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Iau
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1. Introduction

In most of cases in our life, the data obtained for decision
making are only approximately known. In 1965, Zadeh [18]
introduced the concept of fuzzy set theory to meet that pr-
oblem. In 1978, Dubois and Prade [4] defined the fuzzy nu-
mbers as a fuzzy subset of the real line. In 1991, Kaufmann
and Gupta [12], considered a distance measure of two fuzzy
number combined by the interval of of fuzzy numbers. In
1997, Heilpern [9] proposed three definitions of the distance
between two fuzzy numbers. Lam and Cai [13] gave a fuzzy
function from measuring the distance between fuzzy numb-
er and also showed by experiments their distance function
given very good approximation to the expected distance in
numerous situations. The singe machine case is of great im-

portance since there are some general problems of this type
which can be solved in polynomial time. The assumption
that all parameters are determined restricts the practical
aspect of scheduling since, for many real-world processes
the exact values of parameters are not known advance the
natural approach to modeling the uncertainty is a stochastic
one in which the parameters are given as random variables.
Unfortunately, such an approach leads to difficult problems
from the computational point of view and only some special
cases can be effectively solved. The alternative approach to
modeling imprecision is a fuzzy one in which the parameters
are given in the form of fuzzy numbers. This approach turns
out be easier than stochastic one and there are some general
problems, which can be solved in polynomial time. In the
recent decade there have appeared some papers dedicated




to fuzzy single scheduling ([2], [17]). The first aim of this
paper is to propose a general formulation of multi-objective
function with fuzzy due dates and fuzzy processing time.
The second aim we will apply some local search methods
(Threshold accepted (TA), Tabu search (TS), and Memetic
algorithm (MA)).

2. Preliminaries

In this section we specify the context of this study and
recall basic definitions that will be used in the following. We
also present the principle underlying the main approaches
for defining fuzzy distances.

2.1. Definition [7]

Let X be a nonempty set of points. A fuzzy subset A of X
is a function A:X—[0,1] for cach xeX, A(x) is called the
degree of membership of xin A .

2.2. Definition [16]

A fuzzy number A is a fuzzy subset of the real numbers
R which is denied, in general, as follows:

0 for x<a
f.(x) forasx<c

A(X): 1 forc<x<d
g:(x) ford<x<b
0 for b<x

where f; and g, are respectively, non-decreasing, and non-
increasing functions.

2.3. Definition [7]

Let A bea fuzzy number of X, the oo—cut of A denot-
ed A, is defined by A, = {x eX:A(x)2 oc} where ae[0,1].
On the other hand, 0—cut of A is called the support of
A and denoted by supp A . It follows from the properties
of the membership function of a fuzzy number A that each
its o.—cut A, ae[0,1], is a closed interval. We will denote
ithy A, = [a,.3,].

2.4 Definition [16]

A fuzzy number A in R is a triangular fuzzy number if
its membership function A:R—[0,1] is equal to:

[0 for x<a

X728 fora<x<b
A= b-a ,

X forb<x<c

c-b

0 forc<x

with a<b<c. The triangular fuzzy number can be denoted
by A:(a,b,c) .

2.5. Operations of Triangular Fuzzy Numbers [16]

The fuzzy arithmetic operations of triangular fuzzy
numbers are described as follows. If two triangular fuzzy
numbers are A:(a1,a2,a3) and B=(b,,b,,b,):

(1) Addition:-

A+B=(a,a,a,)+(b,,b,,b,)=(a, +b,a,+b,a,+b,).

(2) Subtraction:-

A-B=(a;a,a,)=(b;,b,b,)=(a, +bya, ~b,a, +b,).

(3) Multiplication:-

AB=(a,a,a,).(b,b,,b,)=(a,b, +b,a,a,b,a,b, +b,a,).

(4) Division:-

A= (A4, 4,54

3. Model Development

In 2012, Hussam and et. al. [10] gave the formal of cost
function f‘mx(C D) with fuzzy completion time and fu-
zzyduedate,inthissectionwegivesomedetailsofderive L. (C D. ;
and find the final formula of L (C D. )Whlch is neede

later. First, we use the following function for measuring the
distance between fuzzy numbers [14].

&(A,B):&T(A,B)+&S(A,B),
oAl Joe <[ 02
N S = - _ [oif x>0
de(A )= (o) + (5] a0 {0 20

and [a,,a,], [b b ] are respectively, the o.—cut of

A and B.

Second, we suppose that there are n independent jobs to
be processed on a single machine. Each job j, j = 1,..,n requ-
ires fuzzy processing time p; fuzzy due date d;, which are
a triangular fuzzy number (TFN). The machine can process
at most job at a time, and the problem is to determine a se-
quence A to process the jobs so that L . The membership
function P, ( ) and D fx) are defined in terms of three nu-

mbers |:pJ P pJ] and | d! dj d“] as follows:

]

[0 if x<p!
—p!
(XC p~11) if pi<x<pj
~ (pj' _pj) i
PJ(X)z " )
(pJ _X) . c u
oo AP SX<p;
(pj _pj) ) !
10 if p/<x
and
[0 if x<d!
~d!
2d) i grex<ar
N (d-d)) ! !
D,(x)= (d“ _);) .
= ifdi<x<d!
(d.l _d.i)
0 if dj <x

The possible range of the fuzzy processing time P and
fuzzy due date D are [p),pj] and [d1 d“], where the
maximum value occurs at the point pj and dj respectively.
Accordingly, the range [p}, pJ“] and [d}, dj“] and the points
p; and dj are called the supports and the cores of P, and
ﬁj , respectively.



Assuming the processing time P, and due date D,
are a crispy numbers for the time being then the cost
function we are interested to study has the following

form ZC +L,,. . If the processing time and due date
=t

are a fuzzy numbers, then ZC +L_is a fuzzy func-

j=1
tion we denote the problem formulated in this sections

1/P=TFN,D,=TFN/Y C +L,, (Cj,f)j) . For find the
formula of I:(Cj,f)j) , we replacing fuzzy distance d by L, A
with C,
D, fuzzy due-date of the job j, the lateness of the job can be
evaluated using the following lateness function:

max

the fuzzy completion time of job j and B with

and [d d

Jjo?

where [c ] are the oo—cut of Ci and

jo?
D . respectlvely.

£(0,0)=3 (- ({05~ wa)) +
#((~(et =t ) (- (- )] s
el eare (o -a)osa)) +
(e o0 - o ) Jte

Then, the fuzzy lateness cost function for job j takes the
following form:

N | —

T T 1 c c u u
L(C.i’D.i):Z(2c.i +e=2d; ~dj+c - d}).
The following are the basic characteristics of this func-

tion.
The (FEFDD) rule (fuzzy earliest fuzzy due-date rule)

min L, . In this rule the jobs are ordered in non-decreasing
order of their due-dates

1 1 c u
(diy<dy <. <d) diy <diy <. <df and dfy <df <..<d ).

3.1. Theorem

The maximum fuzzy lateness L
ncing by (FEFDD) rule.

Proof: By using pairwise adjacent interchange jobs rule.

Consider the seq. s=(oijo’) where ¢ and o’ are two
partial sequence and i, j are two adjacent jobs with

di>d}, df >dS and d! > d!, let

pl = Z ier}’ pf = 2 iecpic and p“ = Z ié‘sp‘u !

is minimum by seque-

max

and let L be the max. lateness of the (n-2) jobs of ¢ and
o .

Hence:

L= {200 +pi =)ol ol =d o ),

I:J.=é(2(p“+pf+pj—d;)+p'+p}+p}—d;+p“+p;’+p}’ —d}').

Now consider the new sequence s’=(cijo’), the fuzzy
completion times of all the jobs of ¢ and ¢’ are the same,

L.(s)= max{I:,I:i',I:;},

max

where

L;:é(2(p"+pj—d§)+p' +p;—d§+p" +p] —dj“),
i§=i(2(p“+p§+pf—df)+p' +pj+p—d +p"+p}+p; -d}),

and

L,>Land L,>1; sinced >d}, d' >d andd} >d!.
Hence

L7>max{L;, L/},
Then

L:ﬂ}]\ ( ) L:nax ( ‘/)

By repeating this procedure, we get that the FEFDD
rule ismin. L7 .

3.2. Theorem

All jobs can be completed on time if and only if the FE-
FDD rule gives L__=0.

Proof: All the jobs are completed on time (n jobs)

iff ¢} <d}, ¢{<df and ¢} <d! V j=1,2,...n,

iff ¢{-d}<0,¢{-d;<0and ¢! -d} <0,V j=1,2,.n,
1 c c 1 1 u u

But L, :2(2(61. —dj )+c —dj+cj -d; ),

<0, Vj=1.2,..n,

m ax

iff there exist at least one job j which
1_ gl c_ Jc u_ Ju s
¢;=d;, ¢j=d{ and cj=di.e.

iff L.

max



4. Methodology

4.1. Local Search Techniques
In this section we study local search techniques which
are useful tools for solving single machine scheduling pro-

blem 1/P,=TFN, D,=TFN/Y C +L,,(C,D)).

Local search is an iterative algorithm that moves from
one solution s to another s’ according to some neighborhood
structure.

Local search procedure usually consists of the following
steps.

1. Initialization. Choose an initial schedule s to be the
current solution and compute the value of the objective
function F(s).

2. Neighbor Generation. Select a neighbor s” of the cur-
rent solution s and compute F(s’).

3. Acceptance Test. Test whether to accept the move
from s to s". If the move is accepted, then s’ replaces s as
the current solution; otherwise s is retained as the current
solution.

4. Termination Test. Test whether the algorithm should
terminate. If it terminates, output the best solution generat-
ed; otherwise, return to the neighbor generation step.

We assume that a schedule is represented as a permut-
ation of job numbers (j,,j,,....j,) . This can always be done
for a single machine processing system or for permutation
flow shop; for other models more complicate structures are
used.

In step (1), a starting solution can be obtained by one
of the constructive heuristics described in the previous le-
ctures or it can be specified by a random job permutation.
If local search procedure is applied several times, then it is
reasonable to use random initial schedules.

To generate a neighbor s” in step (2), a neighborhood st-
ructure should be specified beforehand. Often the following
types of neighborhoods are considered:

e transpose neighborhood in which two jobs occupying
adjacent positions in the sequence are interchanged:

(1,2,3,4,5,6,7) — (1,3,2,4,5,6,7);

 swap neighborhood in which two arbitrary jobs are
interchanged:

(1,2,3,4,5,6,7) — (1,6,3,4,5,2,7);

* insert neighborhood in which one job is removed from
its current position and inserted elsewhere:

(1,2,3,4,5,6,7) — (1,3,4,5,6,2,7).

Neighbors can be generated randomly, systematically, or
by some combination of the two approaches.

In step (3), the acceptance rule is usually based on values
F(s)and F(s") of the objective function for schedulessand s’ .
In some algorithms only moves to ‘better’ schedules are acc-
epted (schedule s is better than s if F(s”) <F(s)); in others
it may be allowed to move to ‘worse’ schedules. Sometimes
“wait and see” approach is adopted.

The algorithm terminates in step (4) if the computation
time exceeds the prespecified limit or after completing the
prespecified number of iterations.

4.2. Threshold Acceptance Method (TH)

A variant of simulated annealing is the threshold acc-
eptance method (Brucker 2007). It differs from simulated
annealing only by the acceptance rule for the randomly
generated solution s"eN. s’ is accepted if the difference
F(s’) - F(s) is smaller than some non-negative threshold t.
t is a positive control parameter which is gradually reduced.

Fig. 1 shows the generic implementation of Threshold acce-
ptance structure.

While (termination condition in not satigfied) do

New solution < neighbors (best solution);

If new solution is better than actual solution then

Best solution «<— actual solution

Elseif difference between old and new solution less than control

parameter t then
Best solution < actual solution

End if

End wluale
Fig. 1. Threshold acceptance structure

The threshold acceptance method has the advantage that
they can leave a local minimum. They have the disadvantage
that it is possible to get back to solutions already visited.
Therefore oscillation around local minima is possible and
this may lead to a situation where much computational time
is spent on a small part of the solution set.

4.3. Tabu Search (TS)

The use of the tabu search was pioneered by Glover [8]
who from 1994 onwards has published many articles discu-
ssing its numerous applications. Others were quick to adopt
the technique which has been used for such purposes as seq-
uencing, scheduling, oil exploration and routing.

The properties of the tabu search can be used to enhance
other procedure by preventing them becoming stuck in the
regions of local minima. The tabu search utilizes memory to
prevent the search from returning to a previously explored
region of the solution space too quickly. This is achieved by
retaining a list of possible solutions that have been previously
encountered. These solutions are considered tabu-hence the
name of the technique. The size of the tabu list is one of the
parameters of the tabu search. The tabu search also contains
mechanism for controlling the search. The tabu list ensures
that some solution will be unacceptable; however, the restr-
iction provided by the tabu list may become too limiting in
some cases causing the algorithm to become trapped at a loc-
ally optimum solution. The tabu search introduces the notion
of aspiration criteria in order to overcome this problem. The
aspiration criteria over-ride the tabu restrictions making it
possible to broaden the search for the global optimum.

An initial solution is generated (usually randomly). The
tabu list is initialized with the initial solution. A number of
iterations are performed which attempt to update the current
solution with a better one, subject to the restriction of the tabu
list. A list of candidate solution is proposed in every iteration.
The most admissible solution is selected from the candidate
list. The current solution is updated with the most admissible
one and the new current solutions added to the tabu list. The
algorithm stops after a fixed number of iterations or when a
better solution has been found for a number of iterations. Fig. 2
shows the generic implementation of tabu search.

S = Generate Initial Sohution ()
Initialize Tabu List (TL,, ..., TL,)
K=0
While (termination condition in not satisfied) do
Allowed Set (S, K) = {zeN(s)no tabu condition is violated or at least one
Aspiration criterion is satisfied }
S =Best Improvement (S, Allowed Set(S, K))
Update Tabu List and Aspiration Condition ()
K=K+l
End while

Fig. 2. A generic Tabu Search



4.4. Memetic Algorithm Approach (MA)

Memetic algorithms (MA), combines the recognized str-
ength of the population-based methods with the intensifica-
tion capability of a local search. In an MA, all individuals of
the population evolve solutions until they become local mi-
nima of a certain neighborhood (or highly evolved solutions
of individual search strategies), i.e., after the recombination
and mutation steps, a local search is applied to the resulting
solutions. A more formal introduction to MA and polynom-
ial merger algorithms can be found in Moscato [15]. Fig. 3
shows a pseudo-code representation of a local search-based
memetic algorithm.

Procedure Local Search-Based Memetic Algorithm:
BEGIN
Initialize Population Pop using First Pop ().
For Each mdividual ie Pop DO i:=Local-Search (7).
For Each individual i< main Pop DO Evaluate Fitness (7);
REPEAT /*generation loop ™/
FOR i= 1 to #recombination’s DO
Select to merge a set S, Pop,
Offspring: = Recombine (Sp. x):
IF (select To Mutate offspring) THEN offspring = Mutate
(offspring).
offspring= Local-Search (offspring).
Evaluate Fitness (offspring):
Add in Population individual offspring to Pop:
End For:
IF (Pop has_converged) Pop:= RestartPop(Pop):
UNTIL stop criterion;
END

Fig. 3. Pseudo-code of a Memetic Algorithm

The initialization part begins at initialize Population
and ends just before the repeat command. This part is resp-
onsible for the generation, optimization and evaluation of the
initial population (Pop). The second part includes the so-cal-
led ‘generation loop’. At each step, two parent configurations
are selected for recombination and an offspring is produced
and, if selected to mutate, it suffers a mutation process. The
next steps are local search, evaluation and insertion of the
new solution into the population. If the population is con-
sidered to have lost diversity, a mutation process is applied
on all individuals except the best one. Finally, a termination
condition is checked.

4.4.1. Population Structure

In our implementation we use a hierarchically structured
population organized as a complete ternary tree of individ-
uals clustered in 4 subpopulations or clusters, as shown in
figure(4). In contrast with a non-structured population it
restricts crossover possibilities. Other studies have shown
that the use of structured populations is more effective
when compared to non-structured populations (e.g. Franca

et al.(5)).

Fig. 4. Population structure

The structure consists of several clusters, each one com-
posed of a leader and three supporter solutions. The leader
of a cluster is always better fitted than its supporters. This
hierarchy ensures top clusters have better fitted individuals

than bottom clusters. As new individuals are constantly
generated, replacing old ones, periodic adjustments to keep
this structure well-ordered are necessary.

The number of individuals in the population is restr-
icted to the numbers of nodes in a complete ternary tree:
13, 40, 121, etc. That is, 13 individuals are necessary to
construct a ternary tree with 3 levels, 40 to one with 4
levels and so on.

4.4.2. Representation of Individuals

The representation we have chosen for the

1/P=TFN, D,=TFN/Y C+L,,(C,D))
is quite intuitive, with a solution represented as a chromosome
with the alleles assuming different integer values in the [1, n]
interval, where n is the number of jobs. There are m-1cut-poi-
nts in the chromosome that define the subsequences assigned
on machine.

For instance, <496 *2 851 *3 10 7 > is a possible
solution for a problem with 10 jobs. The cut-points (*) are
in positions 4 and 9. Therefore, subsequence 1 executes
operations 4 - 9 - 6, in this order; subsequence 2 executes
operations 2 - 8 - 5 - 1 and subsequence 3 performs operat-
ions 3-10 - 7.

4.4.3. Recombination

The command select To Merge indicates the task of
selecting a subset of individuals (called S, cPop) to be
used as input for the crossover operation, represented by the
Recombine( ) function. In the pseudo code, the symbol ‘x’
stands for the instance of the problem. In this case, since we
are addressing the T ‘Z WG, the ‘x’ refers to matrix Sy and
vector p;.

The crossover operator implemented is the well-known
Order Crossover (OX). After choosing two parents, a frag-
ment of the chromosome from one of them is randomly sele-
cted and copied into the offspring. In the second phase, the
offspring’s empty positions are sequentially filled according
to the chromosome of the other parent.

A24%*763%15
652*714*3
111763*11(A)
522763%21(B)
522763*21(B)
52%763%21(B)
52%763*11(B)
52%763%14(B)

Parent
Parent B
Initial Offspring

Construction phase

Final Offspring

In the example above, the fragment is selected from the
parent A and consists of the alleles <7 6 3 * >, The child’s
empty positions were then filled according to the order that
the alleles appear in the chromosome of parent B. The numb-
er of new individuals generated in every iteration is controll-
ed by a parameter named cross rate which is expressed as the
percentage of new individuals over the total population.

4.4.4. Mutation

In our method, a traditional mutation strategy based on
job swapping was implemented. According to it, two positi-
ons are randomly selected and the alleles in these positions
swap their values.

The alleles that are swapped can be both related to two
jobs (two integers) or one to a job and other to a cut-point.
In the first case the number of jobs on each machine remains
the same. In the second case the structure of the solution
is changed, because the number of jobs on each machine is



modified. The case in which both positions selected are cut-
points does not change anything at all.

We implemented two mutation procedures - Mutate
() and Restart Pop( ); the first can be considered a light
mutation and the other is a heavy mutation procedure. The
Mutate( ) function is applied to each individual with a prob-
ability of mut_rate and, once applied, it mutates two alleles.
Implementations with more changes per individual showed
no improvement.

In fact, when the number of alleles to be mutated
increases, valuable information tends to be lost, worse-
ning the MA’s overall performance. The Restart Pop( )
procedure, on the other hand, mutates all individuals in
the main Pop except the incumbent solution. The swapping
procedure is applied to each individual 10n times, so the res-
ulting population almost resembles a randomized restarting
procedure.

4.4.5. Fitness Function

As in this problem the goal is to minimize the maximum
fuzzy lateness and the maximum completion time, the fitness
function was chosen as randomly.

4.4.6. Selection of Parents

Recombination is only allowed between a leader and
one of its supporters and both are randomly selected. An
intensification procedure was implemented, forcing the
best individual to take part in approximately 10% of the
CTOSSOVETS.

This procedure showed itself to be very effective when
compared to a standard selection policy. Tests revealed
small but repeated improvements over the scheme without
intensification.

4.4.7. Offspring Insertion into Population

Once the leader and one supporter are selected, the
recombination, mutation and local search take place and
an offspring is generated.

If the fitness of the offspring is better than the supp-
orter’s that took part in the recombination, the offspring
replaces the supporter. If the new individual is already pr-
esent in the population, it is not inserted in it. We adopted
a policy of not allowing duplicated individuals to reduce
loss of diversity.

After the generation is over and all individuals were
inserted, the population is restructured.

The hierarchy forces the fitness of an individual to be
lower than the fitness of the individual just above it in the

ternary tree. Following this policy, the higher clusters
will have leaders with better fitness than the lower clu-
sters and the best solution will be the leader of the root
cluster.

The adjustment is made by comparing each individual
to the individual just above which it is connected to. If the
lower individual becomes better than the upper one, they
swap places.

5. Computational Results

Local search methods were tested by coding then in Ma-
tlab R2009b and runs on a Pentium IV at 2.20GHz, 2.0GB
computer. The tested problem instances are generated as
follows:

For n=10, 20, 30, 50, 100, 200, 500 & 1000. The fuzzy
processing times were generated uniformly with support in
the range of [10, 30] and the fuzzy due dates were generated
randomly with the support in the range of [1, W], where W
was also randomly selected among the values of {10, 20, 30,
40, 50).

The efficiency local search heuristic methods (Thr-
eshold accepted (TA), Tabu search (TS), and Memetic
algorithm (MA)) have been approached in terms of com-
parable rate of value. In the following Tab. 1a for MA we
compared among three ways for selection the best values
for fitness function first by choose the minimum values for
¢ and we denoted MAc, and second choose by use the ratio

Iy = (1+4e+u) 6 (like the Program Evaluation and Review

Technique (PERT) in network models) where L,u are called
the lower and upper limits of support and c is called the core
of triangular fuzzy number we denoted MA ;. Finally we
suggested another comparison between fuzzy numbers by

using a ranking function r; = (L+4e+ u% and took symbol
MAr, . Tab. 1a show that the MAr, gives best solution for
land u.

Tab. 1b was used the same ways for selection (TSc,
TSr, and TSt,). Tab. 1b show that for jobs (10, 20, 30)
was instable although TS, was some time better. TS
r, gives best solution for | and u for equal or greater than
50 jobs.

Table 1a
Compares values for MAc, MAT1, and MA 1
10 20 30 50 100 200 500 1000
890.75 5270 16311.65 70651.35 710601.93 4899545.9 68366984.23 730663074.4
MAc 1086.65 6152.7 18235.55 75890.75 911930.13 5730969.7 73912322.33 962023768

1449.95 7617.7 21154.85 83503.65 1214757.33 6898728 80938418.93 1234143921

888.85 5249.48 16182.2 70231.23 696142.2 4856359.08 68169184.8 727746820.53
MAT, 1092.75 6170.98 18249.2 75944.43 915795.8 5748871.18 73982833.6 964482995.73

1434.55 7536.98 21009.3 83079.73 1203876.6 6847733.08 80732460.7 1228511021.53

888.375 5264.05 16220.68 70408.3 699666.1 4864920.45 68257407.15 727893492.2
MAT, 1087.18 6165.85 18231.48 76005.8 912194.9 5730921.25 73948652.15 962318409.1

1436.98 7567.75 21042.98 83182.9 1208130.4 6873285.35 80815578.85 1229680502




Compares values for TSc, TSt;, and TS1;

Table 1b

10 20 30 50 100 200 500 1000

L 881.93 5255.2 16231.05 70376.43 702286.25 4916151.05 68603791.15 732545060.58

TSc | C 1128.33 6319.4 18614.05 77137.73 956784.15 5923156.65 74937674.05 983947263.78
u 1433.33 7519.3 20980.65 83230.13 1208304.85 6905950.85 81223058.05 1235212742.18

1 885.98 5253.45 16217.18 70243.38 700640.53 4864997.15 68427077.98 729213883.3

TST, c 1089.58 6186.05 18294.98 76115.88 919805.23 5775052.95 74441493.78 969323757.9

u 1433.18 7534.55 20992.68 83069.38 1206265.43 6880457.35 81044918.78 1231395664

1 889.13 5249.03 16199 70352.23 705715.33 4884784.48 68450579.3 730378090.9

TSt, | © 1088.33 6159.93 18247.7 76156.23 916788.93 5768822.78 74362071 967491138.6
u 1443.23 7563.83 21036.2 83230.23 1210502.63 6887176.58 81078921.7 1233783933.5

Tab. 1c show that the THr, gives best solution for]l  and u. And THr, gives best solution for c.
Table 1c
Compares values for THc, TH1, and THr,
10 20 30 50 100 200 500 1000

1 892.68 5320.4 16433.4 70635.75 721921.53 4930327.55 68483229.03 732908423.03

THe | ¢ 1109.88 6328.3 18722.7 77184.85 962902.93 5907957.15 74631257.53 979749112.73
u 1428.58 7572.4 21187.2 83565.65 1225292.23 6928371.85 81079157.33 1235686296.23

1 886.18 5242.53 16201.18 70307.73 699981.35 4872741.85 68449639.25 728205961.65

THr, | ¢ 1089.98 6185.73 18265.28 76117.23 922723.65 5779776.25 74449373.15 969318624.95
u 1432.18 753293 | 21016.48 83095.73 1204659.15 6882313.65 81053998.05 1231711787.85

1 886.23 5252.55 16225.58 70459.18 703683.93 4878116.6 68466508.7 730178380.28

THrt, | ¢ 1089.53 6167.95 | 18272.98 75939.88 916443.63 5764499.5 74379550.9 967304040.58
u 1439.93 7559.65 21045.98 83260.88 1211811.23 6887759.8 81080858.6 1232740610.48

In the following Tab. 2 we took the best results from the
Tab. 1a, 1b, 1c and show the efficiency local search heuristic
methods (MAr,, TSt, and THr, ) have been approached

in terms of comparable rate of values. MA 1, gives the best
values for the big jobs but for the small jobs the results was
unclear what is the approach gives best solution.

Table 2
Compares values of local search methods
10 20 30 50 100 200 500 1000

1 888.85 5249.475 16182.2 70231.225 696142.2 4856359.075 68169184.8 727746820.53
MAT, | ¢© 1092.75 6170.975 18249.2 75944.425 915795.8 5748871.175 73982833.6 964482995.73

u 1434.55 7536.975 21009.3 83079.725 1203876.6 6847733.075 80732460.7 1228511021.53

1 885.98 5253.45 16217.18 70243.38 700640.53 4864997.15 68427077.98 729213883.3
TS, c 1089.58 6186.05 18294.98 76115.88 919805.23 5775052.95 74441493.78 969323757.9

u 1433.18 7534.55 20992.68 83069.38 1206265.43 6880457.35 81044918.78 1231395664

1 886.18 5242.53 16201.18 70307.73 699981.35 4872741.85 68449639.25 728205961.65
THr, | © 1089.98 6185.73 18265.28 76117.23 922723.65 5779776.25 74449373.15 969318624.95

U 1432.18 7532.93 21016.48 83095.73 1204659.15 6882313.65 81053998.05 1231711787.85




In the following Tab. 3 show the efficiency local search  roached in terms of comparable rate of times. TH r, gives the
heuristic methods (MAr,, TSt, and THr, ) have been app-  best times for the all jobs then TS, was butter than MAT, .

Table 3
Compares times of local search methods
10 20 30 50 100 200 500 1000
Mr, 0.213938 0.321157 0.433444 0.651585 1.232433 2.532499 7.644073 18.78292
TS, 0.023767 0.030195 0.02531 0.026875 0.03158 0.042565 0.087396 0.326691
THr, 0.023512 0.02302 0.024426 0.025027 0.027128 0.030516 0.041107 0.060182
6. Concluding Remarks dates are to be scheduled on a single machine. The local

search methods used to solve all the large problems the

We have developed a new model to formulate the situa-  result show the robustness and flexibility of local search
tion where jobs with fuzzy processing times and fuzzy due  heuristics.
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