\ V^{2}_{ij} &= -\frac{8}{\epsilon a^{2}_{s}\big(\gamma + i + j\big)\big(\gamma + i + j - 1\big)} \Big\{ V^{2}_{i-1,j-1} + c\Big[\big(i - j + 1\big)\varphi^{2}_{i,j-1} - \\ &- \big(\gamma + i + j - 1\big)\varphi^{2}_{ij}\Big] + cW^{2}_{i-1,j-1} \Big\}, \quad (i = 2, 3, ...; j = 2, ..., i); \\ Q^{1}_{ij} &= \big(i - j + 1\big)w^{1}_{i,j-1} - \big(\gamma + i + j\big)w^{1}_{ij} + \varphi^{1}_{ij}, \quad (i = 1, 2, ...; j = 1, ..., i); \\ Q^{2}_{ij} &= \big(i - j + 1\big)w^{2}_{i,j-1} - \big(\gamma + i + j\big)w^{2}_{ij} + \varphi^{2}_{ij}, \quad (i = 1, 2, ...; j = 1, ..., i); \\ M^{1}_{ij} &= \big(i - j + 1\big)\varphi^{1}_{i,j-1} - \big(\gamma + i + j - 1\big)\varphi^{1}_{ij} + c\Big(W^{1}_{i-1,j-1} + V^{1}_{i-1,j-1}\Big), \\ (i = 1, 2, ...; j = 1, ..., i); \end{split}$$

$$\begin{split} M_{ij}^2 = & \left(i-j+1\right) \varphi_{i,j-1}^2 - \left(\gamma+i+j-1\right) \varphi_{ij}^2 + c \left(W_{i-1,j-1}^2 + V_{i-1,j-1}^2\right), \\ & \left(i=2,3,...;j=2,...,i\right); \end{split}$$

$$\begin{split} N^1_{ij} &= W^1_{i-1,j-1} + c \Big[\big(i-j+1\big) \varphi^1_{i,j-1} - \big(\gamma+i+j-1\big) \varphi^1_{ij} + V^1_{i-1,j-1} \Big], \\ & \big(i=1,2,...;j=1,...,i\big); \end{split}$$

$$\begin{split} N_{ij}^2 &= W_{i-1,j-1}^2 + c \Big[\big(i-j+1\big) \varphi_{i,j-1}^2 - \big(\gamma+i+j-1\big) \varphi_{ij}^2 + V_{i-1,j-1}^2 \Big], \\ & \big(i=2,3,...;j=2,...,i\big); \end{split}$$

$$\begin{split} &K_{ij}^{1} = V_{i-1,j-1}^{1} + c \Big[(i-j+1) \phi_{i,j-1}^{1} - (\gamma + i + j - 1) \phi_{ij}^{1} + W_{i-1,j-1}^{1} \Big], \\ &(i=1,2,...;j=1,...,i); \\ &K_{ij}^{2} = V_{i-1,j-1}^{2} + c \Big[(i-j+1) \phi_{i,j-1}^{2} - (\gamma + i + j - 1) \phi_{ij}^{2} + W_{i-1,j-1}^{2} \Big], \\ &(i=2,3,...;j=2,...,i) \end{split}$$

Рекуррентные соотношения (6) не позволяют находить коэффициенты вида ϕ_{ii}^1 и w_{ii}^2 . Эти коэффициенты находятся при помощи граничных условий. При задании этих условий учтем, что решение вида (5) описывает распространение упругой волны в положительном направлении из точки x = 0, т.е. от торца полубесконечной балки $x \ge 0$. Основной нагрузкой здесь является изгибающий момент, заданный при x = 0. В соответствии с (3) и (6) имеем:

$$M(0,t) = \sum_{i=1}^{\infty} \left(M_{ii}^{1} + M_{ii}^{2} a_{s}^{\gamma+2(i-1)} \right) t^{\gamma+2(i-1)}$$
(7)

Отсюда, с учетом (6), будет:

$$\begin{split} \varphi_{ii}^{1} &= \frac{1}{\gamma + 2i - 1} \Big\{ \varphi_{i,i-1}^{1} + c \Big(W_{i-1,i-1}^{1} + V_{i-1,i-1}^{1} \Big) - f_{i} + \\ &+ a_{s}^{\gamma + 2(i-1)} \Big[\varphi_{i,i-1}^{2} - \big(\gamma + 2i - 1 \big) \varphi_{ii}^{2} + c \Big(W_{i-1,i-1}^{2} + V_{i-1,i-1}^{2} \Big) \Big] \Big\}, \end{split} \tag{8}$$

$$(i = 1, 2, ...)$$

В случае внезапно приложенного в момент времени t=0 и остающегося в дальнейшем постоянного мо--мента M(0,t)=1 задаем:

$$\gamma = 0, \quad f_i = \begin{cases} 1 & i = 1 \\ 0 & i > 1 \end{cases}$$

Кроме того, на конце балки может быть задан прогиб (шарнирная опора) либо перерезывающая сила (свободный торец). В первом случае, в соответствии с (3) и (6), имеем:

$$w(0,t) = \sum_{i=1}^{\infty} \left(w_{ii}^{1} + w_{ii}^{2} a_{s}^{\gamma+2i} \right) t^{\gamma+2i} = 0$$
(9)

Отсюда получаем:

$$w_{ii}^{2} = -\frac{w_{ii}^{1}}{a_{s}^{\gamma+2i}} \quad (i = 1, 2, ...)$$
(10)

Во втором случае будет:

$$Q(0,t) = \sum_{i=1}^{\infty} \left(Q_{ii}^{1} + Q_{ii}^{2} a_{s}^{\gamma+2i-1} \right) t^{\gamma+2i-1} = 0$$
(11)

Отсюда, с учетом (6), получаем:

$$\begin{split} w_{ii}^{2} &= \frac{1}{\gamma + 2i} \Bigg[\frac{w_{i,i-1}^{1} - \left(\gamma + 2i\right) w_{ii}^{1} + \phi_{ii}^{1}}{a_{s}^{\gamma + 2i - 1}} + w_{i,i-1}^{2} + \phi_{ii}^{2} \Bigg], \\ (i = 1, 2, ...) \end{split}$$
(12)

Таким образом, задавая (7), (9) или (11) мы имеем возможность находить все коэффициенты сумм (5) по решениям (6), (8) и (10) или (12), т.е. доводить решение до конца.

Остановимся коротко на вопросе о сходимости построенных рядов. Эти ряды носят название так называемой прифронтовой асимптотики. Это означает, что они в первую очередь предназначены для описания зоны вблизи фронта волны. В каждый член ряда входит величина t-х и а_st-х. При малых значениях этих величин общий член ряда стремится к нулю. Т.е. выполняется необходимое условие сходимости. Ранее было показано [5, 6], что удержание только слагаемых, преобладающих вблизи фронта, приводит к рядам для функции Бесселя, для которых сходимость доказана.

Рис. 1. Распространение волны $M(x, \tau)$ в стержне квадратного сечения $\tau = 3$

τ=7,5́ На рис. 1,2 приведены соответствующие графиче-

ские результаты. Изображены графики изгибающего момента, как функции х для моментов времени $\tau = 3$ и $\tau = 7,5$. Мы видим, что в отличие от картины, получаемой при помощи известных уравнений изгиба стержня, картина вблизи фронта распространяющейся волны выглядит значительно сложнее. Вблизи трехмерного фронта волны наблюдаются интенсивные поперечные колебания стержня, которые приводят к быстроизменяющемуся напряженно-деформированному состоянию. В дальнейшем происходит переход к классическому решению в виде так называемого квазифронта, то есть не ступенчатого, а быстроизменяющегося роста продольного усилия. С удалением от фронта, картина переходит в классическую. Таким образом классическое решение для продольной волны в стержне – это медленноизменяющаяся асимптотика по отношению к более точному решению.

3. Выводы

Исследование распространения нестационарного волнового возмущения в балке при воздействии внезапно приложенного изгибающего момента на основе предлагаемых уточненных уравнений показало, что картина возмущения хорошо соответствует трехмерным уравнениям теории упругости. В частности, возмущение имеет два фронта – продольных и поперечных волн, причем скорости этих фронтов совпадают со скоростями таких же фронтов в теории упругости.

Литература

1. Шамровский А.Д., Егармина Л.Н. Уточненные динамические уравнения изгиба балки с учетом трехмерной картины напряженно-деформированного состояния в поперечном сечении балки//Сборник научных трудов по материалам международной научно-практической конференции «Современные проблемы и пути их решения в науке, транспорте, производстве и образовании '2010». Том 5. Технические науки. – Одесса: Черноморье, 2010. – 28-37с. Тимошенко С.П. Колебания в ин-2. женерном деле/ С.П. Тимошенко - М., «Наука», 1967. 444 с.

 Бабаков И.М. Теория колебаний / И.М. Бабаков – М., «Наука», 1968. 559 с.

4. Егармина Л.Н. Вывод динамических уравнений продольной деформации стержня при помощи двойного упрощения уравнений теории упругости / А.Д. Шамровский, Л.Н. Егармина // Нові матеріали і технології в металургії та машинобудуванні, 2009. – №2. – С. 111 – 115.

- Скрыпник И.А. Двумерное моделирование трехмерных продольных волн в плоском слое./ И.А. Скрыпник, А.Д. Шамровский // Математическое моделирование физико-математических полей и интенсификация промышленного производства – Запорожье, 1995. – С. 43–50.
- Шамровский А.Д. Асимптотико-групповой анализ дифференциальных уравнений теории упругости / А.Д. Шамровский – Запорожье, Издательство ЗГИА, 1997 – 169 с.