- 6. Watson, G. N. A treatise on the theory of Bessel functions. [Texct]/G.N. Watson. Cambridge: Cambridge Univ. Press, 1966. 804 p.
- 7. Гетьман, А. В. Цилиндрические гармоники магнитного поля продольно намагниченного цилиндра / А. В. Гетьман, А. В. Константинов // Технічна електродинаміка. 2013. № 1. С. 13-14.
- 8. Ландау, Л. Д., Лифшиц, Е. М. Теоретическая физика. Т.8. [Текст] / Л. Д. Ландау, Е. М. Лифшиц. М.: Наука, 1982. 621 с.
- Любчик, М. А. Силовые электромагниты аппаратов и устройств автоматики постоянного тока. Расчет и элементы проектирования [Текст] / М. А. Любчик. – М.: Энергия, 1968 – 155 с.
- Любчик М. А. Оптимальное проектирование силовых электромагнитных механизмов [Текст] /М. А. Любчик. М.: Энегия,1974. – 392 с.

Експериментально досліджені спектри ослаблення світла наночастинками літію в різних середовищах. Зроблені розрахунки спектрів ослаблення світла сферичними і еліпсоїдальними наночастинками літію. Виміряні спектри поглинання світла було порівняно з обчисленими.

D

-

Отримано залежності для дослідження впливу всіх особливостей оптичних постійних речовини наночастинки на спектральне положення колоїдної смуги, її напівширину і величину коефіцієнта поглинання в максимумі смуги

Ключові слова: центри забарвлення, колоїдна частинка, кластер, спектри поглинання світла, коефіцієнт ослаблення

Экспериментально исследованы спектры ослабления света наночастицами лития в различных средах. Произведены расчеты спектров ослабления света сферическими и эллипсоидальными наночастицами лития. Измеренные спектры поглощения света сравнены с вычисленными.

Получены зависимости для исследования влияния всех особенностей оптических постоянных вещества наночастицы на спектральное положение коллоидной полосы, ее полуширину и величину коэффициента поглощения в максимуме полосы

Ключевые слова: центры окраски, коллоидная частица, кластер, спектры поглощения света, коэффициент ослабления

р-

1. Введение

Частицы многих металлов с размерами 1-200 нм обладают уникальными свойствами, которые значительно отличаются от свойств массивного металла. Особый интерес представляют частицы, которые образуются в ионных кристаллах. В современной физике твердого тела особо значительное внимание уделяется исследованию физических свойств щелочно-галоидных кристаллов и их практическому применению. Эти кристаллы, как простейшие модели твердых тел, всегда являлись благоприятными объектами для изучения структурно-чувствительных свойств, а также электронных и ионных процессов, которые происходят в ионных кристаллах.

Для понимания и практического применения физики и химии щелочно-галоидных кристаллов боль-

УДК 621.88.087(03)

ОПТИЧЕСКИЕ СВОЙСТВА НАНОЧАСТИЦ ЛИТИЯ

В. Н. Назаренко Кандидат технических наук, доцент Кафедра сопротивления материалов и строительной механики*

О.В.Нестеренко Кандидат технических наук, доцент Кафедра рудничной аэрологии и охраны труда*

И.С.Радченко Кандидат физико-математических наук, доцент**

 И.Б.Степанкина Старший преподаватель** E-mail: irischca.s@mail.ru **Кафедра теоретической и прикладной механики
 *Криворожский национальный университет ул. XXII Партсъезда, 11, г. Кривой Рог, Украина, 50027

шое значение имеет изучение процессов образования и свойств точечных дефектов. Простейшие дефекты кристаллической решетки – центры окраски – в щелочно-галоидных кристаллах были известны еще в конце XIX века. Однако их систематическое исследование началось в 20-х годах XX столетия в работах школы Поля.

Центры окраски в ионных кристаллах можно создавать путем введения примесей, начиная от самых малых их концентраций до монокристаллов с пятидесятипроцентным содержанием двух различных солей, путем облучения кристаллов ионизирующим излучением или катодным пучком, а также нагреванием кристалла в парах щелочного металла, или электролитическим методом.

Необходимо отметить, что электролитический метод окрашивания имеет такие значительные преимущества:

┏-

1) с помощью этого метода может быть получена большая концентрация центров окраски;

2) ввиду наличия ускоряющего воздействия электрического поля окрашивание происходит довольно быстро.

В настоящее время имеется достаточное количество данных о свойствах отдельных типов центров окраски в аддитивно окрашенных кристаллах.

2. Анализ литературных данных и постановка проблемы

При различного рода обработке кристаллов с точечными дефектами последние объединяются в комплексы и, в конечном счете, образуются коллоидные частицы. В общих чертах процесс коагуляции частиц понятен, однако детали прохождения такого процесса не выяснены и до настоящего времени. Данное утверждение можно проиллюстрировать на примере кристалла фторида лития.

Окрашиваемость кристаллов LiF исследовалась многими авторами, например в работах [1]-[5]. В спектре поглощения света кристаллов LiF, облученных гамма-, рентгеновским и реакторным излучением, при соответствующих условиях можно наблюдать целый ряд полос поглощения. Почти во всех таких образцах авторы работ отмечали наличие *F*-, *M*-, *N*-, *R*₁-, *R*₂- и коллоидных центров окраски, но результаты разных авторов трудно сравнимы.

Во всех работах предполагалось, что в процессе облучения F-центры диффундируют по кристаллу и соединяются с ионами лития. В результате такого соединения образуется атомарный литий. Образованию атомарного лития способствует отжиг кристалла при температуре $T=320^{\circ}$ С [3]. Возможно, что такие атомы соединяются в комплексы, образуя сначала кластеры и, в конечном счете, коллоидные частицы лития.

Наличие коллоидных частиц в окрашенных кристаллах фторида лития было обнаружено также и при электронно-микроскопических исследованиях [4]. В работе [4] указывается, что полоса поглощения ~4,4 эВ в кристаллах LiF, облученных в реакторе, вызвана центрами, имеющими коллоидную природу.

С другой стороны, в работе [3] Алексеева считает, что полоса поглощения с λ_{max} =495,0 нм, названная Богуном в [1] У-полосой, - это полоса, предшествующая коллоидообразованию.

Ворожейкина в работе [4] исследовала спектры оптического поглощения кристаллов LiF, облученных чистыми гамма-лучами и смешанным n, γ - излучением. Она, как и авторы работ [6] и [7], отмечает слабую полосу поглощения с λ_{max} =550,0 нм. Авторы работы [7] считают, что за эту полосу ответственен металлический литий.

В работе [8] представлены результаты исследований образования металлических коллоидных частиц в *γ*-облученных кристаллах LiF и NaF под действием света и температуры. Коллоидные частицы в таких кристаллах исследовались с помощью атомно-силового микроскопа. В оптических спектрах таких частиц наблюдается множество полос поглощения. Однозначно определить, какая из них принадлежит именно коллоидным центрам лития, довольно трудно. В связи с вышесказанным представляет интерес такой опыт: приготовить коллоидный раствор лития в какой-либо среде и сравнить его спектры поглощения света с вычисленными. Такой эксперимент позволяет идентифицировать коллоидные полосы поглощения лития и в других средах (кристаллах). Кроме того, такой опыт дает возможность оценить «правильность» спектральной зависимости и, во многих случаях, величины оптических постоянных массивного металла.

3. Цель и задачи исследования

В настоящей работе нами были произведены расчеты спектров ослабления света сферическими и эллипсоидальными наночастицами лития в различных средах (LiF-Li; LiCl-Li; LiBr-Li; LiJ-Li; бензин – Li). Были приготовлены коллоидные растворы лития в бензине, измерены спектры поглощения света и сравнены с вычисленными.

При расчете спектров поглощения света наночастицами приходилось пользоваться оптическими постоянными массивного лития, которые определены экспериментальным путем. Определение коэффициента поглощения χ и показателя преломления *n* для металлов представляет собой довольно сложную экспериментальную задачу.

Оптические постоянные массивного лития определялись многими авторами [9]-[14]. При измерении показателя преломления n и коэффициента поглощения света у они использовали метод оптической эллипсометрии или Крамера-Коника анализ данных коэффициентов отражения. Несмотря на большое число работ, экспериментальные результаты в них не всегда согласуются между собой. Очевидно, главная часть этих несоответствий может быть обусловлена свойствами металлической поверхности, такими как шероховатость и гранулярность. Большие ошибки могут быть при определении эллипсометрическим методом показателя преломления на шероховатой поверхности определенного вида. Влияние шероховатости можно сгладить, изучая нормальное падение света с фотометрическими измерениями. Отметим, что экспериментальные данные для χ и n по работам [9], [10], [14] согласуются между собой только качественно.

Оптические постоянные щелочных металлов принято анализировать в терминах модели почти свободных электронов [14]: эффективная масса электрона, энергия плазмонов, поляризуемость ионных остовов. В этом случае действительную ε_1 и мнимую ε_2 части диэлектрической проницаемости ε можно записать в следующей форме:

$$\varepsilon_{1} = n^{2} - \chi^{2} = 1 + 4\pi N' \alpha - \frac{\omega_{p}^{2}}{\omega^{2} + \frac{1}{\tau^{2}}} + \varepsilon_{1}^{B},$$
 (1)

$$\varepsilon_{2} = 2n\chi = \frac{\omega_{p}^{2}}{\omega^{2} + \frac{1}{\tau^{2}}} \cdot \frac{1}{\omega} \cdot \frac{1}{\tau} + \varepsilon_{2}^{B}, \qquad (2)$$

$$\varepsilon = \varepsilon_1 - i\varepsilon_2$$

где
п и $\chi-$ показатель преломления и коэффициент поглощения света соответственно;
 ω_p- плазменная частота:

$$\omega_{\rm p}^2 = \frac{4\pi N e^2}{m^*}$$

N – число свободных электронов в единице объема, е – заряд электрона, m^* – эффективная масса электрона; τ – время релаксации; слагаемое $4\pi N^{'}\alpha$ учитывает инерционную поляризуемость ионов; $\epsilon_{1}^{\scriptscriptstyle B}$ и $\epsilon_{2}^{\scriptscriptstyle B}$ – действительная и мнимая части диэлектрической проницаемости соответственно, обусловленные междуполосными переходами и другими процессами, отличными от поглощения свободных носителей.

При
$$\omega >> 1/\tau$$
 и с учетом равенства $\omega = \frac{2\pi \cdot c}{\lambda}$ (*c* – ско-

рость света в вакууме, λ – длина волны излучения) из уравнений (1) и (2), пренебрегая зависимостью ε_1 и ε_2 от λ , находим:

$$\varepsilon_1 = a_1 - b_1 \lambda^2, \tag{3}$$

$$\varepsilon_2 = a_2 + b_2 \lambda^3. \tag{4}$$

В общей многоэлектронной теории высокочастотной проводимости металлов, которая не связана с какими-либо модельными представлениями, кроме периодичности решетки, зависимость действительной части диэлектрической проницаемости $\varepsilon_1 = a - b\lambda^2$ сохраняется [15]. В оптике применимость формулы (3) чаще ограничивается инфракрасной областью спектра, где отсутствуют междуполосные переходы электронов. В случае щелочных металлов, по данным опубликованных экспериментальных работ, график зависимости ε_1 от λ^2 оказывается прямолинейным в области, которая охватывает видимую и ближнюю ультрафиолетовую области спектра.

В табл. 1 приведены оптические постоянные лития, измеренные авторами работы [10]. Именно эти данные были использованы в наших расчетах.

На рис. 1 показаны спектральные зависимости $n(\lambda)$ и $\chi(\lambda)$. Из рисунка видно, что в спектральной области 425 нм $\leq \lambda \leq 550$ нм величина *n* одинакова в обоих измерениях. Для коэффициента поглощения χ спектральная зависимость одинакова (в первом приближении – линейная). Однако, по данным работы [14] абсолютная величина показателя преломления *n* на ~9% меньше.

Согласно [10] спектральную зависимость действительной части *ε*₁ диэлектрической проницаемости можно представить так:

$$\varepsilon_1 = -2,6481 \cdot 10^{-5} \lambda^2 + 1,0847$$

(λ выражено в нм).

В таком случае при $\epsilon_1^{\scriptscriptstyle B} = 0$ $4\pi N' \alpha = 0.0847$ и плазменная частота $\omega_p^2 = (2\pi \cdot c)^2 \cdot b_1 = 93.9583 \cdot 10^{30} \ c^{-2}$.

В то же время, используя понятие статической проводимости, находим: плотность электронов проводимости лития

$$N = 6,0222 \cdot 10^{23} \frac{d}{A} = 6,0222 \cdot \frac{0,534}{6,940} \cdot 10^{23} = 4,63 \cdot 10^{22} \text{ cm}^{-3}$$

(*d* – плотность, *A* – атомный вес) и плазменная частота $ω_p^2 = 147,4738 \cdot 10^{30} \text{ c}^{-2}.$

Т	аблиц	ιa 1
	~~~	

Оптические постоянные лития

λ, нм	n	X	$\varepsilon_1$	$\epsilon_2$
325	0,339	1,39	- 1,817	0,942
350	0,315	1,53	- 2, 242	0,964
375	0,292	1,66	- 2,670	0,969
400	0,272	1,80	- 1,726	0,979
425	0,255	1,94	- 1,875	0,989
450	0,240	2,07	- 4,227	0,994
475	0,226	2,21	- 4,833	0,999
500	0,215	2,35	- 5,476	1,010
525	0,206	2,48	- 6,108	1,022
550	0,201	2,62	- 6,824	1,053
575	0,197	2,76	- 7,579	1,087
600	0,193	2,89	- 8,315	1,112
625	0,191	3,03	- 9,144	1,157
650	0,190	3,17	- 10, 013	1,205
675	0,190	3,30	- 10,854	1,254
700	0,192	3,44	- 11,797	1,321
725	0,194	3,57	- 12,707	1,385
750	0,195	3,71	- 13,726	1,447
775	0,197	3,85	- 14,784	1,517
800	0,200	3,98	- 15,800	1,592
825	0,204	4,12	- 16,933	1,681
850	0,208	4,26	- 18,104	1,772
875	0,214	4,439	- 17,011	1,900
900	0,219	4,59	- 21,020	2,010

Следовательно, эффективная масса электрона в литии по оптическим измерениям равна  $m^* = 1,6m$ . Частота релаксации  $\frac{1}{\tau} = 0,1211\cdot 10^{15}$  с⁻¹, скорость электронов на поверхности Ферми  $u_F = 1,2864\cdot 10^{15}$  нм/с.



Рис. 1. Спектральные зависимости показателя преломления  $n(\lambda)$  и коэффициента поглощения света  $\chi(\lambda)$ 

Эти параметры были использованы в наших расчетах спектров поглощения света совокупностью наночастиц лития в некоторых кристаллах и в бензине. Коэффициенты преломления кристаллов были взяты из работы [16], спектральную зависимость которых можно описать формулой Коши:

$$m_{o}(\lambda) = A + \frac{B}{\lambda^{2}} + \frac{C}{\lambda^{4}}.$$
 (5)

Значения коэффициентов A, B, C приведены в табл. 2 ( $\lambda$  выражено в нм).

Таблица 2

Значения коэффициентов А, В, С для различных кристаллов

Кристалл	A	В	С
LiF	1,3865	1979,48	$4,5476.10^{6}$
LiCl	1,6578	1233,9	$5,0838 \cdot 10^{7}$
LiBr	1,760	2273,15	$1,0706.10^{8}$
LiJ	1,9493	1692,86	$9,7936.10^{7}$
-	-	-	-
Бензин	1,4886	4458,0	-

#### 4. Расчет коэффициентов ослабления и рассеяния света частицами лития

Для расчетов коэффициентов ослабления и рассеяния света совокупностью сферических частиц лития в диэлектрической матрице с показателем преломления  $m_0$  мы пользовались формулами теории G.Mie [17].

Согласно G.Міе коэффициенты ослабления  $k_o$  и рассеяния  $k_p$  света сферическими наночастицами выражаются через суммы амплитуд электрических  $a_N$  и магнитных  $b_N$  колебаний:

$$k_{o} = C \cdot \frac{6\pi}{\lambda} m_{o} \cdot R_{e} \sum (2N+1) \cdot \left(\frac{a_{N}}{2\alpha^{3}} + \frac{b_{N}}{2\alpha^{3}}\right), \quad (6)$$

$$\mathbf{k}_{\mathrm{p}} = \mathbf{C} \cdot \frac{6\pi}{\lambda} \mathbf{m}_{\mathrm{o}} \cdot 2\alpha^{3} \cdot \sum \left( 2\mathbf{N} + 1 \right) \cdot \left( \left| \frac{\mathbf{a}_{\mathrm{N}}}{2\alpha^{3}} \right|^{2} + \left| \frac{\mathbf{b}_{\mathrm{N}}}{2\alpha^{3}} \right|^{2} \right), \quad (7)$$

где  $C=N_1 \cdot V$  – объемная концентрация металла в растворе;  $N_1$  – число частиц в единице объема; V – объем одной частицы радиуса r:  $V=4\pi r^3/3$ .

Амплитудные коэффициенты  $a_N$  и  $b_N$  являются функциями двух основных параметров: относительного диаметра  $\alpha = 2\pi r m_o/\lambda$  и относительной диэлектрической проницаемости вещества частиц

$$\mathbf{m}' = \frac{\mathbf{n}}{\mathbf{m}_{o}} - i\frac{\mathbf{k}}{\mathbf{m}_{o}}, \quad \left(\mathbf{m}_{1}'\right)^{2} = \frac{\mathbf{m}^{2}}{\mathbf{m}_{o}^{2}} = \frac{\mathbf{\epsilon}_{1}}{\mathbf{m}_{o}^{2}} - i\frac{\mathbf{\epsilon}_{2}}{\mathbf{m}_{o}^{2}}, \tag{8}$$

где  $\varepsilon_1 = n^2 - k^2$ ,  $\varepsilon_2 = 2nk$  (*n* и *k* – показатели преломления и поглощения вещества частицы соответственно);  $\lambda$  – длина волны падающего на частицу света в вакууме.

Амплитудные коэффициенты  $a_N$  и  $b_N$  выражаются через функции Рикатти-Бесселя  $\psi_N(z)$  и  $\xi_N(z)$ , и согласно [18] их можно записать в следующем виде:

$$a_{N} = \frac{1}{1 + iG_{N}(\alpha, \beta)},$$
(9)

$$\mathbf{b}_{\mathrm{N}} = \frac{1}{1 + \mathrm{i}\mathbf{H}_{\mathrm{N}}(\boldsymbol{\alpha},\boldsymbol{\beta})},\tag{10}$$

 $G_{N}(\alpha,\beta) = \frac{W_{N}(\alpha,\beta) \cdot C_{N}(\alpha) - C_{N-1}(\alpha)}{W_{N}(\alpha,\beta) \cdot S_{N}(\alpha) - S_{N-1}(\alpha)},$ (11)

$$H_{N}(\alpha,\beta) = \frac{m'R_{N}(\beta) \cdot C_{N}(\alpha) - C_{N-1}(\alpha)}{m'R_{N}(\beta) \cdot S_{N}(\alpha) - S_{N-1}(\alpha)},$$
 (12)

$$W_{N}(\alpha,\beta) = \frac{R_{N}(\beta)}{m'} + \frac{N}{\alpha} \left(1 - \frac{1}{m'^{2}}\right).$$
(13)

Все входящие сюда функции можно вычислить, используя рекуррентные соотношения:

$$R_{N}(\beta) = \frac{\beta}{(2N-1) - \beta R_{N-1}(\beta)},$$
(14)

$$R_{o}(\beta) = \operatorname{ctg}(\alpha \cdot n' - i\alpha \cdot k'), \qquad (15)$$

$$S_{N+1}(\alpha) = \frac{(2N+1)}{\alpha} \cdot S_N(\alpha) - S_{N-1}(\alpha), \qquad (16)$$

$$S_{0}(\alpha) = \sin(\alpha); \quad S_{1}(\alpha) = \frac{\sin \alpha}{\alpha} - \cos \alpha;$$
  

$$S_{2}(\alpha) = \frac{3}{\alpha} \cdot S_{1}(\alpha) - S_{0}(\alpha),$$
(17)

$$C_{N+1}(\alpha) = \frac{2N+1}{\alpha} \cdot C_{N}(\alpha) - C_{N-1}(\alpha), \quad (18)$$

$$C_{0}(\alpha) = \cos(\alpha); \quad C_{1}(\alpha) = \sin\alpha + \frac{\cos\alpha}{\alpha};$$
  

$$C_{2}(\alpha) = \frac{3}{\alpha} \cdot C_{1}(\alpha) - C_{0}(\alpha).$$
(19)

Кроме коэффициентов ослабления  $k_o$  и рассеяния  $k_p$  света совокупностью сферических частиц лития нами вычислена степень поляризации рассеянного света P [19]:

$$P = \frac{i_1 - i_2}{i_1 + i_2},$$
 (20)

здесь величины  $i_1$  и  $i_2$  характеризуют угловую зависимость компонент рассеянного излучения, поляризованных перпендикулярно и параллельно плоскости рассеяния:

$$\mathbf{i}_{1} = \left| \sum \frac{2N+1}{N(N+1)} \left[ \mathbf{a}_{N} \cdot \boldsymbol{\pi}_{N} + \mathbf{b}_{N} \cdot \boldsymbol{\tau}_{N} \right] \right|^{2},$$
(21)

$$\mathbf{i}_{2} = \left| \sum \frac{2\mathbf{N}+1}{\mathbf{N}(\mathbf{N}+1)} \left[ \mathbf{a}_{\mathbf{N}} \cdot \boldsymbol{\tau}_{\mathbf{N}} + \mathbf{b}_{\mathbf{N}} \cdot \boldsymbol{\pi}_{\mathbf{N}} \right] \right|^{2}.$$
 (22)

Угловые функции  $\pi_N$  вычислялись по рекуррентным соотношениям:

$$\pi_{N+2} = \frac{(2N+3)\cos\Theta \cdot \pi_{N+1}}{N+1} - \frac{(N+2) \cdot \pi_{N}}{N+1},$$

где

где  $\Theta$  – угол рассеяния.

Первые несколько функций *п*_N будут следующими:

$$\pi_0 = 0; \quad \pi_1 = 1; \quad \pi_2 = 3\cos\Theta; \quad \pi_3 = \frac{3}{2}(5\cos^2\Theta - 1).$$

Функции  $\tau_N$  можно выразить через  $\pi_N$ :

$$\tau_{\rm N} = N\cos\Theta \cdot \pi_{\rm N} - (N+1)\pi_{\rm N-1}.$$

Первые несколько функций  $\tau_N$  будут следующими:

$$\tau_1 = \cos\Theta; \quad \tau_2 = 6\cos^2\Theta - 3; \quad \tau_3 = \frac{45}{2}\cos^3\Theta - \frac{33}{2}\cos\Theta.$$

Для случая частиц малых размеров, разлагая функции  $\psi_N(z)$  и  $\psi'_N(z)$  в ряды, мы нашли:

$$W_{N}(\beta) = \frac{1}{\alpha} \left( \frac{N+1}{m'^{2}} + N \right) - \frac{\alpha}{2N+3},$$
$$m'R_{N}(\beta) = \frac{2N+1}{\alpha} - \frac{\alpha}{2N+3}m'^{2}.$$

При *r*<<λ (частицы «нулевого» размера) имеем:

$$k_{o} = C \cdot \frac{6\pi}{\lambda} m_{o} \cdot Im \left( -\frac{m'^{2} - 1}{m'^{2} + 2} \right) = C \cdot \frac{6\pi}{\lambda} m_{o} \cdot Im \left( -A \right).$$
(23)

Формула (23) имеет большое значение для анализа спектрального положения коллоидной полосы. Она показывает, что в этом случае спектральная зависимость коэффициента ослабления  $k_o(\lambda)$  полностью определяется спектральным ходом оптических постоянных  $n(\lambda)$  и  $\chi(\lambda)$  вещества коллоидных частиц.

Из равенства (23) следует, что коэффициент ослабления  $k_o$  имеет максимальное значение  $k_{omax}$  при

$$\varepsilon_1' = n'^2 - \chi'^2 = -2m_o^2 \tag{24}$$

или, с учетом большего числа членов в рядах при разложении соответствующих функций, при

$$\varepsilon_1' = {n'}^2 - {\chi'}^2 = -\left(2 + \frac{12}{5}\alpha^2\right).$$
(25)

В реальных коллоидных растворах частицы металлов могут образовывать отдельные скопления – кластеры. Для выяснения влияния таких кластеров частиц лития на величину и спектральную зависимость коэффициента ослабления  $k_o(\lambda)$  нами был вычислен спектр поглощения света совокупностью кластеров из двух мельчайших частиц Li в кристалле фтористого лития. При выполнении этого расчета использовались формулы работы [20]. В таком случае коэффициент ослабления света хаотически ориентированными цепочками из двух частиц зависит от расстояния *l* между их центрами и определяется следующим выражением:

$$k_{o} = C \cdot \frac{6\pi}{\lambda} R_{e} \left( i \frac{\alpha_{II} + 2\alpha_{\perp}}{3} \right), \qquad (26)$$

$$\label{eq:alpha_II} \alpha_{II} = \! \frac{A}{1\!-\!2b^3A}, \quad \alpha_{\perp} = \! \frac{A}{1\!+\!b^3A}, \quad b = \! \frac{r}{l},$$

 $\alpha_{II}$  и  $\alpha_{\scriptscriptstyle \perp}$  - поляризуемость вдоль и перпендикулярно оси  $\mathit{l}.$ 

В 1912 г. Gans расширил теорию G.Mie и вычислил коэффициент поглощения света эллипсоидами [21]. В этом случае коэффициент ослабления света равен

$$\mathbf{k}_{o} = \mathbf{C} \cdot \frac{6\pi}{\lambda} \mathbf{m}_{o} \cdot \mathrm{Im} \left( -\frac{\mathbf{a}_{1}}{3} - \frac{2\mathbf{a}_{2}}{3} \right), \tag{27}$$

$$a_{1} = \frac{m^{\prime 2} - 1}{3 + (m^{\prime 2} - 1) \cdot 3L_{1}}; \quad a_{2} = \frac{m^{\prime 2} - 1}{3 + (m^{\prime 2} - 1) \cdot 3L_{2}}.$$
 (28)

Множители  $L_j$  зависят от отношения осей эллипсоида. Для вытянутых эллипсоидов (A > B, A и B – оси эллипсоида):

$$L_1 = \frac{1 - e^2}{e^2} \left( -1 + \frac{1}{2e} ln \frac{1 + e}{1 - e} \right), \quad e^2 = 1 - \frac{B^2}{A^2}$$

Для сплюснутых эллипсоидов (*A*<*B*):

$$L_1 = \frac{1+f^2}{f^2} \left( 1 - \frac{1}{f} \operatorname{arctg}(f) \right), \quad f^2 = \frac{B^2}{A^2} - 1.$$

Для обоих случаев можно записать:

$$L_2 = \frac{1 - L_1}{2}.$$

Для ориентированных эллипсоидов вращения коэффициент ослабления света равен

$$\mathbf{k}_{o} = \mathbf{C} \cdot \frac{2\pi}{\lambda} \mathbf{m}_{o} \cdot \mathbf{Im} \left( -\frac{\mathbf{m'}^2 - 1}{\left(\mathbf{m'}^2 - 1\right)\mathbf{L}_{j} + 1} \right)$$

или

$$\mathbf{k}_{o} = \mathbf{C} \cdot \frac{2\pi}{\lambda} \mathbf{m}_{o} \cdot \mathbf{Im} \left( -\frac{\mathbf{m}^{2} - \mathbf{m}_{o}^{2}}{\left(\mathbf{m}^{2} - \mathbf{m}_{o}^{2}\right) \mathbf{L}_{j} + \mathbf{m}_{o}^{2}} \right).$$
(29)

Подстановка в (29) соотношения  $m^2 = \varepsilon_1 - i\varepsilon_2$  и равенств (6) и (7) дает возможность определить характеристики коллоидной полосы поглощения света:

$$\mathbf{k}_{o} = \mathbf{C} \cdot \frac{2\pi}{\lambda} \mathbf{m}_{o}^{3} \cdot \frac{\boldsymbol{\varepsilon}_{2}}{\left[\boldsymbol{\varepsilon}_{1} \mathbf{L}_{j} + \mathbf{m}_{o}^{2} \left(1 - \mathbf{L}_{j}\right)\right]^{2} + \boldsymbol{\varepsilon}_{2}^{2} \mathbf{L}_{j}^{2}}.$$
 (30)

Для шаров L_j=1/3:

$$\mathbf{k}_{o} = \mathbf{C} \cdot \frac{18\pi}{\lambda} \mathbf{m}_{o}^{3} \cdot \frac{\boldsymbol{\epsilon}_{2}}{\left(\boldsymbol{\epsilon}_{1} + 2\mathbf{m}_{o}^{2}\right)^{2} + \boldsymbol{\epsilon}_{2}^{2}}.$$
 (31)

Максимум  $k_o(\lambda)$  наблюдается при условии

$$\varepsilon_{1}L_{j} + m_{o}^{2}(1-L_{j}) = 0$$
, т.е. при  $\varepsilon_{1} = -m_{o}^{2}\left(\frac{1}{L_{j}}-1\right)$ .  
Тогда

$$\frac{\omega_{p}^{2}}{\omega_{o}^{2} + \frac{1}{\tau^{2}}} = 1 + \varepsilon_{1}^{B} + m_{o}^{2} \left( \frac{1}{L_{j}} - 1 \right)$$

гле

И

$$\omega_{o}^{2} = \frac{\omega_{p}^{2}}{1 + \varepsilon_{1}^{B} + m_{o}^{2} \left(\frac{1}{L_{j}} - 1\right)} - \frac{1}{\tau^{2}}.$$
 (32)

Длина волны, при которой  $k_o(\lambda)$  имеет максимум, определяется равенством:

$$\lambda_{\max} = 2\pi \cdot c \cdot \left[ \frac{\omega_{p}^{2}}{1 + \varepsilon_{1}^{B} + m_{o}^{2} \left( \frac{1}{L_{j}} - 1 \right)} - \frac{1}{\tau^{2}} \right]^{-0.5}.$$
 (33)

Из формулы (33) видно, как влияет на спектральное положение коллоидной полосы поглощения света диэлектрическая проницаемость вещества частицы  $\varepsilon_1^{\text{в}}$ : при ее увеличении максимум коллоидной полосы сдвигается в длинноволновую область спектра. Длинноволновое смещение наблюдается и при увеличении показателя преломления  $m_o$  среды, окружающей частицу. Возрастание частоты столкновений электронов

проводимости  $\frac{1}{\tau}$  в частице или уменьшение числа

дисперсных электронов также приводят к увеличению  $\lambda_{\max}$ . При этом уменьшается плазменная частота  $\omega_p$ . Уменьшение плазменной частоты можно вызвать увеличением эффективной массы электронов m^{*} в наночастицах.

Для сферических наночастиц из формулы (33) имеем:

$$\lambda_{\max} = 2\pi \cdot c \cdot \left[ \frac{\omega_{p}^{2}}{1 + \varepsilon_{1}^{B} + 2m_{o}^{2}} - \frac{1}{\tau^{2}} \right]^{-0.5}.$$
 (34)

Из этих же соображений находим максимальную величину коэффициента поглощения:

$$k_{omax} = C \cdot \frac{2\pi}{\lambda} m_o^3 \cdot \frac{1}{\epsilon_2 L_j^2} = C \cdot \frac{2\pi}{\lambda} m_o^3 \times \frac{1}{\left(\epsilon_2^8 + \frac{\omega_p^2}{\omega_o^2 + \frac{1}{\tau^2}} \cdot \frac{1}{\tau} \cdot \frac{1}{\omega_o}\right)} L_j^2$$
(35)

Из формулы (35) следует, что наличие в веществе металлических наночастиц мнимой части диэлектрической проницаемости, обусловленной связанными электронами, и ее увеличение приводит к уменьшению  $k_{omax}$ . К такому же уменьшению приводит увеличение частоты релаксации  $1/\tau$  и увеличение параметра  $L_j$ . Для сферических частиц из (35) находим:

$$k_{omax} = C \cdot \frac{18}{\lambda} m_o^3 \cdot \frac{1}{\varepsilon_2^{B} + \frac{\omega_p^2}{\omega_o^2 + \frac{1}{\tau^2}} \cdot \frac{1}{\tau} \cdot \frac{1}{\omega_o}}.$$
 (36)

Полуширина коллоидной полосы поглощения при этом равна

$$\Delta \omega = \frac{\omega_{\rm p}^2}{\left[1 + \varepsilon_1^{\rm B} + m_{\rm o}^2 \left(\frac{1}{L_{\rm j}} - 1\right)\right]} \cdot \tau, \qquad (37)$$

И

$$\Delta \lambda = \frac{2\pi \cdot c}{\omega_{\rm p}^2} \cdot \left[ 1 + \varepsilon_1^{\rm B} + m_{\rm o}^2 \left( \frac{1}{L_{\rm j}} - 1 \right) \right] \frac{1}{\tau}.$$
 (38)

Для сферических частиц полуширина коллоидной полосы поглощения определяется равенством:

$$\Delta \lambda = \frac{2\pi \cdot c}{\omega_{p}^{2}} \cdot \left[1 + \varepsilon_{1}^{a} + 2m_{o}^{2}\right] \frac{1}{\tau}.$$
(39)

Из выше приведенных формул следует, что полуширина полосы поглощения увеличивается при увеличении частоты релаксации электронов проводимости в наночастицах. Согласно работе [22], для частиц

$$\frac{1}{\tau} = \sum \frac{1}{\tau_i} + \frac{u_F}{r}, \qquad (40)$$

где слагаемое  $\sum rac{1}{ au_i}$  учитывает столкновения электро-

нов проводимости с дефектами решетки, фотонами, примесями, электронами. Здесь  $\tau_i$  – время релаксации для отдельного взаимодействия,  $u_F$  – скорость электронов на уровне Ферми. В формуле (40) предполагается, что эффективный средний пробег электронов проводимости  $l_{eff}$ =r. В работе [23] разработан общий феноменологический геометрический метод для вычисления  $l_{eff}$ , и получено следующее соотношение:

$$l_{\rm eff} = \frac{4V}{S},\tag{41}$$

где V и S – объем и площадь поверхности частицы соответственно. Для сферических наночастиц из этой фор-

мулы находим  $\, l_{\rm eff} = \! \frac{4}{3} R$  , что соответствует диффузно-

му рассеянию электронов поверхностью частицы.

Используя выше приведенные соотношения, находим произведение

$$k_{omax} \cdot \Delta \lambda = \frac{2\pi \cdot m_o^3}{L_j^2 \left[1 + \varepsilon_1^B + m_o^2 \left(\frac{1}{L_j} - 1\right)\right]} \cdot C.$$
(42)

Для шарообразных частиц имеем

$$k_{omax} \cdot \Delta \lambda = C \cdot \frac{18\pi \cdot m_o^3}{1 + \epsilon_1^a + 2m_o^2}.$$
 (43)

Следовательно, объемная концентрация металла в растворе  $C=N\cdot V$  при измеренных величинах  $k_{_{omax}}$  и  $\Delta\lambda$  определяется равенством:

$$C = N \cdot V = \frac{k_{omax} \cdot \Delta \lambda}{d \log_{10} e} \cdot \frac{1 + \varepsilon_1^{B} + 2m_o^2}{18\pi \cdot m_o^3}.$$
 (44)

Таким образом, использование формулы (23) для расчета коэффициента поглощения света совокупностью мельчайших металлических наночастиц и теории Друде для определения диэлектрической проницаемости металла (см. зависимости (1) и (2)), а также учет формулой (40) рассеяния электронов проводимости поверхностью частицы позволяют исследовать влияние всех особенностей оптических постоянных вещества наночастицы на спектральное положение коллоидной полосы, на ее полуширину и на величину коэффициента поглощения в максимуме полосы.

#### 5. Методика эксперимента и обработка экспериментальных данных

Для измерения спектров поглощения света наночастицами лития нами были приготовлены коллоидные растворы лития в парафине. Схема установки для приготовления таких растворов показана на рис. 2. Изменяя вес навески лития, на этой установке можно получать коллоиды разной степени дисперсности. Для измерения спектров ослабления света парафин с коллоидальным литием растворяли в бензине. Спектры ослабления измеряли на спектрофотометре СФ-16.

Наночастицы лития довольно просто можно получить разложением азида лития LiN₃. Последний помещаем в кварцевую трубку, которую откачиваем и нагреваем до 400°C. При температуре около 370°C азид лития разлагается, при этом выделяется газообразный азот, который удаляется, а оставшиеся атомы лития объединяются в маленькие коллоидные частицы лития. Из них можно образовать коллоидный раствор, введя в трубку, например, бензин. Сравнивая экспериментальные спектры поглощения света с вычисленными, мы нашли, что в случае использования кварцевой трубки получаем более мелкие частицы с *r* ≤ 3 нм.



Рис. 2. Схема установки для приготовления коллоидальной ртути в парафине: 1 - стеклянный колпак; 2, 5- спирали для электрического нагрева; 3 – вольфрамовая лодочка со ртутью; 4- парафин; 6- текстолитовая плата

На рис. За и Зб показаны вычисленные спектральные зависимости коэффициента ослабления света совокупностью сферических частиц лития в кристалле фтористого лития.

В табл. 3 приведены характеристики коллоидных полос ослабления света для системы LiF-Li.

Таблица 3

Характеристики коллоидных полос ослабления света сферическими частицами лития в кристалле LiF

<i>ř</i> , нм	$\lambda_{ m max}$ , нм	$\frac{k_{_{omax}}}{C} \!\cdot\! 10^{-6}, \text{cm}^{-1}$	<i>Н</i> , нм
1,5	420	1,59	180
3,0	423	2,01	160
5,0	426	2,45	137
7,0	430	2,77	122
10,0	437	3,06	107
15,0	450	3,17	101
20,0	460	3,00	106
30,0	495	2,34	125
40,0	535	1,77	150

На рис. 4а показана зависимость спектрального положения максимума коллоидной полосы ослабления  $\lambda_{\rm max}$  от радиуса сферических частиц лития в системе LiF-Li. Анализируя этот рисунок и данные табл. 3, видим, что  $\lambda_{max}$  смещается в длинноволновую область спектра при увеличении размера частиц, начиная уже с мельчайших.



Рис. 3. Вычисленные спектральные зависимости коэффициентов ослабления света совокупностью сферических частиц лития в кристалле фтористого лития

Однако, чувствительность изменения  $\Delta\lambda_{max}$  к изменению  $\Delta r$  в разных областях значений r различная. Например, для  $r=1,5\div5$  нм  $\frac{\Delta\lambda_{\max}}{\Delta r}=1,7$ ; для  $r=5\div7$  нм  $\frac{\Delta\lambda_{\max}}{\Delta r}=2,0$ ; для  $r=10\div15$  нм  $\frac{\Delta\lambda_{\max}}{\Delta r}=2,6$ ; для  $r=20\div30$  нм Δr  $\Delta \lambda_{max} = 3,5$ . Зависимость  $\lambda_{max}(r)$  дается выражением:

 $\lambda_{\max} = 3,5 \cdot 10^{-2} \cdot r^2 + 1,5r + 420$ , где *r* выражено в нм.

На рис. 46 показана зависимость полуширины коллоидной полосы ослабления света Н от радиуса частицы г. Из этого рисунка и данных табл. З видно, что наименьшую полуширину имеют частицы с r=15 нм. Уменьшение и увеличение размеров частиц от r=15 нм приводит к увеличению полуширины полосы Н. Зависимость H(r) описывается равенством:

$$H = 2,6372 \cdot 10^{-4} \cdot r^{4} - 2,8696 \cdot 10^{-2}r^{3} + 1,1645r^{2} - 18,995r + 206,51, \text{ HM}$$

(гвыражено в нм).

На рис. 4в показана зависимость величины коэффициента ослабления  $k_{omax}$  в максимуме коллоидной полосы. Из этого рисунка и табл. 3 видно, что наибольшее значение коэффициента ослабления имеют частицы с r=12 нм. Дальнейшее увеличение или уменьшение размеров частиц приводит к уменьшению величины  $k_o$  при постоянной объемной концентрации раствора.

Зависимость  $k_{omax}(r)$  описывается равенством:

$$\frac{k_{omax}}{C} \cdot 10^{-6} = -3,2512 \cdot 10^{-6} r^4 + 4,382 \cdot 10^{-4} r^3 - -21106 \cdot 10^{-2} r^2 + 3.6864 \cdot 10^{-1} r + 1.0799$$

здесь г выражено в нм.

На рис. 4*a* и 4*6* отмечены значения  $\lambda_{max}$  и *H*, которые наблюдались Ворожейкиной [4], а в работе [8] отмечается, что металлические наночастицы лития в облученных кристаллах LiF проявляются в спектрах поглощения в виде широких полос в области 420-520 нм. Это подтверждает наш расчет спектров ослабления света системой LiF-Li (рис. 4*a*). Увеличение полуширины наблюдаемых полос, очевидно, вызвано немонодисперсностью золя.



Рис. 4. Зависимости характеристик коллоидных полос ослабления света совокупностью сферических частиц лития от их размера в кристалле LiF

На рис. 5 показаны спектральные зависимости коэффициентов рассеяния света совокупностью сферических частиц лития в кристалле фтористого лития.





#### коэффициентов рассеяния света совокупностью сферических частиц лития в кристалле LiF

Из этого рисунка видно, что частицы лития в кристалле LiF с r < 20 нм имеют малый коэффициент рассеяния света, а, следовательно, ослабление света вызвано «чистым» поглощением света  $k_n = k_o - k_p$ .

Кроме того, на рис. Зб и рис. 5 видно, что для частиц лития с  $r \ge 40$  нм на кривых  $k_o$  и  $k_p$  появляются второй, третий и т.д. максимумы. Они обусловлены вторым  $a_2/(2\alpha^3)$ , третьим  $a_3/(2\alpha^3)$  и т.д. парциальными колебаниями.

В работе G.Mie [17] не содержится никаких представлений относительно парциальных колебаний электромагнитного поля. Их физический смысл выявляется при сопоставлении с явлениями физики плазмы твердого тела, в которых также определяющее значение имеет комплексная диэлектрическая постоянная, в частности с областью поверхностных плазменных колебаний. Случай продольных поляризационных волн в сферических малых частицах металла разобран в работе [24]. Область плазменного резонанса оказывается несколько смещенной в сторону коротких волн.

Плазменные колебания разных мод (*N*) сопоставляются с разными парциальными электрическими волнами электромагнитной теории; по этим представлениям затухание колебаний обуславливает спектральную ширину полос ослабления. Условие для спектрального положения максимума коэффициента ослабления тождественно с условием для собственных

частот поверхностных колебаний:  $\varepsilon_1 = \left(-\frac{N+1}{N}\right) \cdot m_a^2$ .

Число «действующих» парциальных волн, интенсивность которых падает с их номером, тем больше, чем крупнее частица. Для диаметра 100 нм должны быть учтены не менее 10-15 волн.

На рис. 6 и рис. 7 показаны вычисленные спектральные зависимости коэффициентов ослабления света совокупностью не ориентированных вытянутых (рис. 6) и сжатых (рис. 7) эллипсоидов вращения лития в кристалле фтористого лития. На рис. 6 цифры у кривых показывают величину малой полуоси эллипсоида B (A>B) в нанометрах при A=10 нм, на рис. 7 – величину малой полуоси A (A<B) в нанометрах при B=10 нм.



Рис. 6. Спектральные зависимости  $rac{k_{o}}{C}(\lambda)$  коэффициентов

### ослабления света вытянутыми сфероидами лития в кристалле LiF

Из этих рисунков видно, что почти сферические частицы лития имеют на кривой  $k_o(\lambda)$  один максимум с  $\lambda_{\max}$ =435 нм. По мере увеличения анизотропности частиц (вытянутости для удлиненных эллипсоидов и сжатости для сплюснутых сфероидов) на кривой  $k_o(\lambda)$  появляются два максимума: один смещается в коротковолновую область спектра, а другой – в длинноволновую. Чувствительность длинноволновых максимумов к изменению анизотропности для обоих видов эллипсоидов значительно превосходит таковую для коротковолновых максимумов. На рис. 6 и рис. 7 видно, что достаточно незначительного отличия формы частиц лития от сферической для смещения максимума коллоидной полосы и ее уширения.

На рис. 8 показаны вычисленные спектральные зависимости коэффициентов ослабления света частицами лития с r=10 нм в различных кристаллах. Показатель преломления  $m_o$  для этих кристаллов вычисляли по формуле (5).

Характеристики коллоидных полос поглощения света для лития в этих кристаллах приведены в табл. 4.

#### Таблица 4

Характеристики полос поглощения света коллоидальным литием в некоторых кристаллах

Система	$\lambda_{ m max}$ , нм	<i>Н</i> , нм	$\frac{k_{omax}}{C} \cdot 10^{-6} \text{ , cm}^{-1}$	m _o
LiF-Li	440	112,5	2,95	1,3978
LiCl-Li	512	108	3,78	1,6632
LiBr-Li	540	108	4,00	1,7678
LiJ-Li	580	108	4,45	1,9552



Рис. 7. Спектральные зависимости  $\frac{k_o}{C}(\lambda)$  коэффициентов

#### ослабления света сжатыми сфероидальными частицами лития в кристалле фтористого лития

Из рис. 8 и табл. 4 видно, что переход от системы LiF-Li к системе LiJ-Li существенно изменяет спектральное положение ( $\lambda_{max}$ ) коллоидной полосы поглощения и величину коэффициента поглощения в максимуме полосы ( $k_{omax}$ ). Однако полуширина полосы при этом остается почти постоянной.

На рис. 9 показано влияние слипания сферических частиц лития на характеристики коллоидной полосы. Из этого рисунка видно, что при расстоянии между частицами  $l \ge 5r$  они ведут себя как отдельные частицы. При l = 2r коллоидная полоса поглощения для индивидуальных частиц раздваивается, на кривой  $k_o(\lambda)$  появляются два максимума, полоса смещается в длинноволновую область спектра и ее полуширина увеличивается. В этом отношении такая цепочка частиц лития подобна вытянутым эллипсоидам.



Рис. 8. Спектральные зависимости  $\frac{K_o}{C}(\lambda)$  коэффициентов ослабления света наночастицами лития в некоторых кристаллах

_____





коэффициентов ослабления света совокупностью отдельных частиц лития (кривая 1) и цепочками частиц (кривая 2)

При различных воздействиях и обработке в кристаллах образуются центры окраски различных типов, начиная от электронных (атомарных) и заканчивая коллоидными. Для идентификации последних можно приготовить раствор, в котором заведомо присутствуют частицы данного металла. Измеренные спектры поглощения света можно сравнивать с таковыми для кристаллов. В случае совпадения спектров можно говорить о коллоидной природе соответствующей полосы в кристалле.

На рис. 10 показаны измеренная спектральная зависимость оптической плотности *D* и вычисленные зависимости коэффициентов ослабления света. Наблюдается довольно хорошее согласование между вычисленными спектрами и спектрами, полученными наблюдениями.



Цифры у кривых показывают радиус частиц в нм

Рис. 10. Измеренная спектральная зависимость опти-

ческой плотности  $\operatorname{D}(\lambda)$  и вычисленные коэффициенты

 $rac{k_{o}}{C}(\lambda)$  ослабления света коллоидными частицами лития в бензине

#### 6. Выводы

1. Анализ экспериментальных спектральных зависимостей коэффициентов преломления  $n(\lambda)$  и поглощения  $\chi(\lambda)$  света для лития показывает, что действительная  $\varepsilon_1$  и мнимая  $\varepsilon_2$  части диэлектрической проницаемости  $\varepsilon = \varepsilon_1 - i\varepsilon_2$  могут быть описаны простыми формулами Друде-Зинера. При этом экспериментальные данные работы [10] описываются равенствами:

$$\varepsilon_1(\lambda) = -2,6181 \cdot 10^{-5} \lambda^2 + 1,0848,$$

 $\epsilon_2(\lambda) = 4,0185 \cdot 10^{-6} \lambda^2 - 3,176 \cdot 10^{-3} \lambda + 1,5833$ 

(λ выражено в нм).

2. Вычисленные полосы ослабления света сферическими частицами лития в кристалле фтористого лития расположены в спектральной области 410-800 нм. Спектральное положение коллоидной полосы Li и ее полуширина очень чувствительны к изменению как спектрального хода коэффициентов преломления  $n(\lambda)$  и поглощения  $\chi(\lambda)$  массивного лития, так и их абсолютной величины. Например, использование в расчетах оптических постоянных лития из работы [14] смещает коллоидные полосы поглощения примерно на 20 нм в длинноволновую область спектра.

3. В случае эллипсоидальных частиц лития коллоидная полоса расщепляется на две: одна из них смещается в коротковолновую область, а другая – в длинноволновую область спектра. Чувствительность длинноволнового максимума к изменению анизотропии (вытянутости и сжатости эллипсоида) значительно больше таковой для коротковолнового максимума.

4. Наличие в коллоидном растворе кластеров частиц в виде цепочек из двух частиц лития приводит к смещению коллоидной полосы поглощения в длинноволновую область спектра, к ее уширению и к некоторому уменьшению коэффициента ослабления в максимуме полосы.

5. При детальном сравнении спектров поглощения коллоидных центров окраски, полученных наблюдениями и вычисленных для сферических и сфероидальных частиц лития в различных средах, видно, что частицы малых размеров имеют форму, близкую к сферической.

#### Литература

- Bohun, А. Оптические спектры поглощения света в окрашенных кристаллах LiF [Текст] / А. Bohun // Чехосл. журн. физ. – 1964. – Т.14. – С. 312.
- Kamikawa, T. Optical properties of LiF [Teкст] / T. Kamikawa, Y. Kazumata, K. Ozawa // Phys. Stat. Sol. – 1966. – V. 14. – P. 435.
- Алексеева, Е. П. Поглощение света в облученных γ-излучением кристаллах LiF [Текст] / Е. П. Алексеева // Известия АН СССР, серия Физика. – 1967. – Т.31. – С. 1958.
- Ворожейкина, Л. Ф. Спектры поглощения света в облученных γ радиацией Со⁶⁰ кристаллах LiF [Текст] / Л. Ф. Ворожейкина // Известия АН СССР, серия Физика. – 1967. – Т.31. – С. 1937.

- Радченко, И. С. Коллоидные центры окраски в кристаллах фторида лития [Текст] / И. С. Радченко // Физика твердого тела. – 1969. – Т. 11, в. 7. – С. 1829-1834.
- 6. Farge, Y. Optical observation of interstitial lithium in irradiated lithium fluoride [Текст] / Y. Farge, M. Lambert, A. J. Guinier // Phys. Chem. Sol. 1966. V. 27. P. 499.
- Политов, Н. Г. Центры окраски в облученных γ-излучением кристаллах LiF [Текст] / Н. Г. Политов // Известия АН СССР, серия Физика. – 1967. – Т.31. – С. 1926.
- Брюквина, Л. И. Образование и свойства металлических наночастиц во фторидах лития и натрия с радиационно созданными центрами окраски [Текст] / Л. И. Брюквина, Е. Ф. Мартынович // Физика твердого тела. – 2012. – Т.54, вып. 12. – С. 2248-2253.
- 9. Callcot, T. A. Ultraviolet optical properties of Li T. A. Callcot, E.T. Arakawa // J. Opt. Soc. Am. 1974. V. 64. P. 839-845.
- Inagaki, T. Optical properties of solid Na and Li between 0,6 and 3,8 eV [Текст] / Т. Inagaki, L. C. Emerson, E. T. Arakawa, W. Williams // Phys. Rev. B. 1976. V. 13. Р. 2305-2313.
- Mathewson, A. C. Optical absorption spectrum of lithium metal in the range 0,5-4 eV [Текст] / А. С. Mathewson, H. P. Myers // Philos. Mag. – 1972. – V. 25. – P. 853-863.
- Bösenberg, J. Bestimmung der optischen konstanten von lithium und natrium durch angeregte oberflächenplasmaschwingungen [Текст] / J. Bösenberg // Z. Phys. Chem. Abt. – 1975. – В. 22. – S. 261-271.
- Perdew, J. P. Calculation of the band structure, form surface and interband optical conductivity of lithium [Teκct] / J. P. Perdew, S. H. Vosko // J. Phys. F., Metal Phys. – 1974. – V. 4. – P. 380-393.
- 14. Rasigni, M. Optical constants of lithium deposits as determined from the Kramers-Kronig analysis [Текст] / M. Rasigni, G. Rasigni // J. Opt. Soc. Amer. 1977. V. 67. Р. 54-59.
- 15. Носков, М. М. Оптические и магнитооптические свойства металлов [Текст] / М. М. Носков. Свердловск: УНЦ АН СССР, 1983. –с. 219.
- Li, H. H. Refractive index of Alkali Halides and its wavelength and Temperature Derivatives [Tekct] / H. H. Li// Journal of physical and chemical reference data. 1976. V. 5, No.2. P. 329-528.
- 17. Mie, G. Beitrage zur Optic truber Medien speciell kolloidaler Metallösungen [Текст] / G. Mie // Ann. Phys. 1908. Bd. 25. S. 377-445.
- Радченко, И. С. Определение размеров частиц и агрегативной устойчивости органозолей цинка по спектрам ослабления и рассеяния света [Текст] / И. С. Радченко, А. Ю. Малиновская // Восточно-Европейский журнал передовых технологий. – 2012. – №2/5(56). – С. 15-24.
- 19. Шифрин, К. С. Рассеяние света в мутной среде [Текст] / К.С.Шифрин. М.: Государственное издательство технико-теоретической литературы, 1951.–. 289 с.
- Person, B. N. J. Optical properties of two dimensional systems of randomly distributed particles [Texct] / B. N. J. Person, A. Liebsch // Phys. Rev. B. – 1983. – Vol. 29, №8. – P. 4247-4257.
- 21. Gans, R. Über die Form ultramikroskopischer Goldteilchen [Текст] / R. Gans // Annalen der Physik. 1912. Bd. 37. S. 881-900.
- Kreibig, U. The limitation of electron meam free part in small silver particles [Teκcr] / U. Kreibig, C. Fragstein // Z. Physik. 1969. – V. 224. – P. 308-323.
- 23. Coronado, E. A. Surface Plasmon Broadering for Arbitrary Shape Nanoparticles: A Geometrical Probability Approach [Текст] / Е. A. Coronado, G. C. Schatz // J. Chem. Phys. 2003. V. 119. P. 3926-3934.
- 24. Ruppin, R. Optical properties of small metal spheres [Tekcr] / R. Ruppin // Phys. Rev. B. 1975. V. 11. P. 2871-2876.