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1. Introduction

In most of cases in our life, the data obtained for decision 
making are only approximately known. In 1965, Zadeh [18] 
introduced the concept of fuzzy set theory to meet that pr-
oblem. In 1978, Dubois and Prade [4] defined the fuzzy nu-
mbers as a fuzzy subset of the real line. In 1991, Kaufmann 
and Gupta [12], considered a distance measure of two fuzzy 
number combined by the interval of of fuzzy numbers. In 
1997, Heilpern [9] proposed three definitions of the distance 
between two fuzzy numbers. Lam and Cai [13] gave a fuzzy 
function from measuring the distance between fuzzy numb-
er and also showed by experiments their distance function 
given very good approximation to the expected distance in 
numerous situations. The singe machine case is of great im-

portance since there are some general problems of this type 
which can be solved in polynomial time. The assumption 
that all parameters are determined restricts the practical 
aspect of scheduling since, for many real-world processes 
the exact values of parameters are not known advance the 
natural approach to modeling the uncertainty is a stochastic 
one in which the parameters are given as random variables. 
Unfortunately, such an approach leads to difficult problems 
from the computational point of view and only some special 
cases can be effectively solved. The alternative approach to 
modeling imprecision is a fuzzy one in which the parameters 
are given in the form of fuzzy numbers. This approach turns 
out be easier than stochastic one and there are some general 
problems, which can be solved in polynomial time. In the 
recent decade there have appeared some papers dedicated 
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to fuzzy single scheduling ([2], [17]). The first aim of this 
paper is to propose a general formulation of multi-objective 
function with fuzzy due dates and fuzzy processing time. 
The second aim we will apply some local search methods 
(Threshold accepted (TA), Tabu search (TS), and Memetic 
algorithm (MA)).

2. Preliminaries

In this section we specify the context of this study and 
recall basic definitions that will be used in the following. We 
also present the principle underlying the main approaches 
for defining fuzzy distances.

2.1. Definition [7]
Let X be a nonempty set of points. A fuzzy subset A  of X 

is a function A X: ,→ [ ]0 1  for each x X x∈ ( ),  A  is called the 
degree of membership of x in A .

2.2. Definition [16]
A fuzzy number A  is a fuzzy subset of the real numbers 

R which is denied, in general, as follows:
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2.3. Definition [7]
Let A  be a fuzzy number of X, the α − cut  of A  denot-

ed Aα  is defined by  A x X A xα α= ∈ ( ) ≥{ }: where α ∈[ ]0 1, . 
On the other hand, 0 − cut  of A  is called the support of 
A  and denoted by supp A . It follows from the properties 

of the membership function of a fuzzy number A  that each 
its α α− ∈[ ]cut A,  0 1, , is a closed interval. We will denote 
it by A a aα α α= [ ], .

2.4 Definition [16]
A fuzzy number A  in R is a triangular fuzzy number if 

its membership function A R: ,→ [ ]0 1  is equal to:
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with a ≤ ≤b c . The triangular fuzzy number can be denoted 
by A a b c= ( ), , .

2.5. Operations of Triangular Fuzzy Numbers [16]
The fuzzy arithmetic operations of triangular fuzzy 

numbers are described as follows. If two triangular fuzzy 
numbers are A a a a= ( )1 2 3, ,  and B b b b= ( )1 2 3, , :

(1) Addition:-
 A B a a a b b b a b a b a b+ = ( ) + ( ) = + + +( )1 2 3 1 2 3 1 1 2 2 3 3, , , , , , .

(2) Subtraction:-
 A B a a a b b b a b a b a b− = ( ) − ( ) = + − +( )1 2 3 1 2 3 1 3 2 2 3 1, , , , , , .

(3) Multiplication:-
 A B a a a b b b a b b a a b a b b a. , , . , , , ,= ( ) ( ) = + +( )1 2 3 1 2 3 2 1 2 1 2 2 2 3 2 3 .

(4) Division:-
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3. Model Development

In 2012, Hussam and et. al. [10] gave the formal of cost 
function   L C Dj jmax ,( )  with fuzzy completion time and fu-
zzy due date, in this section we give some details of derive   L C Dj jmax ,( )  
and find the final formula of   L C Dj jmax ,( ) which is needed 
later. First, we use the following function for measuring the 
distance between fuzzy numbers [14].
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and a a b bα α α α, , ,[ ]    are respectively, the α − cut  of 

A  and B .

Second, we suppose that there are n independent jobs to 
be processed on a single machine. Each job j, j = 1,…,n requ-
ires fuzzy processing time pj  fuzzy due date dj , which are 
a triangular fuzzy number (TFN). The machine can process 
at most job at a time, and the problem is to determine a se-
quence λ to process the jobs so that Lmax . The membership 
function P xj ( )  and D xj ( )  are defined in terms of three nu-
mbers p p pj j

c
j
u1, ,   and d d dj j

c
j
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The possible range of the fuzzy processing time Pj  and 
fuzzy due date Dj  are p , pj j

u1   and dj j
u1, d  , where the 

maximum value occurs at the point pj
c  and dj

c  respectively. 

Accordingly, the range p , pj j
u1   and dj j

u1, d   and the points 

pj
c  and dj

c  are called the supports and the cores of Pj  and 
Dj , respectively.
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Assuming the processing time Pj  and due date Dj  
are a crispy numbers for the time being then the cost 
function we are interested to study has the following 

form C Lj
j

n

=
∑ +

1
max . If the processing time and due date 

are a fuzzy numbers, then  C Lj
j

n

=
∑ +

1
max  is a fuzzy func-

tion we denote the problem formulated in this sections 

1/ , / ,max
     P TFN TFN C L Cj j j j j= = + ( )∑ D D . For find the 

formula of   L Cj j,D( ) , we replacing fuzzy distance d  by  L,  A  
with Cj , the fuzzy completion time of job j and B  with 
Dj  fuzzy due-date of the job j, the lateness of the job can be 

evaluated using the following lateness function:
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where c cj jα α,    and d dj jα α,    are the α − cut  of Cj  and 

Dj  respectively.

Hence:
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Then, the fuzzy lateness cost function for job j takes the 
following form:

  L C c c d d c dj j j
c

j j
c

j j
u

j
u, .D( ) = + − − + −( )1

4
2 21 1

The following are the basic characteristics of this func-
tion.

The (FEFDD) rule (fuzzy earliest fuzzy due-date rule) 
min Lmax . In this rule the jobs are ordered in non-decreasing 
order of their due-dates
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3.1. Theorem
The maximum fuzzy lateness Lmax  is minimum by seque-

ncing by (FEFDD) rule.
Proof: By using pairwise adjacent interchange jobs rule.
Consider the seq. s ij= ′( )σ σ  where σ  and ′σ  are two 

partial sequence and i, j are two adjacent jobs with
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and let L  be the max. lateness of the (n-2) jobs of σ  and 
′σ .

Hence:
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Now consider the new sequence ′ = ′( )s ijσ σ , the fuzzy 
completion times of all the jobs of σ  and ′σ  are the same,

   ′ ′( ) = ′ ′{ }L s L L Li jmax max , , ,

where
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Hence

 ′ > ′ ′{ }L L Lj i jmax , ,

Then

′ ( ) ≥ ′ ′( )L s L smax max .

By repeating this procedure, we get that the FEFDD 
rule is min. ′Lmax .

3.2. Theorem
All jobs can be completed on time if and only if the FE-

FDD rule gives Lmax .= 0

Proof: All the jobs are completed on time (n jobs)
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4. Methodology

4.1. Local Search Techniques
In this section we study local search techniques which 

are useful tools for solving single machine scheduling pro-

blem 1/ , / ,max
     P TFN TFN C L Cj j j j j= = + ( )∑ D D .

Local search is an iterative algorithm that moves from 
one solution s to another ′s  according to some neighborhood 
structure.

Local search procedure usually consists of the following 
steps.

1. Initialization. Choose an initial schedule s to be the 
current solution and compute the value of the objective 
function F(s).

2. Neighbor Generation. Select a neighbor ′s  of the cur-
rent solution s and compute F s′( ) .

3. Acceptance Test. Test whether to accept the move 
from s to ′s . If the move is accepted, then ′s  replaces s as 
the current solution; otherwise s is retained as the current 
solution.

4. Termination Test. Test whether the algorithm should 
terminate. If it terminates, output the best solution generat-
ed; otherwise, return to the neighbor generation step.

We assume that a schedule is represented as a permut-
ation of job numbers j j jn1 2, ,...,( ) . This can always be done 
for a single machine processing system or for permutation 
flow shop; for other models more complicate structures are 
used.

In step (1), a starting solution can be obtained by one 
of the constructive heuristics described in the previous le-
ctures or it can be specified by a random job permutation. 
If local search procedure is applied several times, then it is 
reasonable to use random initial schedules.

To generate a neighbor ′s  in step (2), a neighborhood st-
ructure should be specified beforehand. Often the following 
types of neighborhoods are considered:

• transpose neighborhood in which two jobs occupying 
adjacent positions in the sequence are interchanged:

(1, 2, 3, 4, 5, 6, 7) →  (1, 3, 2, 4, 5, 6, 7);
• swap neighborhood in which two arbitrary jobs are 

interchanged:
(1, 2, 3, 4, 5, 6, 7) →  (1, 6, 3, 4, 5, 2, 7);
• insert neighborhood in which one job is removed from 

its current position and inserted elsewhere:
(1, 2, 3, 4, 5, 6, 7) →  (1, 3, 4, 5, 6, 2, 7).
Neighbors can be generated randomly, systematically, or 

by some combination of the two approaches.
In step (3), the acceptance rule is usually based on values 

F(s) and F s′( )  of the objective function for schedules s and ′s . 
In some algorithms only moves to ‘better’ schedules are acc-
epted (schedule ′s  is better than s if F s F s′( ) ( ) < ); in others 
it may be allowed to move to ‘worse’ schedules. Sometimes 
“wait and see” approach is adopted.

The algorithm terminates in step (4) if the computation 
time exceeds the prespecified limit or after completing the 
prespecified number of iterations.

4.2. Threshold Acceptance Method (TH)
A variant of simulated annealing is the threshold acc-

eptance method (Brucker 2007). It differs from simulated 
annealing only by the acceptance rule for the randomly 
generated solution ′ ∈s N . ′s  is accepted if the difference 
F s F s′( ) ( )   is smaller than some non-negative threshold t. 
t is a positive control parameter which is gradually reduced. 

Fig. 1 shows the generic implementation of Threshold acce-
ptance structure.

Fig. 1. Threshold acceptance structure

The threshold acceptance method has the advantage that 
they can leave a local minimum. They have the disadvantage 
that it is possible to get back to solutions already visited. 
Therefore oscillation around local minima is possible and 
this may lead to a situation where much computational time 
is spent on a small part of the solution set.

4.3. Tabu Search (TS)
The use of the tabu search was pioneered by Glover [8] 

who from 1994 onwards has published many articles discu-
ssing its numerous applications. Others were quick to adopt 
the technique which has been used for such purposes as seq-
uencing, scheduling, oil exploration and routing.

The properties of the tabu search can be used to enhance 
other procedure by preventing them becoming stuck in the 
regions of local minima. The tabu search utilizes memory to 
prevent the search from returning to a previously explored 
region of the solution space too quickly. This is achieved by 
retaining a list of possible solutions that have been previously 
encountered. These solutions are considered tabu-hence the 
name of the technique. The size of the tabu list is one of the 
parameters of the tabu search. The tabu search also contains 
mechanism for controlling the search. The tabu list ensures 
that some solution will be unacceptable; however, the restr-
iction provided by the tabu list may become too limiting in 
some cases causing the algorithm to become trapped at a loc-
ally optimum solution. The tabu search introduces the notion 
of aspiration criteria in order to overcome this problem. The 
aspiration criteria over-ride the tabu restrictions making it 
possible to broaden the search for the global optimum.

An initial solution is generated (usually randomly). The 
tabu list is initialized with the initial solution. A number of 
iterations are performed which attempt to update the current 
solution with a better one, subject to the restriction of the tabu 
list. A list of candidate solution is proposed in every iteration. 
The most admissible solution is selected from the candidate 
list. The current solution is updated with the most admissible 
one and the new current solutions added to the tabu list. The 
algorithm stops after a fixed number of iterations or when a 
better solution has been found for a number of iterations. Fig. 2 
shows the generic implementation of tabu search.

Fig. 2. A generic Tabu Search
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4.4. Memetic Algorithm Approach (MA)
Memetic algorithms (MA), combines the recognized str-

ength of the population-based methods with the intensifica-
tion capability of a local search. In an MA, all individuals of 
the population evolve solutions until they become local mi-
nima of a certain neighborhood (or highly evolved solutions 
of individual search strategies), i.e., after the recombination 
and mutation steps, a local search is applied to the resulting 
solutions. A more formal introduction to MA and polynom-
ial merger algorithms can be found in Moscato [15]. Fig. 3 
shows a pseudo-code representation of a local search-based 
memetic algorithm.

Fig. 3. Pseudo-code of a Memetic Algorithm

The initialization part begins at initialize Population 
and ends just before the repeat command. This part is resp-
onsible for the generation, optimization and evaluation of the 
initial population (Pop). The second part includes the so-cal-
led ‘generation loop’. At each step, two parent configurations 
are selected for recombination and an offspring is produced 
and, if selected to mutate, it suffers a mutation process. The 
next steps are local search, evaluation and insertion of the 
new solution into the population. If the population is con-
sidered to have lost diversity, a mutation process is applied 
on all individuals except the best one. Finally, a termination 
condition is checked.

4.4.1. Population Structure
In our implementation we use a hierarchically structured 

population organized as a complete ternary tree of individ-
uals clustered in 4 subpopulations or clusters, as shown in 
figure(4). In contrast with a non-structured population it 
restricts crossover possibilities. Other studies have shown 
that the use of structured populations is more effective 
when compared to non-structured populations (e.g. França 
et al.(5)).

Fig. 4. Population structure

The structure consists of several clusters, each one com-
posed of a leader and three supporter solutions. The leader 
of a cluster is always better fitted than its supporters. This 
hierarchy ensures top clusters have better fitted individuals 

than bottom clusters. As new individuals are constantly 
generated, replacing old ones, periodic adjustments to keep 
this structure well-ordered are necessary.

The number of individuals in the population is restr-
icted to the numbers of nodes in a complete ternary tree: 
13, 40, 121, etc. That is, 13 individuals are necessary to 
construct a ternary tree with 3 levels, 40 to one with 4 
levels and so on.

4.4.2. Representation of Individuals
The representation we have chosen for the 
1/ , / ,max
     P TFN TFN C L Cj j j j j= = + ( )∑ D D

is quite intuitive, with a solution represented as a chromosome 
with the alleles assuming different integer values in the [1, n] 
interval, where n is the number of jobs. There are m-1cut-poi-
nts in the chromosome that define the subsequences assigned 
on machine.

For instance, < 4 9 6 * 2 8 5 1 * 3 10 7 > is a possible 
solution for a problem with 10 jobs. The cut-points (*) are 
in positions 4 and 9. Therefore, subsequence 1 executes 
operations 4 - 9 - 6, in this order; subsequence 2 executes 
operations 2 - 8 - 5 - 1 and subsequence 3 performs operat-
ions 3 - 10 - 7.

4.4.3. Recombination
The command select To Merge indicates the task of 

selecting a subset of individuals (called S Poppar ⊆ ) to be 
used as input for the crossover operation, represented by the 
Recombine( ) function. In the pseudo code, the symbol ‘x’ 
stands for the instance of the problem. In this case, since we 
are addressing the r w Cj j j j∑ , the ‘x’ refers to matrix sij  and 
vector pj .

The crossover operator implemented is the well-known 
Order Crossover (OX). After choosing two parents, a frag-
ment of the chromosome from one of them is randomly sele-
cted and copied into the offspring. In the second phase, the 
offspring’s empty positions are sequentially filled according 
to the chromosome of the other parent.

Parent A 2 4 * 7 6 3 * 1 5

Parent B 6 5 2 * 7 1 4 * 3

Initial Offspring 1 1 1 7 6 3 * 1 1 (A)

Construction phase 5 2 2 7 6 3 * 2 1 (B)

5 2 2 7 6 3 * 2 1 (B)

5 2 * 7 6 3 * 2 1 (B)

5 2 * 7 6 3 * 1 1 (B)

Final Offspring 5 2 * 7 6 3 * 1 4 (B)

In the example above, the fragment is selected from the 
parent A and consists of the alleles < 7 6 3 * >. The child’s 
empty positions were then filled according to the order that 
the alleles appear in the chromosome of parent B. The numb-
er of new individuals generated in every iteration is controll-
ed by a parameter named cross rate which is expressed as the 
percentage of new individuals over the total population.

4.4.4. Mutation
In our method, a traditional mutation strategy based on 

job swapping was implemented. According to it, two positi-
ons are randomly selected and the alleles in these positions 
swap their values.

The alleles that are swapped can be both related to two 
jobs (two integers) or one to a job and other to a cut-point. 
In the first case the number of jobs on each machine remains 
the same. In the second case the structure of the solution 
is changed, because the number of jobs on each machine is 
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modified. The case in which both positions selected are cut-
points does not change anything at all.

We implemented two mutation procedures - Mutate 
( ) and Restart Pop( ); the first can be considered a light 
mutation and the other is a heavy mutation procedure. The 
Mutate( ) function is applied to each individual with a prob-
ability of mut_rate and, once applied, it mutates two alleles. 
Implementations with more changes per individual showed 
no improvement.

In fact, when the number of alleles to be mutated 
increases, valuable information tends to be lost, worse-
ning the MA’s overall performance. The Restart Pop( ) 
procedure, on the other hand, mutates all individuals in 
the main Pop except the incumbent solution. The swapping 
procedure is applied to each individual 10n times, so the res-
ulting population almost resembles a randomized restarting 
procedure.

4.4.5. Fitness Function
As in this problem the goal is to minimize the maximum 

fuzzy lateness and the maximum completion time, the fitness 
function was chosen as randomly.

4.4.6. Selection of Parents
Recombination is only allowed between a leader and 

one of its supporters and both are randomly selected. An 
intensification procedure was implemented, forcing the 
best individual to take part in approximately 10% of the 
crossovers.

This procedure showed itself to be very effective when 
compared to a standard selection policy. Tests revealed 
small but repeated improvements over the scheme without 
intensification.

4.4.7. Offspring Insertion into Population
Once the leader and one supporter are selected, the 

recombination, mutation and local search take place and 
an offspring is generated.

If the fitness of the offspring is better than the supp-
orter’s that took part in the recombination, the offspring 
replaces the supporter. If the new individual is already pr-
esent in the population, it is not inserted in it. We adopted 
a policy of not allowing duplicated individuals to reduce 
loss of diversity.

After the generation is over and all individuals were 
inserted, the population is restructured.

The hierarchy forces the fitness of an individual to be 
lower than the fitness of the individual just above it in the 

ternary tree. Following this policy, the higher clusters 
will have leaders with better fitness than the lower clu-
sters and the best solution will be the leader of the root 
cluster.

The adjustment is made by comparing each individual 
to the individual just above which it is connected to. If the 
lower individual becomes better than the upper one, they 
swap places.

5. Computational Results

Local search methods were tested by coding then in Ma-
tlab R2009b and runs on a Pentium IV at 2.20GHz, 2.0GB 
computer. The tested problem instances are generated as 
follows:

For n=10, 20, 30, 50, 100, 200, 500 & 1000. The fuzzy 
processing times were generated uniformly with support in 
the range of [10, 30] and the fuzzy due dates were generated 
randomly with the support in the range of [1, W], where W 
was also randomly selected among the values of {10, 20, 30, 
40, 50}.

The efficiency local search heuristic methods (Thr-
eshold accepted (TA), Tabu search (TS), and Memetic 
algorithm (MA)) have been approached in terms of com-
parable rate of value. In the following Tab. 1a for MA we 
compared among three ways for selection the best values 
for fitness function first by choose the minimum values for 
c and we denoted MAc, and second choose by use the ratio 

r
c u

6

1 4
6= + +( )  (like the Program Evaluation and Review 

Technique (PERT) in network models) where l,u are called 
the lower and upper limits of support and c is called the core 
of triangular fuzzy number we denoted MA r6 . Finally we 
suggested another comparison between fuzzy numbers by 

using a ranking function r
c u

6

1 4
6= + +( )  and took symbol 

MA r4 . Tab. 1a show that the MA r4  gives best solution for 

l and u.

Tab. 1b was used the same ways for selection (TSc, 
TS r4  and TS r6 ). Tab. 1b show that for jobs (10, 20, 30) 
was instable although TS r6  was some time better. TS
r4  gives best solution for l and u for equal or greater than 
50 jobs. 

10 20 30 50 100 200 500 1000

MAc

l 890.75 5270 16311.65 70651.35 710601.93 4899545.9 68366984.23 730663074.4

c 1086.65 6152.7 18235.55 75890.75 911930.13 5730969.7 73912322.33 962023768

u 1449.95 7617.7 21154.85 83503.65 1214757.33 6898728 80938418.93 1234143921

MA r4

l 888.85 5249.48 16182.2 70231.23 696142.2 4856359.08 68169184.8 727746820.53

c 1092.75 6170.98 18249.2 75944.43 915795.8 5748871.18 73982833.6 964482995.73

u 1434.55 7536.98 21009.3 83079.73 1203876.6 6847733.08 80732460.7 1228511021.53

MA r6

l 888.375 5264.05 16220.68 70408.3 699666.1 4864920.45 68257407.15 727893492.2

c 1087.18 6165.85 18231.48 76005.8 912194.9 5730921.25 73948652.15 962318409.1

u 1436.98 7567.75 21042.98 83182.9 1208130.4 6873285.35 80815578.85 1229680502

Table 1a

Compares values for MAc, MA r4  and MA r6
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Tab. 1c show that the TH r4  gives best solution for l and u. And TH r6  gives best solution for c.

10 20 30 50 100 200 500 1000

TSc

L 881.93 5255.2 16231.05 70376.43 702286.25 4916151.05 68603791.15 732545060.58

C 1128.33 6319.4 18614.05 77137.73 956784.15 5923156.65 74937674.05 983947263.78

u 1433.33 7519.3 20980.65 83230.13 1208304.85 6905950.85 81223058.05 1235212742.18

TS r4

l 885.98 5253.45 16217.18 70243.38 700640.53 4864997.15 68427077.98 729213883.3

c 1089.58 6186.05 18294.98 76115.88 919805.23 5775052.95 74441493.78 969323757.9

u 1433.18 7534.55 20992.68 83069.38 1206265.43 6880457.35 81044918.78 1231395664

TS r6

l 889.13 5249.03 16199 70352.23 705715.33 4884784.48 68450579.3 730378090.9

c 1088.33 6159.93 18247.7 76156.23 916788.93 5768822.78 74362071 967491138.6

u 1443.23 7563.83 21036.2 83230.23 1210502.63 6887176.58 81078921.7 1233783933.5

Table 1b

Compares values for TSc, TS r4  and TS r6

10 20 30 50 100 200 500 1000

THc

l 892.68 5320.4 16433.4 70635.75 721921.53 4930327.55 68483229.03 732908423.03

c 1109.88 6328.3 18722.7 77184.85 962902.93 5907957.15 74631257.53 979749112.73

u 1428.58 7572.4 21187.2 83565.65 1225292.23 6928371.85 81079157.33 1235686296.23

TH r4

l 886.18 5242.53 16201.18 70307.73 699981.35 4872741.85 68449639.25 728205961.65

c 1089.98 6185.73 18265.28 76117.23 922723.65 5779776.25 74449373.15 969318624.95

u 1432.18 7532.93 21016.48 83095.73 1204659.15 6882313.65 81053998.05 1231711787.85

TH r6

l 886.23 5252.55 16225.58 70459.18 703683.93 4878116.6 68466508.7 730178380.28

c 1089.53 6167.95 18272.98 75939.88 916443.63 5764499.5 74379550.9 967304040.58

u 1439.93 7559.65 21045.98 83260.88 1211811.23 6887759.8 81080858.6 1232740610.48

Table 1c

Compares values for THc, TH r4  and TH r6

In the following Tab. 2 we took the best results from the 
Tab. 1a, 1b, 1c and show the efficiency local search heuristic 
methods (MA r4 , TS r4  and TH r4 ) have been approached 

in terms of comparable rate of values. MA r4  gives the best 
values for the big jobs but for the small jobs the results was 
unclear what is the approach gives best solution.

10 20 30 50 100 200 500 1000

MA r4

l 888.85 5249.475 16182.2 70231.225 696142.2 4856359.075 68169184.8 727746820.53

c 1092.75 6170.975 18249.2 75944.425 915795.8 5748871.175 73982833.6 964482995.73

u 1434.55 7536.975 21009.3 83079.725 1203876.6 6847733.075 80732460.7 1228511021.53

TS r4

l 885.98 5253.45 16217.18 70243.38 700640.53 4864997.15 68427077.98 729213883.3

c 1089.58 6186.05 18294.98 76115.88 919805.23 5775052.95 74441493.78 969323757.9

u 1433.18 7534.55 20992.68 83069.38 1206265.43 6880457.35 81044918.78 1231395664

TH r4

l 886.18 5242.53 16201.18 70307.73 699981.35 4872741.85 68449639.25 728205961.65

c 1089.98 6185.73 18265.28 76117.23 922723.65 5779776.25 74449373.15 969318624.95

U 1432.18 7532.93 21016.48 83095.73 1204659.15 6882313.65 81053998.05 1231711787.85

Table 2

Compares values of local search methods
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In the following Tab. 3 show the efficiency local search 
heuristic methods (MA r4 , TS r4  and TH r4 ) have been app-

roached in terms of comparable rate of times. TH r4  gives the 
best times for the all jobs then TS r4  was butter than MA r4 .

10 20 30 50 100 200 500 1000

M r4
0.213938 0.321157 0.433444 0.651585 1.232433 2.532499 7.644073 18.78292

TS r4
0.023767 0.030195 0.02531 0.026875 0.03158 0.042565 0.087396 0.326691

TH r4
0.023512 0.02302 0.024426 0.025027 0.027128 0.030516 0.041107 0.060182

Table 3

Compares times of local search methods

6. Concluding Remarks

We have developed a new model to formulate the situa-
tion where jobs with fuzzy processing times and fuzzy due 

dates are to be scheduled on a single machine. The local 
search methods used to solve all the large problems the 
result show the robustness and flexibility of local search 
heuristics.
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